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Abstract: Deep learning has given AI-based methods for music creation a boost by over the past years.
An important challenge in this field is to balance user control and autonomy in music generation
systems. In this work, we present BassNet, a deep learning model for generating bass guitar tracks
based on musical source material. An innovative aspect of our work is that the model is trained to
learn a temporally stable two-dimensional latent space variable that offers interactive user control.
We empirically show that the model can disentangle bass patterns that require sensitivity to harmony,
instrument timbre, and rhythm. An ablation study reveals that this capability is because of the
temporal stability constraint on latent space trajectories during training. We also demonstrate that
models that are trained on pop/rock music learn a latent space that offers control over the diatonic
characteristics of the output, among other things. Lastly, we present and discuss generated bass tracks
for three different music fragments. The work that is presented here is a step toward the integration
of AI-based technology in the workflow of musical content creators.

Keywords: music generation; deep learning; latent space models; user control

1. Introduction

The advent of machine learning has unlocked a wealth of possibilities for innovation in music
creation, as in many other areas. Although applications of artificial intelligence (AI) techniques in
music creation have been around for more than half a century [1,2], deep learning has renewed interest
in computer-driven and computer-assisted forms of music creation.

A common approach for music creation using AI is to train a generative probabilistic model of the
data [3–5] and create music by iterative sampling, possibly while using constraints [6,7]. More recently,
deep learning applications in music creation have focused on generating waveforms directly [8],
often using techniques that have been adopted from speech synthesis.

In many of the above approaches, the opportunities for user control and interactive
human–computer creation are limited or inconvenient (some exceptions are [9,10]). Apart from
imposing constraints, as mentioned above, a common way of exercising control over the output of
models for music creation is to provide conditioning signals, based on which the output is generated.
It is useful to distinguish between dense conditioning signals, such as an audio track, and sparse
conditioning signals, such as a category label. The former typically provide rich information from
which the structure shape of the output is inferred. The latter only give a hint as to the character of the
desired output, but leave the specific structure and shape unspecified.

This dichotomy highlights an important issue for AI in music creation. With dense conditioning
signals, models can generally create higher quality output, and can possibly be more precisely
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controlled, but dense conditioning signals are impractical as a means of control from a user perspective.
Sparse conditioning signals, on the other hand, are much easier to provide and manipulate by a user,
but the quality of the output is generally lower, and it is hard to use such signals for fine-grained
control of the output.

From a creative perspective, an important issue with models that create outputs to accompany
existing musical material (typically by providing the existing material as a dense conditioning signal)
is how to honor the notion of artistic license. To human musicians, playing along with existing musical
material constrains what they play, but by no means fully determines it, which leaves room for a
variety of possibilities. For instance, given a chord progression and/or drum rhythm, bass players
may choose to play different accompanying bass lines, depending on their taste, capabilities, and
musical intentions. Whereas, some possible bass lines may serve to consolidate the existing rhythmical
structure by playing harmonically stable notes on metrically stable positions in the music, others may
enrich the existing material by playing in a more contrapuntal manner. Bass players may also choose
to align their bass line more closely to a particular instrument that is present in the existing material.

In this paper, we present BassNet, which is a deep learning approach that combines both dense
and sparse conditioning signals to generate bass guitar accompaniments for one or more input audio
tracks. The input tracks may contain rhythmical and harmonic parts, such as guitar, keyboards, and
drums, and provide the dense conditioning signal. A second, sparse conditioning signal is provided to
the model in the form of a (possibly time-varying) two-dimensional (2D) coordinate that the user can
freely choose to control the character of the generated bass guitar accompaniments.

A distinctive feature of the proposed approach with respect to most work on conditional
music generation is that the sparse conditioning signal is unsupervised, rather than supervised.
Another notable characteristic of our approach is that the sparse conditioning signal is designed to
control the relationship between the generated output and the dense conditioning signal (the input
tracks), rather than the qualities of the generated output itself. Thus, instead of the dense and sparse
conditioning signals independently competing for influence over the output, the sparse conditioning
signal is designed to modulate the influence of the dense conditioning signal on the output. This design
decision follows from the intuition that the generated bass track—as deviant as it may be from the
input tracks—should be construed in relation to, and not independently of, the input tracks.

To our knowledge, BassNet (along with the related DrumNet system, see Section 3 for
commonalities and differences) is the first conditional music generation system to use the latent
space in this modulating role. A further important contribution of this paper is a demonstration that
imposing temporal stability on latent space trajectories during training (using cross-reconstruction
loss) tends to lead to disentangled latent representations of bass patterns.

In this paper we describe the BassNet architecture and a procedure for training the model
(Section 4). We start with an overview of the background work on which our work is based (Section 2),
and a discussion of related work in the field of conditional music generation (Section 3). In Section 5,
we define an experimental setup to validate the approach by examining the capabilities of the model
to organize the learned 2D control space according to latent patterns in artificial datasets. We perform
further evaluation by training the BassNet architecture on real world data, and investigating the
effect of the 2D control space on the pitch distribution of the generated bass tracks. We pay special
attention to the effect of the temporal window size of the data on the performance of the model,
as well as the effect of the imposing a temporal stability constraint on latent space trajectories during
training. The results of this experimentation are presented and discussed in Section 6. In this section,
we also present case studies, in which we discuss different model outputs for a given musical fragment.
Section 7 presents conclusions and future work.

2. Background

Autoencoders learn (compressed) latent representations of data instances while using
an encoder/decoder architecture, where the training objective is to simply reconstruct the input
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given latent encoding. The dimensionality of the latent space is usually smaller than that of the input in
order not to learn trivial representations. Other ways to learn meaningful, compressed representations
of the data in autoencoders are to employ sparsity regularization in the latent space, or to corrupt the
input, for example, with dropout [11]. As the distribution of the latent space is not known in general,
there exists no efficient way to sample from common autoencoders. The possible ways to impose
a prior on the latent space consist of using auxiliary losses, like in Adversarial Autoencoders [12],
or by sampling directly from parametric distributions, like in Variational Autoencoders [13] (VAEs).
When the prior is known, it is possible to draw samples from the model, and to manually explore the
latent space in order to better control the model output.

A particular form of autoencoders are Gated Autoencoders (GAEs) [14,15], which, instead of
learning latent representations of the data, aim to learn transformations between pairs of data
points. While the term “gating” in neural networks often refers to “on/off switches” using sigmoid
non-linearities, Gated Autoencoders follow a different paradigm. Instead, they are a form of
bi-linear (two-factor) models, whose outputs are linear in either factor when the other is held
constant. The resulting factors can then be encoded while using any typical autoencoder-like
architecture, leading to latent spaces that represent transformations between data pairs. Besides vanilla
GAEs [16] (resembling de-noising autoencoders), other variants exists, like Gated Boltzmann
Machines [17,18], Gated Adversarial Autoencoders [19], or Variational Gated Autoencoders (this
work). The mathematical principle of GAEs is to learn the complex eigenvectors of orthogonal
transformations in the data, as has been made explicit in [20]. However, prior work has
empirically shown that the assumption of orthogonality in the learned transformations can
be loosened by using non-linearities in layer outputs, as well as predictive training (instead
of symmetric reconstruction) [19,21].

Another interesting feature of GAEs are that they are particularly suited for learning invariances
to specific transformations when those transformations are applied to input and output simultaneously.
For example, local time-invariance in sequence modeling leads to temporal stability of latent
representations [19], and transposition-invariance in music leads to representations of musical
intervals [21]. This learning of invariances, specifically of temporally stable features using the
eigenvectors of transformations, comprises an distinct line of research, which is also known as slow
feature analysis [20,22–24]. A GAE can be thought of as putting an additional neural network stack
on top such slow features in order to learn feature combinations, which improves the robustness and
expressivity of the architecture as a whole, and it is also advantageous for the invariance learning itself.

3. Related Work

At the present time, we can look back to an ever growing number of works that are related
to symbolic music and audio generation. In earlier contributions, the main focus was on symbolic
music generation, using RNNs [9,25–27], Restricted Boltzmann Machines [7], or combinations of
both [4,28,29]. More recent works use GANs [30–32] and Transformer architectures [33,34] for symbolic
music generation. Through advances in hardware performance, it became possible to directly generate
audio waveforms with neural networks. The first examples of this approach are the well-known
WaveNet architecture [35], but also GAN-based approaches, like GANSynth [36] or WaveGAN [37]
and, most recently, with JukeBox [5], a very elaborate Transformer model showed that it is possible to
generate full songs in the audio domain.

In music production, it is relevant for a user how to control such music generation models.
Obviously, latent spaces are well-suited for exploration, and models that possess such latent spaces
(e.g., VAEs and GANs) are directly applicable to such user control [38–41]. Typically, additional
conditional signals are provided during training, in a supervised manner. At generation time,
this conditional signal can be varied as a means of user control over the generated output. Along this
line, models for audio synthesis have been conditioned on pitch information [36,38], categorical
semantic tags [42], lyrics [5], or on perceptual features [43,44]. Other approaches use conditioning in
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symbolic music generation [45], or constraints during generation instead of conditional information
during training [7,46]. Note the difference of these approaches with the approach presented here,
in which the latent space itself is designed to be usable as a user control.

The general approach that is taken in this paper is closely related to that of the GAE-based
DrumNet [19]. However, DrumNet only operates on one-dimensional sequences of onset functions,
while BassNet uses spectro–temporal representations. Additionally, DrumNet uses an adversarial
autoencoder architecture to represent the input/output relations, while BassNet uses a VAE-approach.
In most models where the latent space can be controlled by a user, possible additional supervised
conditioning information is usually sparse (e.g., pitch information, perceptual features, lyrics,
or semantic tags). GAEs, on the other hand, naturally provide a conditioning on some dense context
(e.g., audio input in CQT representation), and a user-controllable feature space. Other works where
GAEs have been used for music modeling include common GAEs for learning transformations of
musical material [47], predictive GAEs for learning musical intervals from data [21], and recurrent
GAEs for music prediction [48].

Outside of the musical domain, GAEs have been used to learn transformation-invariant
representations for classification tasks [15], for parent-offspring resemblance [49], for learning
to negate adjectives in linguistics [50], for activity recognition with the Kinekt sensor [51],
in robotics to learn to write numbers [52], and for learning multi-modal mappings between action,
sound, and visual stimuli [53]. In sequence modeling, GAEs have been utilized in order to learn
co-variances between subsequent frames in movies of rotated three-dimensional (3D) objects [16] and
to predict accelerated motion by stacking more layers in order to learn higher-order derivatives [54].

4. The Bassnet Model

The BassNet model architecture and information flow is shown in Figure 1. The architecture
is designed to model the relationship between a mono mix of one or more input tracks (henceforth
referred to as the mix), and a mono output track containing the bass. The mix and bass are represented
as CQT magnitude spectrograms (see Section 4.1), denoted x and y, respectively. Although the
architecture involves convolution along both the frequency and the time axes, the inputs to the model
are fixed length windows of the spectrograms, rather than the spectrograms of the entire tracks.

The relationship between x and y is encoded in a latent variable z, as shown in the upper half of
the diagram in Figure 1. The latent variable can be of arbitrary dimensionality, but, in the present work,
we use a fixed dimensionality of two, so that it can be conveniently presented to the user without
dimensionality reduction. Although the x and y variables convey windows of multiple timesteps,
the corresponding z is just a single coordinate in the latent space. As such, the value of z (i.e., a pair
of real-valued scalars) describes the constellation of spectro-temporal relationships between x and y,
not just spectral relationships at a single timestep.

Because the modeling of the relationship between the mix and the bass is done while using CQT
magnitude spectra, rather than using waveforms, we need an extra sonification step to convert the
model outputs into an audio track. We do this by inferring three low-level audio descriptors from
the generated magnitude spectrogram ŷ, from which a bass track is then synthesized. This process
corresponds to the lower right part of the diagram. The lower left part depicts the extraction of
descriptors from the data in order to serve as ground truth in the training phase.

In the rest of this section, we describe the various aspects of the architecture in more detail.
We start with a brief discussion of the input representation (Section 4.1). Subsequently, we give an
overview of the audio descriptors for the bass track (Section 4.2). We then focus on the GAE part of the
architecture, and formulate a training objective to produce temporally stable latent representations
(Section 4.4).
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Figure 1. The BassNet model architecture and information flow. The input and target data of the model
are shown as grey boxes. Functions are shown as blue rounded boxes. Dark blue boxes depict functions
with trainable parameters. White boxes depict computed quantities. The ⊗ sign denotes element-wise
multiplication. The green and purple planes denote the parts of the graph that correspond to the
encoder functions fµ/ fσ, and the decoder function g, respectively. The enc/dec boxes represent dilated
residual encoders/decoders (Section 4.4.1). The CQT spectrogram computation, feature extraction,
and multi-resolution processes are discussed in Sections 4.1–4.3, respectively.

4.1. Model Input: CQT Log Magnitude Spectrograms

The BassNet model works with spectral representation of audio data. The monaural mix and
bass signals are converted to the spectral domain while using the Constant-Q Transform (CQT),
a non-invertible audio transform [55] that is often used in music applications because of its logarithmic
frequency scale, which allows for the frequency bins to coincide with the chromatic scale.

As is common in music applications, we discard phase information from the CQT and only use
its magnitude. Furthermore, we anticipate that the pitch—and therefore the harmonics—of the mix
and bass will play an important role in learning relations between the two. Because of this, we choose
a relatively high frequency resolution for the CQT, computing 36 frequency bins per octave (three bins
per semitone), over a range of 88 semitones, starting from 27.5 Hz (the pitch A0), yielding 264 frequency
bins in total. Because higher harmonics of musical sounds often have low energy as compared to the
lower harmonics, we take the log of the CQT magnitude spectrogram, so that the overtone structure of
sounds is emphasized. For computing the CQTs, we use an adaptation of the CQT implementation
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of the nnAudio library [56]. Before computing the CQTs, we resample the mono mixes at 16 KHz.
The CQT spectrograms have a hop time of 0.01 s.

4.2. Extraction of Audio Descriptors

The sonification of CQT log magnitude spectrogram outputs generated by the model is not
straight-forward, because this data representation is not lossless. First of all, the phase information is
discarded and, furthermore, the CQT transform is not invertible, like, for instance, the Fast Fourier
Transform. However, because we need to sonify only data describing a single source type (bass
guitar), and assuming the bass guitar tracks are monophonic, it is often possible to create a rough
approximation of the target sound while using some form of additive synthesis based on a small set
of audio descriptors.

In the current work, we use pitch (or fundamental frequency, denoted f0), level (denoted l),
and onset strength (denoted o) as descriptors for sonification. Here, we define level as the instantaneous
power of the STFT spectrogram, expressed in dB. These descriptors capture aspects of the sound that
can be estimated from the CQT spectrogram relatively accurately and, at the same time, provide—in
the case of monophonic bass guitar—sufficient information to synthesize a bass sound.

We need ground truth data to train the model to predict these descriptors from the generated
CQT spectrogram ŷ. To extract instantaneous pitch values from the bass tracks in the training data
we the convolutional neural network (CNN) pitch estimation system crepe [57]. For onset strength,
we use the CNN onset detector from madmom [58,59]. Both are publicly available state-of-the-art
methods. To estimate sound level we use the stft and power_to_db functions from librosa [60].

4.3. Temporal Multi-Resolution

The amount of computer memory that is needed to pass data and gradients through the model is
proportional to the window size, and large window sizes may have prohibitive memory requirements.
To accommodate for larger window sizes, we use what we call temporal multi-resolution, a lossy
compression of the data into multiple channels of smaller size than the original data. This technique
consists in repeated downsampling and cropping of data windows along the time axis with increasing
downsample ratios, in such a way that the data in the center of the window are kept at full resolution,
and the data are stored with decreasing resolution towards the outer parts of the window. The data
at different resolutions are cropped in such a way that the results have equal length, and can thus be
stored alongside each other as separate channels in a tensor. Figure 2 illustrates the process.

Note that the total number of elements in the compressed data window scales logarithmically with
the number of elements in the original data window. The example presented in Figure 2 yields a modest
reduction from 16 elements to 12 elements, but note that following the same procedure a window of
128 elements is compressed to 24 elements. Furthermore, note that the compressed window size can
be varied. In the given example, it is set at 4, which for an input of size 16 yields log2(

16
4 ) + 1 = 3

channels. A compressed window size of 2 would encode an input size 16 into log2(
16
2 ) + 1 = 4

channels, and compressed size of 8 would yield log2(
16
8 ) + 1 = 2 channels. When specifying the

window size in a multi-resolution setup we specify both the compressed and the expanded (i.e.,
original) window size. For example, the multi-resolution window in Figure 2 would be specified
as 4/16.

The expansion step that is shown at the bottom of Figure 2 is used for combining the outputs
of the model for consecutive windows. We expand the compressed window by upsampling the
downsampled channels and substituting the center part of the upsampled data by the data of the
higher resolution data. The expanded data are then windowed and used in an overlap-and-add fashion
in order to produce a full track (not shown in the figure). We use an even-sized non-symmetric Hann
window, because it allows for adding overlapped windows without rescaling when using a hop size
of half the window size. The impact of the low-resolution parts of the expanded window is limited,
because the windowing weights the center of the windows stronger than the sides.
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Figure 2. Schematic illustration of multi-resolution compression and expansion of data windows.

4.4. Learning Latent Representations to Encode the Relationship between X and Y

The relationship between the multi-resolution CQT log magnitude spectrograms x and y is
modeled while using a Variational Gated Autoencoder (VGAE), shown in the upper part of Figure 1.
It differs from the standard GAE, in that the latent variable z (also called mapping) has a stochastic
interpretation, as in VAEs. The conversion of the modeled variables x, y, and z to and from the
factors (the intermediate representations that are multiplied in a pairwise fashion) is performed by the
encoder–decoder pairs encx/decx, ency/decy, and encz/decz, respectively.

In the next Subsection (Section 4.4.1), we describe the implementation of the encoder/decoder
pairs, and we will then formulate a training objective for the architecture that enforces the temporal
stability of the latent variable.

4.4.1. Encoder/Decoder: Stacked Dilated Residual Blocks

Dilated residual networks [61] combine dilated convolution and additive skip connections in
stackable units, referred to as dilated residual blocks. The dilated convolution allows for large
receptive fields in higher layers without the need for large kernels, strides, or pooling. This means
that high level features can be represented at the same resolution as the input itself. The additive skip
connections are a solution to the problem that the gradient of the loss in traditional deep networks
tends vanish in the lower layers of the network, which limits maximal depth at which networks can
be effectively trained [62]. Dilated residual networks have proven to be especially successful in tasks
with dense targets, like image segmentation, and object localization [61], as well as stereo-image depth
estimation [63].

In this work, we use an adaptation of the dilated residual block proposed in [61] as the building
block for the encoders and decoders. Figure 3 depicts the block. In this structure, the information
flows from input to output through two pathways in parallel. The left pathway involves a typical
convolution layer with configurable parameters: the kernel size k, number of kernels n, and dilation
factor d. The right pathway convolution uses kernels of size 1 (dilation does not apply in this case)
and, thus, does not compute any features from the input. Instead, it outputs n linear combinations
of the input to ensure shape compatibility for elementwise addition to the n feature maps of the left
pathway. The pathways further include batch normalization operations. After the elementwise sum of
the pathways, a rectified linear unit allows for a non-linear response.
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Figure 3. Dilated residual block

A practical advantage of the residual blocks as used here is that the shape of the output is identical
to the shape of the input, due to the fact that the convolution stride is always 1 and there is no pooling
operator. Thus, residual blocks can be stacked very simply to obtain deeper architectures.

The encoders and decoders in the current architecture are identical, except for the fact that the
decoders use transposed convolution. The weights between the encoder convolutions and decoder
transposed convolutions are tied.

4.4.2. Training Objective

The left side of the VGAE—which is denoted as fµ(·, ·)/ fσ(·, ·), colored green in Figure 1—encodes

x and y to the parameters µ(x,y) and log σ2(x,y) of a gaussian distributionN (x,y) over the latent space Z.
Conversely, given x, the right side of the VGAE—denoted as g(·, ·), colored purple—decodes a sample
z ∼ N (x,y) to a reconstruction of y, being denoted ŷ:

µ(x,y) = fµ(x, y) (1)

log σ2(x,y)
= fσ(x, y) (2)

z(x,y) ∼ N (x,y) ≡ N (µ(x,y), σ(x,y)) (3)

ŷ(x,y) = g(x, z(x,y)), (4)

where x, y ∈ RT×C×F are CQT spectrogram windows, comprising T timesteps, C channels, and F
frequency bins.

Standard VAE Training Objective

The standard VAE learning objective includes two terms in the loss function to be minimized:
(1) the Kullback–Leibler divergence between the conditional distribution p(z|x) and the standard
multivariate normal distributionN (0, I)and (2) the negative log-likelihood of the data. Interpreting the
real-valued decoded model output ŷ as the mean of an isotropic gaussian distribution p(x|z),
which minimizes the negative log-likelihood of the data is equivalent to minimizing the mean squared
error MSE between the data y and its reconstruction ŷ [64] [Section 6.2.2.1], so the objective can be
written as:

LVAE = DKL(N (x,y), N (0, I)) + MSE(y, ŷ(x,y)). (5)

Enforcing Temporal Stability in Latent Representations

Note that, in our current setting, where there is a temporal ordering on data instances
(i.e., consecutive spectrogram windows), this learning objective does not pose any constraint on
the evolution of z through time. Thus, z may be trained to encode aspects of the relation between x and
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y that vary strongly through time. The intuition underlying slow feature analysis (Section 2) that the
semantically relevant aspects of time series tend to remain stable over time suggests that the learning
objective should be modified in order to enforce the temporal stability of z.

To this aim, we propose to modify/extend both the divergence and reconstruction loss terms in
LVAE while using the notion of cross-reconstruction. Cross-reconstruction has been used in different
settings, for example, for multimodal clustering [65], zero-shot learning [66], and learn transformation
invariant representations [67]. In the current context, we implement cross-reconstruction as follows:
For a given instance (x, y), we select a second instance (u, v) at random from the temporal vicinity of
(x, y). Using the equations , we compute the cross-reconstructions ŷ(u,v) and v̂(x,y):

ŷ(u,v) = g(x, z(u,v)) (6)

v̂(x,y) = g(u, z(x,y)) (7)

Minimizing the cross-reconstruction loss terms MSE(y, ŷ(u,v)) and MSE(u, v̂(x,y)) encourages
the robustness of the decoding step against the variability of z within a temporal neighborhood, but it
does not necessarily enforce the stationarity of z within the neighborhood. The latter can be achieved
by minimizing what we call the cross-divergence loss: the Kullback–Leibler divergence betweenN (x,y)

and N (u,v).
Adding the cross-divergence loss and replacing the reconstruction loss term in Equation (5) by

the cross-reconstruction loss terms, we obtain the following loss function for an instance (x, y):

Ltrain(x, y) = DKL(N (x,y), N (u,v))

+ DKL(N (x,y), N (0, I))

+ MSE(y, ŷ(u,v))

(8)

where (u, v) is a randomly selected instance from the temporal neighborhood of (x, y).

Reconstruction Loss Terms for Descriptors

The above loss function is aimed at producing a temporally stable latent space that learns
relationships between the CQT log magnitude spectrograms x and y. Because, in addition to
producing a ŷ, we want the model to predict the pitch, level, and onset audio descriptors, we add
the corresponding loss terms. For pitch, the output of the model is a categorical distribution over the
center frequencies of the 264 CQT bins, and for the level and onset descriptors the output is a Bernoulli
distribution. Accordingly, we extend Ltrain from Equation (8) with the categorical cross-entropy (CCE)
loss for the pitch predictions, and the binary cross-entropy (BCE) loss for level and onset:

Ltrain(x, y) = DKL(N (x,y), N (u,v))

+ DKL(N (x,y), N (0, I))

+ MSE(y, ŷ(u,v))

+ CCE( f (y)0 , f̂0
(u,v)

) + BCE(l(y), l̂(u,v)) + BCE(o(y), ô(u,v)).

(9)

We do not use the cross-reconstruction loss with a randomly selected neighbor, but rather
the reconstruction loss of (x, y) itself, in order to have a deterministic loss criterion for validation
and testing:

Ltest(x, y) = DKL(N (x,y), N (0, I))

+ MSE(y, ŷ(x,y))

+ CCE( f (y)0 , f̂0
(x,y)

) + BCE(l(y), l̂(x,y)) + BCE(o(y), ô(x,y)).

(10)
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5. Experimental Setup

In this section, we report the experimentation that we first carried out to test the effectiveness
of the approach empirically, and secondly to investigate the characteristics and consistency of the
mappings that the model learns between the mix and the bass on a corpus of pop/rock songs.
As in any modeling approach involving deep learning, there are many hyper-parameters and training
specifics to be configured and some of these settings may have a large impact on performance.
Although an exhaustive evaluation of all settings is beyond the scope of this paper, we do evaluate the
effect of the window size on the performance of the model. For other settings, we use values that we
found to work well on an ad-hoc basis during the development of the approach. These settings may
be subject to further optimization.

The trained models are evaluated in terms of the cross-entropy loss with respect to the pitch,
onset, and level descriptors, which provides a measure of how well the models perform as generative
models of the data.

Furthermore, we interpret the effectiveness of the approach in terms of its capability to identify
patterns between the mix and the bass and to learn a disentangled representation of the patterns in the
latent space. This requires ground truth knowledge of the relationships between the mix and the bass
and, to this end, we train the model on a number of artificially created datasets. Each of the datasets
is designed in order to test the sensitivity of the model to a different aspect of the input, such as
instrument timbre, harmony, and rhythm. We evaluate the results by way of a quadratic discriminant
analysis on the latent space, which quantifies the degree to which the patterns are disentangled.

Subsequently we train models of different window sizes on a dataset of commercial pop/rock
songs. In this case, we analyze the results by comparing the statistics of predicted pitch and onset
values to the statistics of ground truth pitch and onset values, and discussing how these statistics
change when the latent variable is changed. Lastly, we show some concrete examples that illustrate
how, for a given mix, different variations of the bass can be created by varying the latent variable.

In the remainder of this section, we describe the datasets used and report the specifics of the
model training procedure.

5.1. Artificial Datasets

We define four artificial datasets, each comprising 1000 pairs of mix and bass audio tracks.
The audio tracks are created by synthesizing programmatically created MIDI tracks, while using the
publicly available FluidR3_GM soundfont. The characteristics of the mix tracks are mostly identical
across the four datasets (with two exceptions explained below). The difference between the datasets
is in the way the bass track is related to the mix track. In each dataset, we define two or more bass
patterns that specify what the bass plays in function of the mix (chords and drums). The bass track
is generated from the mix track measure-wise by choosing bass patterns at random with a certain
transition probability at measure boundaries. Thus, the bass pattern can be regarded as a discrete
latent variable varying relatively slowly when compared to the rate of events (e.g., note onsets) in
the tracks.

The MIDI files for the mix tracks are created by selecting a random tonic and mode (major
or minor diatonic) for the song, and creating random diatonic triad chord sequences in a 4/4 time
signature, at a tempo chosen at random between 100 and 200 BPM. Each chord is struck at quarter note
intervals for the duration of either one or two measures (chosen at random). All of the chords are in
root position, with the root chosen within the MIDI pitch range 48–60. The chords are synthesized by
two randomly chosen pitched General MIDI instruments (from the piano, organ, guitar, or orchestral
ensemble instrument groups) with a randomly chosen mixing proportion. Additionally, drum tracks
are created while using a constant pattern hi-hat, bass drum, and snare (dataset 4 features a different
drum pattern than datasets 1–3). Figure 4 displays the patterns. Each of the songs lasts for a variable
number of complete measures chosen, such that the song duration is approximately one minute.
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Figure 4. Chord and drum patterns for artificial datasets 1–3 (left), and 4 (right).

In the following subsections, we define the bass patterns for each dataset. Unless specified
otherwise, the bass notes are struck at each quarter note, and the bass notes are played in the range
of an octave below the root note of the chord. The bass patterns have been chosen, so as to test
whether the model can be trained to be sensitive to different musically relevant aspects of the mix.
Thus, rather than aiming to provide a set of bass patterns that is representative for actual music (which
would be a non-trivial empirical study in itself), we focus on the different aspects of the mix on which
such patterns may be conditioned (in particular, harmony, rhythm, and timbre).

5.1.1. Artificial Dataset 1 (A1)

This dataset defines three bass patterns. In pattern 1, the bass plays the first chord degree (the
root of the chord). In pattern 2, it plays the third chord degree and, in pattern 3, it plays the fifth
chord degree.

5.1.2. Artificial Dataset 2 (A2)

This dataset defines two bass patterns. In pattern 1, the bass plays the first chord degree if the
chord is a minor chord, and the fifth chord degree if the chord is a major chord. Conversely, in pattern
2 the bass plays the first chord degree if the chord is a major chord, and the fifth chord degree if the
chord is a minor chord.

5.1.3. Artificial Dataset 3 (A3)

Unlike the other datasets, dataset 3 does not use a mix of two randomly chosen instruments to
play the chords in the mix track, but instead the instrument is chosen at random at each chord change,
and it can be either organ (Drawbar Organ, General MIDI program 17) or guitar (Acoustic Guitar,
General MIDI program 25). At each chord change, the probability of switching instrument is 0.5.

This dataset defines two bass patterns. In pattern 1, the bass plays the first chord degree
if the chord is played by guitar and the fifth chord degree if the chord is played by organ.
Conversely, in pattern 2, the bass plays the first chord degree if the chord is played by organ and
the fifth chord degree if the chord is played by guitar.

5.1.4. Artificial Dataset 4 (A4)

Dataset 4 uses a slightly different drum pattern (see Figure 4), in order to be able to define bass
patterns that are rhythm specific. Specifically, the third beat of the bar is marked with two eighth note
bass drum onsets, instead of a single quarter note.

Dataset 4 defines five bass patterns. In pattern 1, the bass plays the first chord degree on beats one
and three (coinciding with the bass drum), and the fifth chord degree on beats two and four (coinciding
with the snare drum). Pattern 2 is the converse of pattern 1, with the first chord degree tied to the snare
drum and the fifth degree tied to the bass drum. Pattern 3 consists of the following sequence of chord
degrees: 1–3–5–3, which is, the first degree on beat one, the third degree on beats two and four, and the
fifth degree on beat three. Pattern 4 has a similar “staircase” structure as Pattern 3, but with eighth
notes instead of quarter notes: 1–2–3–4–5–4–3–2. Lastly, Pattern 5 consists of a single quarter note on
the first chord degree at beat one, and silence throughout the rest of the measure.
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5.2. Pop/Rock Dataset (PD)

The Pop/Rock dataset is a proprietary dataset of well-known rock/pop songs of the past decades,
including artists, such as Lady Gaga, Coldplay, Stevie Wonder, Lenny Kravitz, Metallica, AC/DC,
and Red Hot Chili Peppers. The dataset contains 885 songs from 326 artists, amounting to a total of
just over 60 h of music. The average song duration is 245 s with a standard deviation of 74 s. For each
song, the stems (guitar, vocals, bass guitar, keyboard, drums) are available as individual audio tracks.

5.3. Training Setup

We train the same architecture with several window sizes, in order to test the effect of temporal
context size. The sizes included in the current experiment are 10/10, 20/20, 40/40, 10/20, 10/40,
20/40, 10/640/, 20/640, and 40/640, where a/b denotes a compressed window size of a time steps
(see Section 4.3), and an expanded size of b time steps, with a hop time of 0.01 s between timesteps
(see Section 4.1). Thus, the compressed window sizes range from 0.1 s to 0.4 s, and the expanded
window sizes range from 0.2 s to 6.4 s. All of the models use encoders/decoders consisting of 5 stacked
dilated residual blocks (Section 4.4.1), each with 128 feature maps. The dilation of the convolutions is
chosen such that the receptive field of the highest block is at least as large as the input both in the time
and frequency dimension. The neighborhood size for selecting pairs of instances during training (see
Section 4.4.2) is set to 5 s. All of the datasets are split into a training set and validation set according to
the proportion 90%/10%. Although we use the latter set for reporting results we do not refer to it as a
test set, because it is used for early stopping the training process (see below).

Each model is trained by stochastic optimization of Ltrain (Equation (9)), while using the Adam
method [68] with a batch size of 20 and a learning rate of 0.0001. For the pop/rock dataset, we use
on-the-fly random mixing as a form of data augmentation. This means that, for each data instance,
the stems of the mix are combined into a mono mix with random mixing coefficients between
0.5 and 1.0, before computing the CQT on the normalized mono mix. After training on a mini epoch of
1000 instances, the validation loss is computed. Training is terminated when the validation loss has
not improved for more than 1000 mini epochs for the artificial datasets and 3000 mini epochs for the
pop/rock dataset.

6. Results and Discussion

In this section, we report and the discuss the results of training the BassNet architecture separately
on each of the datasets (A1–4 and PR), performing various train runs for each dataset, using varying
window sizes. We start by comparing the models in terms of the reconstruction loss for the learned
descriptors pitch, onset, and level (Section 6.1). After that, we look at the degree to which the models
can disentangle the latent bass patterns, as defined in the artificial datasets (Section 6.2). We test the
importance of the cross-reconstruction loss for disentangling the bass patterns by way of an ablation
study in which we remove the cross-reconstruction terms from the loss function, and instead use the
regular reconstruction loss (Section 6.3). Because the models trained on the PR dataset do not allow
for this type of groundtruth-based analysis of the latent space, we instead look at the effect of the
latent variable on the distribution of predicted bass pitch values relative to the pitch values in the mix
(Section 6.4). Lastly, we perform three case studies, in each of which we discuss two distinct bass tracks
that were produced by models trained on the pop-rock dataset (Section 6.5).

6.1. Cross-Entropy Loss

Table 1 shows the cross-entropy loss for the pitch, onset, and level predictions of the trained
models, computed on the validation data for all if the datasets. The reported values correspond to the
CCE (pitch) and BCE (onset and level) terms in Equation (10). The results show—unsurprisingly—that
the PR dataset is more challenging than the A1–4 datasets, especially in terms of pitch. Across the
board onset is easier to predict than level. This is likely due to the fact that the onset target is sparser.
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As for window sizes, the loss results do not reveal an overwhelming winner, even if there appears
to be a slight advantage to smaller window sizes. Note that, for onset in the PR dataset, the best results
are obtained for the longest window. This is in line with the intuition that the capturing the rhythm of
the music requires a larger temporal context.

Table 1. The cross-entropy loss on validation data of models with varying window sizes, for each of
the datasets (A1–4 and PR), and each of the three audio descriptors pitch, level, and onset. The first
column specifies the compressed and expanded window sizes of the models.

A1 A2 A3 A4 PR

Size f0 l o f0 l o f0 l o f0 l o f0 l o

10/10 0.263 0.479 0.050 0.255 0.480 0.064 0.438 0.479 0.138 0.551 0.510 0.082 1.753 0.511 0.273
20/20 0.297 0.479 0.082 0.293 0.480 0.094 0.249 0.479 0.090 0.486 0.509 0.088 1.714 0.509 0.265
40/40 0.312 0.480 0.075 0.284 0.480 0.068 0.268 0.479 0.086 0.487 0.504 0.094 1.707 0.515 0.263
10/20 0.282 0.479 0.132 0.271 0.480 0.146 0.383 0.479 0.090 0.557 0.513 0.086 1.718 0.509 0.266
10/40 0.308 0.479 0.087 0.294 0.482 0.192 0.295 0.479 0.115 0.419 0.498 0.086 1.767 0.515 0.351
20/40 0.288 0.479 0.080 0.265 0.480 0.123 0.279 0.479 0.086 0.421 0.497 0.081 1.725 0.510 0.276

10/640 0.676 0.480 0.168 0.621 0.480 0.142 0.634 0.481 0.215 0.986 0.537 0.169 1.719 0.511 0.268
20/640 0.632 0.480 0.141 0.661 0.480 0.160 0.542 0.479 0.151 0.738 0.533 0.118 1.729 0.515 0.269
40/640 0.618 0.480 0.132 0.655 0.480 0.129 0.644 0.518 0.313 0.732 0.523 0.112 1.724 0.513 0.268

6.2. Disentanglement of Bass Patterns

Next, we look at the capability of the models to disentangle the bass patterns that were defined
in the artificial datasets. To that end, we plot the latent variable for a subset of the data, coloring
each point according to the corresponding bass pattern in the ground truth annotations (Figure 5).
More specifically, each point in the plots is the mean µ(x,y) of the posterior distribution N (x,y) for
a random pair (x, y) from the validation data, and it is colored according to the bass pattern that was
used to produce the bass from the mix when creating the artificial data.

Even if the plots already give a good visual impression of the disentanglement, we can quantify the
separation of patterns in the latent space using quadratic discriminant analysis. This analysis consists of
estimating a quadratic classifier to predict the pattern c from the latent variable z. It works by defining the
pattern-conditional distribution of the latent variable p(z|c) as a multivariate gaussian, and using Bayes
rule to infer p(c|z). For a given instance (x, y), the predicted class is defined as the class with the highest
conditional probability argmaxcP(c|µ(x,y)). The background colors in Figure 5 show how the classifiers
partition the latent space into classes. The plots also include the isolines that correspond to p(c|z) = 0.75
for each pattern c. The prediction accuracies of the classifiers serve as a quantitative measure of the
disentanglement of the patterns in the learned latent spaces. Table 2 lists the different models and datasets.

The results show that, in most of the cases, but not all, the latent space is organized in order to clearly
separate the bass patterns. Models with window size 20/20 and those with expanded window sizes of
40 (i.e., 10/40, 20/40, and 40/40) produce virtually complete disentanglement of bass patterns. Models
with longer windows (10/640, 20/640, and 40/640) have difficulty separating the patterns in datasets A2
and A3. In A2, the separation of the bass patterns requires models to successfully recognize the chord
type (major vs minor), whereas, in A3, the separation requires sensitivity to instrument timbre in the mix.
It is not surprising that, with longer windows, it is more difficult to recognize these aspects of the mix,
because the longer windows will almost always span multiple chords, likely with different chord types,
and in the case of A3 different instrument timbres. For A1 and A4, the separation of the models with
longer windows is clearly visible, but not as clean as the shorter window models. A more surprising
result is confusion of patterns in A3 for the 10/10 and 10/20 models, especially since the 20/20 model
has no problem finding a clear separation. When comparing the entries of column A3/f0 for models
10/20 and 10/20 in Table 1, the lack of separation of the patterns appears to have a negative impact on the
cross-reconstruction loss. A possible explanation for the fact that the short window models fail to capture
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bass patterns that are conditioned on instrument in A3, is that the windows are too short to capture the
temporal dynamics that help to distinguish between guitar and organ.

A1 A2 A3 A4

10
/1

0

0.750

0.750

0.750

0.750

pattern 1
pattern 2
pattern 3

0.
75

0
0.

75
0

pattern 1
pattern 2

0.7
50

0.7
50

pattern 1
pattern 2

0.
75

0
0.

75
0

0.
75

0

0.
75

0 0.750pattern 1
pattern 2
pattern 3
pattern 4
pattern 5

20
/2

0

0.750

0.750

0.750

0.750 pattern 1
pattern 2
pattern 3

0.750
0.750

pattern 1
pattern 2

0.750

0.750

pattern 1
pattern 2

0.
75

0
0.

75
0

0.750

0.750

0.750

0.750

pattern 1
pattern 2
pattern 3
pattern 4
pattern 5

40
/4

0

0.
75

00.
75

0

0.
75

0

0.
75

0

pattern 1
pattern 2
pattern 3

0.750

0.750

pattern 1
pattern 2

0.750

0.750
pattern 1
pattern 2

0.7
50

0.7
50

0.750

0.7
50

0.7
50

0.7
50 0.7

50

pattern 1
pattern 2
pattern 3
pattern 4
pattern 5

10
/2

0

0.750

0.750

0.750

0.750

pattern 1
pattern 2
pattern 3

0.750

0.750

pattern 1
pattern 2

0.750

0.750 pattern 1
pattern 2

0.750

0.750

0.750

0.750

0.750

pattern 1
pattern 2
pattern 3
pattern 4
pattern 5

10
/4

0

0.750

0.750

0.750

0.750

pattern 1
pattern 2
pattern 3

0.750

0.750

pattern 1
pattern 2

0.
75

0
0.

75
0

pattern 1
pattern 2

0.750

0.750

0.750

0.750

0.750

0.750

pattern 1
pattern 2
pattern 3
pattern 4
pattern 5

20
/4

0

0.750

0.750

0.750

0.750

pattern 1
pattern 2
pattern 3

0.7500.750

pattern 1
pattern 2

0.750
0.750

pattern 1
pattern 2

0.750

0.750

0.750

0.750

0.750

0.750

pattern 1
pattern 2
pattern 3
pattern 4
pattern 5

Figure 5. Cont.
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Figure 5. Distribution of a subset of the validation data in the latent space. The points are colored
according to their corresponding groundtruth bass pattern. The background colors and isolines show
the predictions of quadratic classifiers that predict the bass pattern from the latent variable.

Table 2. Predictive accuracy of the quadratic classifiers.

Size A1 A2 A3 A4

10/10 0.999 0.996 0.515 0.982
20/20 1.000 0.998 0.999 0.985
40/40 1.000 0.996 1.000 0.999
10/20 0.999 1.000 0.540 0.988
10/40 0.991 0.991 0.995 0.993
20/40 1.000 0.994 0.996 0.999

10/640 0.965 0.551 0.536 0.729
20/640 0.975 0.560 0.526 0.912
40/640 0.965 0.599 0.554 0.919

6.3. Effect of Cross-Reconstruction Loss

The previous section shows that training models with intermediate size windows leads to a
disentanglement of bass patterns in the latent space. In this section, we examine to what degree
this organization of the latent space is induced by the constraint of temporal stability of latent space
trajectories. We do so by way of an ablation study in which we train a model while using the
regular reconstruction loss instead of the cross-reconstruction loss. Recall that the original training
objective (Equation (9)) involves an instance (x, y) and a randomly selected nearby neighbor (u, v).
In that objective, the reconstruction terms ŷ, f̂0, ô, and l̂ for the instance (x, y) are computed based on
a sample from latent space distribution p(z|u, v) inferred from its neighbor instance (u, v), and vice
versa. In this ablation study, we compute the reconstruction terms for (x, y) based on the latent
position inferred from (x, y) itself. We also omit the Kullback–Leibler divergence between the latent
distributions p(z|x, y) and p(z|u, v)—the first right-hand term in Equation (9). This yields a training
objective that is identical to the test objective given in Equation (10).

With this objective, we train the 40/40 model architecture from the previous experiment,
which generally produced clearly disentangled latent representations of the bass patterns. Apart from
the training objective, all other training specifics are as in the previous experiment.
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Figure 6 and Table 3 show the latent space projection for a subset of the validation set, and the
corresponding quadratic classifier prediction accuracies, respectively. Although some clusters form
in the latent space, these clusters only occasionally coincide with the bass patterns that underlie the
artificial data. Further investigation revealed that the organization sometimes coincides with other
factors, such as the absolute pitch of the mix/bass track contents.
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Figure 6. Organization of the latent space on the 40/40 model trained with regular reconstruction loss
instead of cross-reconstruction loss.

Table 3. Predictive accuracy of the quadratic classifiers for models trained with regular reconstruction
loss instead of cross-reconstruction loss.

Size A1 A2 A3 A4

40/40 0.445 0.564 0.530 0.801

This shows that the disentanglement of bass patterns can be largely accounted for by the
minimization of the cross-reconstruction loss. The explanation for this is that the cross-reconstruction
loss drives the latent space to encode features of the data that remain largely stable over time. Note that
the bass patterns in the artificial data only change infrequently, which means that pairs of instances
used to compute the cross-reconstruction loss are likely to be generated from the same pattern.

The effect of the cross-reconstruction loss can also be observed when plotting the latent space
trajectories over time. Figure 7 shows that the latent space trajectory of the model trained with the
regular reconstruction loss (right column) fluctuates more strongly at short time scales, corresponding
to changes in absolute pitch. However, because the bass and the guitar play an almost identical riff in
this song, encoding the relationship between bass and guitar in terms of relative pitch yields a more
stable representation. The disentanglement of the bass patterns in dataset A1 shows that the model (when
trained with cross-reconstruction loss) is capable of learning such representations, and indeed using the
cross-reconstruction loss (left column) yields a more stable trajectory. Larger jumps in the trajectory (e.g.,
close to 35 s, 65 s, and 78 s) correspond to transitions between verse and chorus sections of the song.
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Figure 7. Horizonal (top row) and vertical (bottom row) components of the two-dimensional (2D) latent
space trajectories for an excerpt of the song Date with the night by Yeah Yeah Yeahs (2003, Polydor).
The columns show the trajectories of the models trained with cross-reconstruction loss (left column),
and regular reconstruction loss (right column).

6.4. Effect of Latent Variable on Relative Pitch Distributions

For the models trained on the PR dataset, an analysis of the latent space as in the previous section
is not possible, because of the lack of ground-truth knowledge in terms of bass patterns. Needless to
say in actual music such patterns probably exist, but they are much harder to define, and more mixed.
This is confirmed by the fact that the data distribution of the latent space (not shown in this paper) is
largely unimodal. However, the unimodality of the data distribution does not imply that there is no
effect of the latent variable on the output. In this section, we explore how the distribution of f0 values
in the predicted bass tracks changes as a function of the latent variable.

Plotting the overall f0 distribution of the predicted bass tracks by itself is not very informative,
since averaging distributions for songs with different tonalities would likely blur most of the structure
in the distributions of individual songs or song sections. Therefore, we compute the distribution of the
predicted bass f0 relative to the f0 of the mix. Such a distribution effectively tells us what pitches the
bass plays with respect to predominant pitch of the instruments in the mix. That is, the histogram bin
0 would count the instances where the bass f0 is equal to the mix f0, whereas the bin −12 (expressed
in semitones) would count the instances where the bass f0 is an octave below the mix f0.

Figure 8 shows the relative f0 distributions for different values of the latent variable z for
the validation dataset. The plots have been generated from a model trained on the PR dataset
using a window size of 10/80. To highlight the differences between the distributions, we have
subtracted from each distribution the relative f0 distribution of the actual bass tracks in the validation
dataset. Positive bin values thus indicate a higher occurrence of the relative f0s than in the data,
whereas negative values indicate a lower occurrence. Unsurprisingly, the variation in relative f0

distribution takes place mostly in the negative range (because the bass typically plays below the
instruments in the mix). Furthermore, the peaks and valleys at −12 and −24 show that the latent
space plays an important role in modulating the frequency of the octaves with respect to each other.
Interestingly, the fourths (−19, −31) are also strongly modulated, occasionally with peaks that are as
prominent as the octave peaks, for instance, at z = (0.4, 0.0). This is surprising, since, based on music
theory, we would have expected the fifth to play a more important role.
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Figure 8. Relative f0 distributions of generated bass tracks with respect to the f0 of the mix, for different
values of z. The pitch intervals on the horizontal axis are expressed in semitones. The scale of the
vertical axis is arbitrary but identical across plots.

Another notable trend is that the octaves and the fourth are strongly emphasized at the expense
of the other diatonic and chromatic intervals in the lower plots, whereas, in the upper left corner, this
pattern is reversed. Superficially =, this suggests that the latent space has learned to encode consonance
vs dissonance. However, it is important to realize that the distributions are averaged over all songs,
and they do not convey and information regarding melody and voice leading.

6.5. Case Studies

In this last part, we present three small case studies. Each case study is a short musical fragment
for which two different bass tracks are generated by selecting different positions in the latent space.
The latent position remains constant throughout the fragment.

For brevity, we do not display the input tracks here. Instead, we describe the input tracks,
and display excerpts of MIDI renderings of the predicted bass tracks (Figure 9). The MIDI renderings
were created by peak picking the predicted onset curves, converting the f0 predictions to MIDI
notes (including pitch-bend), and setting the MIDI velocity according to the predicted level curves.
We recommend listening to the sound examples, available at https://sonycslparis.github.io/bassnet_
mdpi_suppl_mat/.

https://sonycslparis.github.io/bassnet_mdpi_suppl_mat/
https://sonycslparis.github.io/bassnet_mdpi_suppl_mat/
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Example 1, vars. 1 (top) and 2 (bottom) Example 2, vars. 1 (top) and 2 (bottom)

Example 3, vars. 1 (top) and 2 (bottom)

Figure 9. Pianoroll renderings of generated bass lines. See the text for details.

6.5.1. Example 1

The first example is a piano excerpt with strong rubato, but clear onsets. In both examples,
BassNet follows the tempo changes and provides realistic harmonies. A notable difference between
the variations is that variation 1 tends to rhythmically follow the 16th notes in the higher piano register
(but using mostly low pitched notes), whereas variation 2 follows the slower, lower part of the piano
(but with higher notes), overall leading to a sparser and quieter result in variation 2.

6.5.2. Example 2

In this example, the source is a polyphonic fragment played by electric bass with non-trivial
harmony. For this example, the predicted bass tracks have been transposed one octave upward and
quantized to 16th notes. The first variation is created using a latent position that is representative for
the training data. The predicted bass line sometimes doubles parts in the source, and it sometimes
deviates from them. The output harmony is reasonable and consistent with the input. The rhythm is
mostly 8th notes like the source, with occasional 16th notes, which bring groove and variation.

Variation 2 corresponds to a more remote positioning in the latent space. Accordingly, the result
is more exotic, and it is reminiscent of improvisation and freestyling or fiddling with the bass. At some
point, it remains silent for three seconds, and then goes on again. It is not unlike a human bass player
trying something different, succeeding at particular points and failing at others.

6.5.3. Example 3

In this example, the source is a combination of guitar and drums. The drum programming is
uncommon, in that it does not feature an alternation of kick and snare. The rhythm of the guitar part is
slow and sparse, and the heavy distortion obfuscates the harmony. We believe that providing a bass
accompaniment to this example would be not be trivial for a human player. Like in previous examples,
the predicted bass is transposed upward one octave and quantized to 16th notes.
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Both of the variations are quite similar in terms of pitch, and succeed in following the harmony of
the guitar. In terms of rhythm, BassNet produces uncommon grooves, likely in response to the atypical
drum track. Varying the latent position, in this case, leads to different grooves.

7. Conclusions and Future Work

In this paper, we have presented BassNet, a deep learning model for conditional generation
of bass guitar tracks. Our approach combines several features that we believe jointly allow for
interesting music creation use cases. Firstly, rather than creating bass tracks from scratch it allows
the user to provide existing musical material. Secondly, the provided audio tracks do not uniquely
determine the output. Instead, the user can create a variety of possible bass tracks by varying the
two-dimensional learned conditioning signal. Lastly, because the sparse conditioning signal is learned,
there is no requirement for annotated data to train the model. This creates the opportunity to train
models on specialized user-selected collections of music (for example, their own works, or a specific
musical sub-genre).

Using artificial datasets, we have experimentally demonstrated that the model architecture allows
for disentangling bass patterns that require a relative pitch representation, and sensitivity to harmony,
instrument timbre, and rhythm. Furthermore, we have shown that models trained on a pop/rock
dataset learn a latent space that provides musically meaningful control over generated bass tracks
in terms of preference for harmonically stable and less harmonically stable pitches. Lastly, we have
presented three case studies highlighting the capabilities of the model and possibility of using the
latent space as a means of controlling the model output.

We believe an important direction for future work is a better understanding and characterization
of the semantics of the latent space learned by the model. At present, the user must explore the latent
space by way of trial and error, since there is no indication of which regions of the latent space may
yield interesting results for a given input. Inferring and displaying an input-conditional density over
the latent space may be a first step in this direction.

A related issue is the focus on user needs. Informal sessions with music producers have provided
hints that may not be obvious from a pure research perspective. They prefer richer, more adventurous
outputs with occasional errors to a clean output that avoids missteps. This reflects their intended use
of BassNet as a tool for providing inspiration, not to produce off-the-shelf musical tracks ready to be
included in a mix. A related point is their interest in exploring the limits of the model, for example, by
using the model on source material that is very different than the music that the model was trained on.
Such issues raise important and interesting methodological challenges.
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