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Abstract: An effective deicing system is needed to be designed to conveniently remove ice from the
surfaces of structures. In this paper, an ultrasonic deicing system for different configurations was
estimated and verified based on finite element simulations. The research focused on deicing efficiency
factor (DEF) discussions, prediction, and validations. Firstly, seven different configurations of Lead
zirconate titanate (PZT) disk actuators with the same volume but different radius and thickness
were adopted to conduct harmonic analysis. The effects of PZT shape on shear stresses and optimal
frequencies were obtained. Simultaneously, the average shear stresses at the ice/substrate interface
and total energy density needed for deicing were calculated. Then, a coefficient named deicing
efficiency factor (DEF) was proposed to estimate deicing efficiency. Based on these results, the
optimized configuration and deicing frequency are given. Furthermore, four different icing cases for
the optimize configuration were studied to further verify the rationality of DEF. The effects of shear
stress distributions on deicing efficiency were also analyzed. At same time, a cohesive zone model
(CZM) was introduced to describe interface behavior of the plate and ice layer. Standard-explicit
co-simulation was utilized to model the wave propagation and ice layer delamination process.
Finally, the deicing experiments were carried out to validate the feasibility and correctness of the
deicing system.

Keywords: ultrasonic deicing; deicing efficiency factor; harmonic analysis; CZM; standard-explicit
co-simulation; deicing experiments

1. Introduction

Icing on the equipment is one of the problems needed to be solved in a cold region. Ice buildup on
the structures may cause many adverse effects, including cracking, stiffness degradation, malfunctions,
and low performance on the structural components, which remarkably endangers their reliability.
Icing problems are widely existing in aircraft [1,2], wind turbine blades [3,4], marine structures [5,6]
etc. So far, various deicing methods were proposed and developed, mainly including hot bleed air,
electro-thermal, electro-impulse, electro-expulsive, vibratory, high frequency microwave, deicing fluids
etc. [7–9]. Based on the theory of wave propagation in a multilayered structure, Lamb waves and shear
horizontal (SH) waves can generate stress and displacement at the interface of the structure. These
stresses can be utilized to detach the ice layer. Compared to the deicing techniques mentioned above,
ultrasonic deicing is more advantageous in terms of power consumption and efficiency. Meanwhile,
the damping coefficient of the Lamb wave is small and this property guarantees the long propagation
distance of the Lamb wave. Thus, the Lamb wave has an advantage in deicing for large structures.
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Many scholars have done a lot of meaningful work on ultrasonic deicing before. The preliminary
research mainly focused on the feasibility study of ultrasonic deicing. Ramanathan [10] studied the
use of shear horizontal waves to provoke ice delamination by exceeding the ice adhesion strength by
Lead zirconate titanate (PZT) actuator, which showed very promising results. JL Palacios et al. [11]
focused on researching the deicing system for helicopter blades based on ultrasonic shear vibration and
impedance matching for the system. Ultrasonic vibration to remove ice from pipes was investigated
by RA Seppings [12]. Congbo Yin et al. [13] validated the feasibility of ultrasonic deicing for the
wind turbine blade. Marc Budinger et al. [14] investigated electromechanical deicing system based
on piezoelectric actuators and resonance modes. MK Kalkowski et al. [15] analyzed structures
with unwanted accretions based on semi-analytical finite elements to detach unwanted build-up.
A thorough parametric study of the ultrasonic deicing method on a plate with coating was conducted
by Shi et al. [16]. Some research focused on improving deicing efficiency. Tailored waveguides (TWG)
were introduced to reduce power required for deicing by Zhu [17]. Nicola DiPlacido et al. [18]
compared the effects of two actuation methods for piezoelectric actuators on deicing. The results
indicated, for equal input power, the multitransient actuation method would increase deicing stresses
compared to continuous excitation. Wang et al. [19] designed a light piezoelectric transducer for
deicing. The deicing efficiency was also explored based on theory. The interface shear concentration
coefficient (ISCC) derived from the theory of waves propagation in structure was defined and explored
to guide for deicing [16,20,21]. This coefficient considered the thickness of each layer but assumed
the length and width of each layer was infinite. The reflection, superposition, mode conversion of
waves, and actual boundary conditions are not considered. Electric power needed for deicing was
another indicator used widely in Refs [11,22] to estimate deicing efficiency. However, the prerequisite
for comparing power is the same deicing effect. In many cases, both the deicing power and deicing
effect are different. Thus, it is necessary to explore a method to estimate deicing efficiency for an actual
structure and different configuration.

For the ultrasonic deicing system, deicing energy and efficiency are two critical issues during the
deicing process. In this paper, deicing energy was estimated from the perspective of conservation of
energy and deicing efficiency for different models was investigated, which can provide guidance for
deicing model selection to achieve deicing with reduced energy consumption. With help of numerical
simulations, deicing efficiency for a flat deicing system can be revealed and predicted to optimize the
deicing system. In the process, harmonic analysis coupled electrical and mechanical responses for the
piezoelectric deicing system was performed to simulate steady-state ultrasonic vibration. Shear stresses
at the interface of the ice layer were calculated and presented. The geometry effects of piezoelectric
actuators on shear stress and power consuming were investigated. Based on that, the deicing efficiency
factor (DEF) was proposed to describe deicing efficiency for seven different configurations, which
is very meaningful for deicing result evaluations. Then, four icing cases were studied to validate
DEF. Meanwhile, the shear stress distributions along three different axis directions were discussed.
Based on results of harmonic analysis, a cohesive zone model (CZM) [23,24] was introduced in the
standard-explicit co-simulation [25,26] process to study the wave propagation and deicing process.
Finally, according to parameters used in finite element simulations, the experiment platform was
founded and deicing experiments were conducted to verify the feasibility of the system.

2. Basic Theory and Model Establishment

2.1. Ultrasonic Deicing Principle Interpretation

After the actuator bonded to the flat deicing system is turned on, Lamb waves and shear horizontal
(SH) waves are generated in the structure. When the shear stress caused by these two kinds of waves
exceed the ice adhesion strength, the ice layer is detached from the plate. The waves propagation in
multiple layers of isotropic solid media can be investigated based on theory in Ref [27]. The coordinate
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system and ultrasonic waves propagating in the ice-plate layered structure for deicing is shown in
Figure 1.
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Figure 1. The coordinate system and ultrasonic waves propagating in the ice-plate layered structure.

The governing equation for Lamb waves and SH waves can be written as:

ρ
∂2ui

∂t2 = ci jkl
∂2ui
∂x j∂xk

, (1)

where ρ is the density, Cijkl is the stiffness tensor, and ui is the displacement field. The waves are assumed
to propagate along x1 direction. The solution of Equation (1) can be assumed as the following form:

ui = Uieik(x1+αx3−ct). (2)

In Equation (2), Ui = Uαi, αi is the cosine component in i direction. Ui is the polarization vector
presenting the displacement in each direction, k stands for the wave number along x1 direction, c
represents the phase velocity along x1 direction, and α is the ratio of wave number in x3 with respect to
the wave number in the x1 direction. By utilizing the inverse method [28], Christoffel’s equation can be
written as Equation (3): 
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The values of λim (i, m = 1, 2, 3) in Equation (3) can be calculated from Equation (4):

λim = Ciklmnknl, (4)

where nk, nl are the direction cosines of the normal to the wave front. According to the boundary
conditions, the displacements u1 and u3 are zero for SH waves and u2 is zero for Lamb waves. Thus,
displacements and stresses can be expressed as Equation (5):

u1 =
4∑

k=1

Bkeik(x1+αkx3−ct)

u2 =
2∑

k=1

Bkeik(x1+αkx3−ct)

u3 =
4∑

k=1

BkU3keik(x1+αkx3−ct)



Appl. Sci. 2020, 10, 6640 4 of 21

σ31 =
4∑

k=1

Bk[αk + U3k]µ(ik)eik(x1+αkx3−ct)

σ32 =
2∑

k=1

Bkαkµ(ik)eik(x1+αkx3−ct)

σ33 =
4∑

k=1

Bk[λ+ (λ+ 2µ)αkU3k](ik)eik(x1+αkx3−ct), (5)

where Bk is the weighting coefficient of the partial waves. U3k is the relation of the polarization vectors
between U3 and U1. The other variables are the same as mentioned before.

2.2. FE Model and Simulation

In this section, harmonic analysis and dynamic analysis were performed to model deicing effect
and deicing process, respectively. Harmonic analysis was implemented to calculate the stress tensor at
expected frequency range. The finite element model equation of the PZT actuator bonded to the host
structure can be written as Equation (6) [29]:

F = ([Knn −w2[M] − jw[R])U + [KnΦ]Φ
(

I
jw

)
= [KnΦ]U + [KΦΦ]Φ, (6)

where F is applied mechanical force, I is excitation current, U is elastic displacement field, Φ is electric
potential, [Knn] is elastic rigidity matrix, [KnΦ] is piezoelectric stiffness matrix, [KΦΦ] is permittivity
matrix, [M] is mass matrix, [R] is dissipation matrix, and w is the angular frequency. The equation of
harmonic analysis used in FE software can be expressed as follows:[

Knn −w2M KnΦ

KnΦ KΦΦ

][
U
Φ

]
=

[
0
−Q

]
. (7)

The work started from the evaluation of the effectiveness of guided waves technology to produce
the ice detaching from the structure. The 3D model of finite element simulation is shown in Figure 2.
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Figure 2. The 3D model of finite element simulation.

The geometry size of the aluminum plate and ice layer was 200 mm × 150 mm × 2 mm and 140
mm × 80 mm × 3 mm. The material of the piezoelectric disc was selected to be PZT-4. The material
properties of the aluminum and ice are shown in Table 1.
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Table 1. The material properties.

Material Density (kg/m3) Young’s Modulus (GPa) Poisson’s Ratio

Ice 920 9 0.28
Aluminum 2700 70 0.30

Material properties for PZT-4 are shown as follows:

ρ= 7500 kg/m3 cE =



13.9 7.78 7.43
7.78 13.9 7.43
7.43 7.43 11.5

2.56
2.56

2.56


× 1010Pa

e =



0 0 −5.2
0 0 −5.2
0 0 15.1
0 12.7 0

12.7 0 0
0 0 0


c/m2 ε =


762.5

762.5
663.2

,

where ρ is density, cE is elasticity matrix, e is piezoelectric coupling constant, and ε is dielectric matrix.
The FE simulations were performed with an Abaqus® during processing. The host plate and ice
layer were meshed by using 20-node quadratic brick elements with reduced integration (C3D20R) [30]
and PZT actuator was meshed by using 20-node quadratic piezoelectric brick elements with reduced
integration (C3D20RE). In the frequency range of research (20–240 kHz), the wavelengths of the Lamb
wave and SH wave were taken into consideration. According to the theory of guided waves in layered
structures in Ref. [27], the global matrix method can be used to solve the dispersion curves of the
ice-plate layered structure when ice accretes on the plate. By solving dispersion curve equations for
both Lamb wave and SH wave, the phase velocity of both Lamb wave and SH wave can be calculated.
The results for the 2 mm aluminum plate and 2 mm aluminum plate with a 3 mm ice layer are shown
in Figure 3.
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According to phase velocity, the shortest wavelengths should be around 8.0 mm for the 2 mm
aluminum plate with a 3 mm ice layer and around 7.8 mm for the 2 mm aluminum plate at frequency
240 kHz. After several times trial calculations, the global mesh seeding size was chosen as 0.74 mm,
smaller than one over ten the smallest wavelength. Meanwhile, the mesh type adapted in simulations
was 20-node quadratic brick elements with reduced integration, rather 8-node linear brick elements
with reduced integration to ensure accuracy. Thus, the amount of calculation would be several times
larger than using mesh type 8-node linear brick elements with reduced integration. After meshing the
model, the number of elements was more than 310,000. The FE mesh and reference points (A and B) for
FE study is shown in Figure 4. In the model, the voltage applied to the positive and negative electrode
of the actuator was 25 and 0 V, respectively. The left and right edge of the aluminum plate were fixed.
To make out the effect of different actuators on deicing and stress distributions, the volume of the PZT
actuator was kept as 100 πmm3, while their radius (r) and thickness (t) were changing as seven different
configurations. The radius for seven configurations were 4, 5, 6, 7, 8, 9, and 10 mm, respectively.
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Figure 4. FE mesh and reference points (A and B) of the deicing system for the FE parametric study.

Then, the deicing efficiency factor (DEF) was defined. The deicing efficiency for these seven
configurations were compared. Based on simulation results in Section 4, the most efficient configuration
was confirmed to be configuration 2. To verify the rationality of DEF, four different icing cases as
shown in Figure 5 were studied. For these four cases, the radius of the PZT actuator was 5 mm. The
icing case (a) in Figure 5 was the same as configuration 2 mentioned above. The size of the icing area
and the centroid of ice layer for these four cases were the same. For the cases (b–d) in Figure 5, the
distance between each ice block was 4 mm. Meanwhile, the applied voltage and frequency were the
same for these four cases. Based on these, shear stresses and DEF were computed and verified.
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Finally, Abaqus standard-explicit co-simulation was conducted to model wave propagation and
the deicing process for configuration 2. The aluminum plate and ice layer were defined as the parent
model to conduct transient dynamic analysis in Abaqus explicit, while the PZT actuator was defined
as the child model to conduct Abaqus implicit analysis. An interaction interface between the PZT
actuator and aluminum plate was used to manage the data exchange between the two solvers. A
bilinear cohesive zone model (CZM) [23] was considered to simulate delamination behavior at the
interface of the ice layer and aluminum plate. Cohesive elements with zero thickness were inserted
between the aluminum plate and ice layer. The constitutive behavior of the cohesive layer was defined
as a traction-separation law to model the detachment at the interface of the ice layer and aluminum
plate. It is assumed that there is a linear elastic traction separation law before failure, and the material
stiffness will gradually degrade after failure. To describe cohesive material behavior, damage initiation
and damage evolution should be defined. Initiation of interface damage is based on quadratic traction
interaction failure criterion, written as Equation (8):√(

σz
T

)2
+

(
τxz
S

)2
+

( τyz
S

)2
= 1 (σz> 0),√(

τxz
S

)2
+

( τyz
S

)2
= 1 (σz ≤ 0)

(8)

where σz, τxz, τyz represent the normal stress, shear stress in the x and y direction, separately. T
and S are the tensile strength and shear strength, respectively. The damage evolution satisfies the
mixed-mode fracture energy approach [31,32]. The fracture energy for the aluminum/ice interface was
reported to be 1.0 N/m [33]. Therefore, the normal mode fracture energy GIC was considered to be 1.0
× 10−3 N/mm in this study. The shear mode fracture energy GIIC and GIIIC was 2.0 × 10−3 N/mm. The
failure criterion can be expressed as Equation (9):( GI

GIc

)α
+

( GII

GIIc

)α
+

( GIII

GIIIc

)α
= 1, (9)

where GI, GII, GIII are energy produced in the normal, the x and y direction, respectively. GIC, GII C,
GIIIC are the critical fracture energy to achieve debond failure in the normal, the x, and the y direction,
respectively. The value of exponent α is usually 1 or 2. It was selected to be 2 in this study. The relevant
parameters can refer to literatures reported before [31]. All parameters are summarized in Table 2.

Table 2. Cohesive material properties.

Parameters Values

Cohesive layer modulus (penalty stiffness) in all 3 directions, Knn, Kss, Ktt 1.0 × 106 N/mm3

Ultimate strength in tensile, T 0.8 MPa
Ultimate strength in mode II, S 0.8 MPa
Ultimate strength in mode III, N 0.8 MPa
Normal mode fracture, GIC 1.0 × 10−3 N/mm
Normal mode fracture, GIIC 2.0 × 10−3 N/mm
Normal mode fracture, GIIIC 2.0 × 10−3 N/mm

To obtain the convergent result of the explicit dynamic procedure, the element size and time step
should be considered. The element size was the same as mention above (0.74 mm). According to
Courant criteria and Nyquist criteria, the time step was sited to be 2 × 10−8 s. Time period was 6 ×
10−4 s. The voltage applied the actuator was a sinusoidal load of 25 V. The other boundary condition
was the same as mentioned in the harmonic analysis.

In order to solve such a huge amount of calculation, the supercomputer of National Supercomputer
Center in Guangzhou, which is currently the fourth fastest supercomputer in the world, with a measured
33.86 petaflop/s (quadrillions of calculations per second), was used to perform these simulations. In
these processes, we changed the number of nodes which is related to the number of CPUs used for
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computation, threads, and processes by running scripts to adjust the efficiency of parallel operation of
supercomputer Tianhe-2. In this way, simulation results can be obtained most efficiently.

3. Deicing Experimental Setup and Schemes

On the basis of FE simulations, the experimental platform was built. In this part, the most efficient
configuration 2 (according to simulation results in part 4) was mainly considered to validate the
feasibility and rationality of the ultrasonic deicing system.

Ice adhesion strength varies from icing temperature, humid, surface roughness, measurement
error etc. In this study, the ice adhesion strength was measured using a low temperature centrifuge,
which is similar to these reported [16,34]. After completing all settings, the temperature of the low
temperature centrifuge was turned to −12 ◦C for another 40 min and the centrifuge apparatus started.
The rotate speed of the centrifuge was recorded when the ice layer was detached from the sample. In
the calculation process, the centrifugal force was written as F = mrω2. Then, ice adhesion strength can
be calculated based on equation τ = F/A. F is centrifugal force (N), m is ice mass (0.00862 ± 0.0002 kg),
r is radius of centrifuge apparatus (0.135 m), ω is speed of rotation (rad/s), τ is ice adhesion stress
(Pa), A is icing area (0.00070686 m2). Ice adhesion strength was calculated to be 0.36 ± 0.06 MPa after
8 experiments.

All the settings were the same as mentioned in Section 2. In the experiment, a piezoelectric
disk with radius 5 mm and thickness 4 mm was used as an actuator to generate ultrasonic waves.
The piezoelectric disk was bonded to the aluminum plate by epoxy resin. The setup for the deicing
experiments is shown in Figure 6. To eliminate the effect of surrounding temperature on the results,
the whole experiment process was conducted in the refrigerator at −12 ◦C.
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Figure 6. Experimental setup for deicing experiments.

Three different frequencies 190, 213, and 236 kHz, respectively, were adopted to verify optimal
frequency for configuration 2. These three frequencies were optimal frequencies for configuration
7 (r = 10 mm), configuration 2 (r = 5 mm), and configuration 3 (r = 6 mm), respectively. All the
boundary conditions were the same for these three deicing experiments (including the size and location
of ice layer), except the frequency applied to the PZT actuator. After 90 s testing for these three
different frequencies, the final deicing effects can be obtained. Moreover, deicing experiments were
also carried out for the remaining six groups to compare their differences of deicing effect and validate
the correctness of simulation results. Finally, deicing experiments of four different icing cases for
configuration 2 were carried out to verify the rationality of DEF.
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4. Results and Discussion

4.1. Deicing Energy Efficiency

After harmonic analysis, several nodes were selected as reference points to confirm optimal
frequencies for each configuration. Due to the amount of data, only configuration 1 (r = 4 mm, t =

6.25 mm) was shown as an example to interpret the whole process. Here, only the two reference
points A and B shown in Figure 4, which are located at the boundary and center of the interface
between the host plate and ice layer, respectively, were presented as an example to output shear stress
amplitude-frequency curves. The shear stress amplitude-frequency curves are shown in Figure 7. The
optimal frequency results for the rest nodes were the same, so they were not presented here.
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From the results of Figure 7, it can be found that the optimal frequency for deicing is 221 kHz.
Then, the same processes were performed for the remaining six configurations to obtain the optimal
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frequency of each model. For the purpose of estimating the deicing effect of each model, the average
shear stresses for delamination τ13 and τ23 at the interface of the ice layer were calculated. The results
are shown in Table 3.

Table 3. Optimal frequency and the average shear stresses at the interface for seven configurations.

Configuration Radius (mm) Optimal Frequency (kHz) τ13 (MPa) τ23 (MPa)

4 221 4.33 3.01
5 213 0.64 0.85
6 236 2.99 2.75
7 222 1.92 2.02
8 232 7.22 6.94
9 212 1.75 1.77

10 190 2.27 2.42

From the results of Table 3, the total shear stress τtotal for delamination can be calculated from
Formula (10):

τtotal =
√
τ13

2 + τ232. (10)

The total shear stresses for seven different configurations are shown in Figure 8. These shear
stresses were enough to overcome ice adhesion strength measured in lab condition, which was 0.36 ±
0.06 MPa at temperature −12 ◦C (detailed information is in part 3).
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Besides deicing shear stresses analysis, energy consumed for the deicing system is another
important aspect needed to take into consideration. For simplicity, the energy dissipation and heat
loss were ignored, only the kinetic energy and strain energy for the whole system were considered to
estimate the energy consumed for each model at optimal frequency. Therefore, the energy density for
deicing can be written as Formula (11):

w =
Ek + U

V
, (11)

where w, Ek, U, and V represent energy density, kinetic energy, strain energy, and volume of system,
respectively, for deicing. From these data, the energy density needed to detach ice from the host plate
for each model can be estimated. From computation results, the conclusion can be drawn that the
energy density needed for deicing varies from the radius of the piezoelectric wafer with the system
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at optimal frequency for each configuration. Meanwhile, the deicing effect also differs from one to
another. Therefore, it is difficult to distinguish which model is better. The ideal goal is to achieve
deicing with minimum energy consumption. Therefore, a coefficient called deicing efficiency factor
(DEF) was proposed to describe the relationship between deicing effect and deicing energy density.
DEF was defined as Equation (12):

DEF =
τtotal

w
=

√
τ13

2 + τ232

Ek+U
V

=

√
τ13

2 + τ232 ·V
Ek + U

, (12)

where τtotal, τ13, τ23, w, Ek, U, and V have the same meaning as mentioned prior. This coefficient
can describe deicing efficiency for each model. The greater this coefficient is, the greater total shear
stress obtained at the same energy density, indicating that more energy is applied to detach ice, which
represents the system as more efficient. From above data and Equation (12), DEF for each configuration
can be calculated. The energy density needed for deicing and DEF of seven different configuration are
shown in Figure 9. From these simulation results, it can be found that configuration 2 (r = 5 mm, t = 4
mm) is the most efficient one.
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Figure 9. Energy density needed for deicing and deicing efficiency factor (DEF) of seven
different configurations.

Then four icing cases based on configuration 2 mentioned in Section 2.2 were studied and
compared. The shear stresses and DEF for these four cases were computed and shown in Figure 10.
For these four icing cases, the deicing energy density was the same for the voltage and frequency
applied to the PZT actuator. Therefore, the trend of DEF is consistent with that of the total shear stress
for delamination (as shown in Figure 10b). Based on the simulation results, deicing experiments can be
carried out to verify the rationality of DEF.

4.2. Stress Distribution and Deicing Affect Analysis

The following study revolved around configuration 2. Stress distribution of ice layer was mainly
investigated in this section. The ice/substrate interface shear stress nephogram at XZ plane and YZ
plane at frequency 213 kHz were studied. In order to show these results more intuitively, 13 paths at
the interface of the ice layer including left and right boundaries were established along the long side
of the ice layer, which were parallel to the Y axis. Similarly, 22 paths at the interface of the ice layer
including two boundaries were established along the short side of ice layer, which were parallel to
the X axis. Based on these, the variations of shear stress with paths can be obtained. Then, the shear
stress amplitude of 13 paths parallel to the Y axis and 22 paths parallel to the X axis were averaged
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separately. Average the shear stress amplitude of 13 paths parallel to the Y axis, the average shear
stress τ13 and τ23 vary along the Y axis can be calculated. Similarly, the results of average shear stress
amplitude vary along the X axis can also be estimated. The results are shown in Figure 11.
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From the simulation results of Figure 11a,b, the conclusion can be drawn that the average shear
stress τ13 and τ23 amplitudes are symmetric about the neutral axis. Combining these two figures results
with shear stress nephogram, it can be found that τ13 is symmetric about the neutral axis, while τ23 is
antisymmetric about the neutral axis. From the results of Figure 11, it can be seen that the average
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shear stresses are higher at edges and corners of the ice layer which means ice debonding starts from
the edges and corners of the ice layer. Meanwhile, the shear stress distributions of deicing efficiency
top three, configuration 2 (r = 5 mm), configuration 6 (r = 9 mm), and configuration 7 (r = 10 mm) were
compared. In order to find the principle of stress distributions of these three configurations, the shear
stress τ13 and τ23 were normalized. The results are shown in Figures 12 and 13.
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Figures 12 and 13 reveal the relationship between shear stress distribution and deicing efficiency.
The normalized shear stress distribution can reflect the stress gradient from edges to the center of the
ice layer. In order to describe this type of stress gradient, a coefficient by referring to the definition of
variance was defined. The coefficient named variance of maximum shear stress (VMSS) represents the
degree of dispersion between shear stress at the edges and middle of the ice layer. For the average
shear stress at the edges of the ice layer at maximum, the average shear stress at the edges would be
equal to one after normalization. Thus, this coefficient can be described as Formula (13):

VMSS =
1
N

N∑
i=1

(τi − τmax)
2 =

1
N

N∑
i=1

(τi − 1)2, (13)

where N, τi represent the number of node and shear stress for each node, respectively, τmax means
shears stress at edges, which equals to one after normalization. The larger the value of VMSS, the
larger the degree of dispersion. That presents the shear stresses at the edges of the ice layer reach the
deicing stress threshold, the shear stresses at the rest of the part of the ice layer are still relatively small.
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It means shear stresses are more concentrated on the edges, which is more efficiency and power saving.
The results for these three configurations are shown in Figure 14.
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In Figure 14, coefficient VMSS shows a downward trend from configuration 2 (r = 5 mm),
configuration 6 (r = 9 mm) to configuration 7 (r = 10 mm). This conclusion is consistent with the results
of coefficient DEF, which proves the correctness of DEF from another perspective. In addition, 15 paths
along the thickness direction of the ice layer were established to analyze the shear stress distribution
along the Z axis direction. The results are shown in Figure 15.
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The result of Figure 15 shows that amplitude of shear stress τ13 and τ23 decrease from interface
to free surface while shear stress τ12 exists along the entire thickness direction of ice layer, which is
corresponding with theory and analysis.

4.3. Standard-Explicit Co-Simulation Analysis

With the help of transient dynamic analysis by using standard-explicit co-simulation, the whole
process of wave propagation and deicing can be revealed more clearly. Similarly, configuration 2
was studied in the process. The distribution of displacement for the aluminum plate and ice layer at
different times was calculated and shown in Figure 16. After the PZT actuator was turned on 6 µs,
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waves were generated and started to spread around the actuator. After 12 µs, waves reached and
reflected from the left edge of the aluminum plate. Then, the reflected waves were superimposed
with waves generated by the actuator and propagated toward the ice layer. Around 27 µs later, waves
reached the left edge of the ice layer. In the process, the waves continued spreading to the right edge of
the aluminum plate and reflected from the edges around 180 µs. Gradually, displacement started to
concentrate on the ice layer after 429 µs. Then, 498 µs later, the left edge of ice layer started to peel
off symmetrically along the neutral axis of the aluminum plate. Delamination developed towards
the inside of the ice layer within 519 µs. After that, delamination started at the bottom and top of
the ice layer about 546 µs. Then, detachment developed towards the bottom and top of the ice layer
after 555 µs. After 564 µs, detachment developed to the center and right edge of the ice layer. Finally,
delamination finished at 570 µs.
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To reveal the deicing process more clearly, an index for damage degree (SDEG) was utilized to
elaborate the interface damage evolution process. Figure 17 shows the evolution process of SDEG for
the cohesive layer. When SDEG was equal to 1, the area was detached and deleted. After the actuator
was turned on 450 µs, damage initiation occurred at the left, bottom, and top edge of the cohesive layer.
After 498 µs, the left edge of the cohesive layer started to damage and deleted. The ice layer stared to
detach from the aluminum plate. Then, damage developed along the wave propagation direction after
531 µs. With the evolution of damage, the bottom and top of the ice layer was peeled off at 549 µs.
Then, the detached area continued to increase. The detachment developed to the center and right edge
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of the ice layer around 564 µs. Finally, the delamination finished within 570 µs. The detachment area
was around 88.2% of the icing area. Although the ice layer was not totally detached, the remaining
area of the cohesive layer also showed varying degrees of damage, which meant that the ice layer was
likely to be removed completely under a small external load.
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Based on results of dynamic analysis, the processes of wave propagation, reflection, and
superposition can be better observed and understood. Besides, the entire peeling process of the
ice layer can be studied and presented. From the results of the above simulation, it can be found that
the detachment started at the edge of the ice layer, which coincided with the stress distribution analysis
in Section 4.2. In the harmonic analysis for configuration 2, the detached area was 83.3%. In the above
dynamic analysis, the detached area was 88.2%. It showed that good agreements between these two
analyses were obtained.

4.4. Experimental Verification

The deicing results for configuration 2 are shown in Figure 18. Three deicing experiments under
different frequencies were compared. When frequency was 190 kHz, there was no visible change
observed. When frequency was 236 kHz, only some cracks but without any delamination were
observed. When frequency was 213 kHz, the ice layer was cracked and partially detached from the
aluminum plate. After the actuator was turned on 24 s, delamination started from the edge of the ice
layer. The delamination area increased along the wave propagation direction with some cracks after 47
s. Then, the detached area continued to increase with more cracks generated. Finally, delamination
finished within 71 s. The detached area could be estimated from the nephogram in an open source
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image processing software named ImageJ [35]. Firstly, the experimental results image was converted
into grayscale images. The detached area can be identified by comparing the images before and after
the experiment. Then, the color threshold was set according to the color of the detached area. Based on
these, the detached area was calculated. In the ice layer nephogram, the detached area was in white.
The percent of shear stress exceeded the adhesion stress at 83.3% and 88.2% in harmonic analysis and
dynamic analysis while it was 76.4% in the experiment. The main error came from the difference in ice
properties between the simulation and experiment.
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Simultaneously, the different performances at frequency 190 and 236 kHz were also corresponding
with simulation results. The final results are shown in Table 4. Neither frequency, 190 nor frequency
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236 kHz could detach the ice layer, since both shear stresses of them were smaller than the adhesion
strength of the ice. The crack existed at frequency 236 kHz rather frequency 190 kHz due to shear stress
τ12 which contributed to ice cracking. Shear stress τ12 was higher at frequency 236 than 190 kHz. Thus,
the crack could observe at frequency 236 kHz rather than 190 kHz.

Table 4. Comparison of experimental and simulation results for three different frequencies.

Frequency (kHz) Experimental Results Simulation Results

190 Without visible change Maximum τtotal = 0.23 MPa;
Maximum τ12 = 0.11 MPa

213 Ice delamination and
cracking

Maximum τ13 = 4.3 MP;
Detached area is 83.3%;

Maximum τ12 = 3.0 MPa

236 Cracks only Maximum τtotal = 0.16 MPa;
Maximum τ12 = 0.28 MPa

Meanwhile, deicing experiments were also performed for the remaining six groups at their optimal
frequency, respectively. The trend of detached areas after deicing experiments and total shear stress
τtotal for delamination from FE simulation results were compared. The trend of total shear stress τtotal

and the detached area are shown in Figure 19.
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The result of Figure 19 can prove the optimal frequency for configuration 2 was 213 kHz. From
the results of Figure 19, it can be found that the trend of detached areas in experiments is consistent
with total shear stress in FE simulations, which can verify the correctness of FE simulation results and
feasible of the deicing method. Finally, deicing experiments for four different icing cases mentioned
before were conducted. The deicing results for these four cases are shown in Figure 20. The trend of the
detached area for these four cases is consistent with the trend of DEF predicted in the FE simulation.
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5. Conclusions

In this paper, a flat deicing system using ultrasonic waves to detach the ice layer from the host
structure was studied. The feasibility of the deicing system was validated in both FE simulations and
experiments. In FE simulations, both harmonic analysis and dynamic analysis were conducted. In the
harmonic analysis, deicing parameters and deicing frequencies were given. For different configuration,
a factor (DEF) was proposed to estimate and predict deicing efficiency. Based on optimal configuration,
four icing cases were discussed for further validation of DEF. Simultaneously, the relationship between
shear stress distributions and deicing was explored. In dynamic analysis, wave propagation and the
deicing process were investigated. Finally, deicing experiments were performed to verify the feasibility
of the deicing system and the reasonableness of predicted results in FE simulations.

Based on the results above, the following conclusions were drawn:

1. A parameter design method was proposed according to simulation results on the supercomputer.
The optimal configuration (the radius and the thickness of the PZT actuator) and deicing frequency
were also given.

2. The coefficient deicing efficiency factor (DEF) was proposed based on FE simulation, which
can estimate and predict the deicing efficiency. With the help of this factor, the effect of the
different model and deicing parameters on deicing efficiency can be calculated and compared.
For shear stresses distributions, the more concentrated the shear stresses are on the edges of
ice/substrate interface, the better for deicing. This can be one of the potential ways to achieve
deicing more effectively.

3. The calculation results of harmonic analysis and dynamic analysis are consistent. Harmonic
analysis can obtain deicing stress and deicing results more concise and clearer. Wave propagation,
reflection, superposition, and other processes are better displayed in dynamic analysis, which
can help to understand the deicing process and provide guidance for further optimization. For
different models and problems, these two analyses should be used rationally to achieve the
purpose of obtaining the expected results with lower calculation costs.
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