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Abstract: Research on the performance measure evaluation of Bernoulli serial production lines is
presented in this paper. Important aspects of the modeling and analysis using transition systems
within the Markovian framework are addressed, including analytical and approximation methods.
The “dimensionality curse” problems of the large scale and dense transition systems in the production
system engineering field are pointed out as one of the main research and development obstacles. In that
respect, a new analytically-based finite state method is presented based on the proportionality property
of the stationary probability distribution across the systems’ state space. Simple and differentiable
expressions for the performance measures including the production rate, the work-in-process, and the
probabilities of machine blockage and starvation are formulated. A finite state method’s accuracy
and applicability are successfully validated by comparing the obtained results against the rigorous
analytical solution.

Keywords: production system engineering; Bernoulli production line; serial production line;
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1. Introduction

The manufacturing industry is of great importance to the national and global economies.
Many historical examples, starting with the Industrial Revolution, prove that it is a path towards
development and prosperity. More specifically, we have seen many times that national power correlates
to control over the global manufacturing industry and means of production, like industry sectors in
the US, Japan, Germany, Korea, or China. These examples prove that the growth of the manufacturing
output and technological improvement boost long-term economic growth. Additionally, it is estimated
that, via the multiplier effect, each manufacturing job supports 5–7 other employments in the economy
across the global trade of goods and services [1]. Consequently, an efficient and sustainable economy
depends on efficient and sustainable manufacturing. Given that, production system engineering
(PSE) stands as a path to rationalization and improvement of the existing production systems through
successful production planning and control [2].

PSE relies on production system modeling and analysis using transition system theory at different
scales, and particularly on discrete timed models describing steady-state (time-invariant) and transient
production system responses. Such models have been predominantly used for the performance
evaluation of various serial and assembly production systems focusing on throughput, reliability,
sensitivity, lead time, and bottleneck analysis, or other design and optimization problems. In addition,
similar applications can be found in fields of molecular biology, evolution, healthcare, city traffic,
communication services, computer algorithms, money flow, network structures, etc. [3].

The application of the stochastic modeling in the case of production systems intensified significantly
in the last two decades. Currently, significant research efforts are being put into a deeper understanding
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of the production system behavior in the context of the internet of things [4], still strongly relying on
the application of the operation research in the industrial context [5]. Therefore, a systematic
approach to production system modeling using stochastic processes has great potential to contribute
to current research dealing with Industry 4.0 [6] and advanced production system concepts like digital
twinning [7]. In addition to that, stochastic modeling has been successfully applied in cases like tool
wear condition monitoring [8], prediction of cutting force during micro-machining [9], or grinding
wheel topography modeling [10]. More generally, the importance of the Markovian framework,
its background, and broad application cases is proven by a quite significant number of research papers
dedicated to that topic [11,12].

Concerning production system modeling, a variety of problems has been addressed in
the literature, such as the performance evaluation of serial lines, assembly lines, job shops,
flexible manufacturing cells, or other specific types of production. A more detailed review of different
modeling approaches, including applications of the Markov processes, semi-Markov processes,
queuing networks, stochastic automata networks, Petri nets, performance algebra, and diodic algebraic
models, was presented recently by Papandopulos et al. [3]. It was pointed out that the majority of
the research body is still dominated by the application of the Markovian framework in cases of serial
production lines—“the working horse of production systems”.

Given that, the primary goal of this paper is to present the application of the transition system
theory in the case of the serial production line composed of machines and buffers of arbitrary storage
capacity. Such an approach has great potential for enhancing the competitiveness and profitability
of the production facilities. However, it is presently faced with a significant computational burden.
This issue is bypassed by this research using Markovian modeling and the developed finite state
method validated against the rigorous analytical solution to the problem.

The pioneering work on this topic was presented amid the last century by Sevast’yanov [13] who
developed an analytical solution to the steady-state response of the Bernoulli serial line composed of
two machines and one buffer using the integral equations. In addition, an idea of the approximation
method in the case of lines with more than two machines was presented since the integral equations
proved to be too complex to obtain a more general solution. The lack of the analytical solution
in the case of the general Bernoulli serial line (a line with an arbitrary number of machines and
buffers of arbitrary capacity) and the awareness of the “dimensionality curse” related to the large scale
transition systems have motivated the researchers to further develop different approximation techniques
enabling modeling and performance analysis of production systems. According to Papandopulos [3],
two methods prevail, namely the decomposition and the aggregation algorithms. The first approach
decomposes a production line into two pseudo-machine and one buffer sublines, while the latter uses
a sequential backward–forward aggregation of two neighboring machines until a complete line is
condensed into a single machine.

The advantage of the decomposition and aggregation methods is the ability to model and analyze
complex production lines at low CPU (central processing unit) costs, while getting some idea of
the observed production system and its properties through performance evaluation. Both methods
were applied in the manufacturing industry in cases like the automotive industry, the industry of
household appliances, furniture factories, etc. However, the major drawback of both methods is a lack
of systematic verification against the missing analytical results. In this respect, the analytical solution
of the general Bernoulli serial line problem was formulated recently using the generalized transition
matrix approach [14]. Unfortunately, its application was limited due to the exponential growth of the
problem scale known as the “dimensionality curse”, resulting in extensive CPU requirements and
computer memory storage limitations. Consequently, the methods of approximation were verified
only in a limited spectrum of problems.

However, the developed analytical solution enabled the formulation of the eigenvector associated
with the largest eigenvalue of the respective transition (stochastic) matrix. Such an eigenvector can
be considered as the DNA of the transition system under consideration as it is composed of the
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steady-state probabilities for each state of the system’s state space. This property is exploited further
in the present paper in order to formulate a finite state method (FSM) that bypasses the system’s
dimensionality issues and approximates the exact results. The essence of the method reflects the
internal relationships between the eigenvector components, allowing further systematic verification
of the approximation methods as well as research on system improvability within the Markovian
framework of the serial Bernoulli production lines. The method is applied in cases of several serial
Bernoulli production lines, providing a possibility of extensive verification of the aggregation method.

The remainder of the paper is structured as follows. A brief literature review is presented in
the next chapter. The third chapter outlines a referent analytical solution. It also contains a detailed
derivation of the FSM method as the central topic of the present research. The fourth chapter comprises
a summary of the FSM validation and discussions on the obtained results. Finally, the fifth chapter
presents the main conclusions of the research.

2. Brief Literature Review

Application of the Markovian modeling in the case of serial production lines has been present in
the governing PSE literature body for more than 50 years, starting with the works of Sevast’yanov
in 1962. However, it got broader recognition after the development of the approximation methods
bridging the exponential growth of the system dimensionality issues associated with the analytical
solution formulation. These approximations are usually characterized as the decomposition and the
aggregation method.

The decomposition method assumes that a complete serial line can be represented by a set of
two machines—one buffer line summarizing the behavior of the upstream and downstream parts
of the production flow. Each of the representing lines is composed of machines with the geometric
distribution of up and downtimes. The applicability of the method has been demonstrated in cases of
several production lines against the performance measures obtained using simulations. In addition,
a necessity for more rigorous verification against analytical results is pointed out [15]. The algorithm
of the decomposition method was further improved by the evaluation number reduction [16].
An excellent and more detailed review of the decomposition method development is presented
in [17]. Further application of the method in cases of the continuous flow lines composed of machines
with multiple failure rates is presented in [18,19]. The decomposition approach to the problem was
applied in cases of systems with closed loops, two product types, quality failures, automated lines,
multiple failure modes, non-linear material flow, assembly systems, etc. [3].

The basic idea of the aggregation method is to reduce a complete production line into a single
machine using an algorithm of sequential backward–forward aggregation of two adjacent machines.
It was first introduced by Lim et al. [20] in research on simple and analytical modeling of traditional
production lines. The method proved to be acceptably accurate and valid for application in the
modern mass-production industry. Its governing feature is modeling simplicity and low computational
burden. However, the method should be further verified using the analytical results as it is presently
validated using extensive simulations in some selected cases [2]. Its further development comprised
research in cases like production lines with quality control systems [21], improvability and bottlenecks
analysis [22,23], lead time analysis [24], transient problems [25], assembly systems [26], etc.

The analytical solution of the problem is of particular significance as it enables rigorous verification
of the approximation and numerical techniques, particularly in the case of decomposition and
aggregation methods. Its formulation has been a known issue starting with the work of Sevast’yanov.
However, it was solved recently by Hadžić [14] using the concept of the generalized transition matrix
and the eigenvalue problem following [27,28]. The solution proved to be exact. However, the evaluation
algorithm remained limited due to dimensionality issues. The same issue has also been addressed
in [29] using the state ranking transition matrix formulation of the system for arbitrary buffer occupancy
and corresponding outcome states.
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The “dimensionality curse” problems of the large scale and dense transition systems are
present across different scientific disciplines. Consequently, researchers make significant efforts
to develop various interpretation algorithms capable of cracking problems into simpler forms
while keeping the original state-time framework [30]. Some of the possibilities include external
memory storages (storing complete transition matrix), selective matrix criteria, lumping states
according to the model properties, and sparse matrix approximation [31]. Additionally, the PSE
research community investigated this issue intensively. The development of different approaches
and algorithms includes methods for the specification of the system and numerical solution methods.
In the first case, the governing research comprises Kronecker and tensor algebra, hierarchical modeling,
complex analysis, and other approaches. The main topics in the latter case cover direct, iterative and
sparse matrix methods, separable preconditioning, explicit storage algorithms, parallel computing
techniques, etc. One of the main drawbacks of these methods is a requirement of compatibility between
methods for system specification and the numerical solution of the problem [3].

3. Mathematical Modeling

3.1. Analytical Solution

Consider a serial production line composed of M machines mi, i = 1, 2, . . . , M of the Bernoulli(pi)
reliability model, where pi is the probability of machine being in state {up}, Figure 1. In addition,
consider a series of buffers bi, i = 1, 2, . . . , M-1 of capacity Ni ∈ N0, where N0 denotes the set of natural
numbers. Each buffer is placed in between two adjacent machines. Assume that (a) the machine
status does not depend on the status of other machines, (b) the time axis is slotted and machines begin
operations at the beginning of each slot, (c) machines’ and buffers’ statuses are determined at the
beginning of each slot, (d) the machines have an identical cycle time, and (e) the first machine is never
starved and the last one is never blocked [2].

Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 22 

original state-time framework [30]. Some of the possibilities include external memory storages 
(storing complete transition matrix), selective matrix criteria, lumping states according to the model 
properties, and sparse matrix approximation [31]. Additionally, the PSE research community 
investigated this issue intensively. The development of different approaches and algorithms includes 
methods for the specification of the system and numerical solution methods. In the first case, the 
governing research comprises Kronecker and tensor algebra, hierarchical modeling, complex 
analysis, and other approaches. The main topics in the latter case cover direct, iterative and sparse 
matrix methods, separable preconditioning, explicit storage algorithms, parallel computing 
techniques, etc. One of the main drawbacks of these methods is a requirement of compatibility 
between methods for system specification and the numerical solution of the problem [3]. 

3. Mathematical Modeling 

3.1. Analytical Solution 

Consider a serial production line composed of M machines mi, i = 1, 2, …, M of the Bernoulli(pi) 
reliability model, where pi is the probability of machine being in state {up}, Figure 1. In addition, 
consider a series of buffers bi, i = 1, 2, …, M-1 of capacity Ni ∈  �0, where �0 denotes the set of natural 
numbers. Each buffer is placed in between two adjacent machines. Assume that (a) the machine status 
does not depend on the status of other machines, (b) the time axis is slotted and machines begin 
operations at the beginning of each slot, (c) machines’ and buffers’ statuses are determined at the 
beginning of each slot, (d) the machines have an identical cycle time, and (e) the first machine is never 
starved and the last one is never blocked [2]. 

 
Figure 1. A model of the serial production line including M machines and M-1 buffers with pertaining 
state space (authors’ work). 

The behavior of such a system can be modeled using stochastic processes. More specifically, it 
can be modeled as the discrete-time Markov chain {Xn, n = 0, 1, 2, …} over the system’s state space S 
defined according to the buffers’ capacities, Figure 1. More specifically, each state in the system’s 
state space represents one possible combination of buffer occupancies. The transition of the system 
from one state to another is described using transition probabilities, [P(p1,p2,…pM)], also known as 
the transition matrix, which can be expressed as: 

Figure 1. A model of the serial production line including M machines and M-1 buffers with pertaining
state space (authors’ work).

The behavior of such a system can be modeled using stochastic processes. More specifically, it can
be modeled as the discrete-time Markov chain {Xn, n = 0, 1, 2, . . . } over the system’s state space S
defined according to the buffers’ capacities, Figure 1. More specifically, each state in the system’s state
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space represents one possible combination of buffer occupancies. The transition of the system from
one state to another is described using transition probabilities, [P(p1,p2, . . . pM)], also known as the
transition matrix, which can be expressed as:

[P(p1, p2, . . . pM)] = [P1(p1)][P2(p2)][P3(p3)] . . . [PM(pM)] =
M∏

i=1

[Pi(pi)]. (1)

A detailed formulation of the transition probabilities using the generalized transition matrix
concept and constitutive matrices [Pi(pi)] are available in [14]. The system in hand is a finite, irreducible,
and aperiodic Markov chain. Hence, a solution to the Chapman–Kolmogorov equations is the
eigenvector associated with the largest eigenvalue of the transition matrix. Such an eigenvector
represents a limiting distribution that is identical to the stationary distribution of the Markov
chain [32,33]. The stationary distribution of the Markov chain is of great significance for the performance
evaluation. It can, therefore, be considered as the DNA of the production line, or more generally of
the production system. It is also fundamental for the FSM derivation and validation of the existing
approximation techniques.

3.2. A Finite State Method

Let us first take a look at the properties of a stationary distribution (eigenvector associated with
the eigenvalue equal to 1) in the case of a three-machine line with arbitrary properties. Limitation to
the case of a three-machine line of specific properties will be used here without loss of generality
to illustrate the basic property of the stationary distribution. A similar conclusion can be drawn
if a different arrangement of the line or a line with another number of machines is considered.
Therefore, assume for simplicity that p1 = 0.6, p2 = 0.7, and p3 = 0.8, and that N1 = N2 = 10, Figure 2a.
The corresponding stationary distribution can be calculated without significant efforts using the
analytical approach [14]. The obtained distribution of the stationary probabilities across the state space
of the Bernoulli serial line is presented in Figure 2b including (N1 + 1) × (N2 + 1) = 121 possible system
states. Proportional relationships between stationary probabilities of the considered system can easily
be detected. Moreover, it turns out that such proportionality is a common property of Markov chains
describing the behavior of the serial Bernoulli production lines. This property is used as the basis to
develop FSM as an analytically-based method capable of breaking the dimensionality issues.

The eigenvector of the considered three-machine line (see Figure 2) can be decomposed into two
classes of states. State 0 and states which are a multiple of N1 + 1 = 11 stand for combinations of buffer
occupancy N1 = N2 = 0, N1 = 1 and N2 = 0, N1 = 2 and N2 = 0, ..., N1 = 10 and N2 = 0. These combinations
represent the external class of the states. States between 0 and 11, as well as states between multiples of
N1 + 1 = 11 cover combinations N1 = 0 and N2 = 1, N1 = 0 and N2 = 2, . . . , N1 = 0 and N2 = 10, N1 = 1
and N2=1, . . . , N1 = 10 and N2 = 10. These combinations stand for the internal class of the states.
Further analysis of the considered problem reveals that the proportional relationship between the states
in the external class is governed by the stationary probability distribution determined analytically in the
case of a two-machine line: p1-N1-p2. Similarly, the proportional relationship between the states in the
internal class is governed by the stationary probability distribution determined analytically in the case
of a two-machine line: p1-N2-p3. Therefore, the corresponding eigenvector can be determined using the
well-known and simple analytical solution of the two-machine line problem [2] at considerably lower
CPU and memory storage costs using two finite state elements: p1-N1-p2 and p1-N2-p3. Notice that p1

is a common property of both elements and also that p1=min{ p1, p2, p3}.
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Let us now consider a general case of the serial Bernoulli production line (see Figure 3) with a
machine m, pm = min{pi}, i = 1, 2, . . . , M. It is clear that there is a total number of m − 1 upstream
and M − m downstream machines. Define M − 1 finite state elements, (e), such that a complete line is
replaced by a set of pe-Ne-pm upstream and pm-Ne-pe+1 downstream elements.
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More specifically, the stationary distributions of the upstream elements are equal to:

〈
P(e)

〉T
=

〈
P(e)

0 P(e)
1 P(e)

2 . . . P(e)
Ne

〉T
=

〈
P(e)

ie

〉T
, (2)

where ie = 0, 1, 2, . . . , Ne stands for state on the buffer of the element e = 1, 2, . . . , m − 1. The pertaining
probabilities can be determined using the analytical solution in the case of a line composed of
two machines and one buffer [2]:

P(e)
0 =

(1− pe)(1− αe)

1− pe
pm
αNe

e
, αe =

pe(1− pm)

pm(1− pe)
, P(e)

ie
=

αie
e

1− pm
P(e)

0 . (3)

Similarly, the stationary distributions of the downstream elements can be determined using:

P(e)
0 =

(1− pm)(1− αe)

1− pm
pe+1

αNe
e

, αe =
pm(1− pe+1)

pe+1(1− pm)
, P(e)

ie
=

αie
e

1− pe+1
P(e)

0 , (4)

where e = m, m + 1, . . . , M − 1. The eigenvector representation of the stationary distribution is the
same as in the upstream case, Equation (2). The application of Equations (2)–(4) results in a total
number of M − 1 stationary distributions (elementary eigenvectors) that can be used to formulate the
stationary distribution (eigenvector) of the complete serial line covering all of the considered system
states without loss of generality. The application of the proportional relationships within the state
space of the considered transition system yields a general component of the stationary distribution
(i.e., the probability that buffers of the system are in state i1, i2, . . . , iM − 1), Pi1i2i3...iM−1 , expressed as:

Pi1i2i3...iM−1 = P000...0

P(1)
i1

P(1)
0

P(2)
i2

P(2)
0

P(3)
i3

P(3)
0

. . .
P(M−1)

iM−1

P(M−1)
0

= P000...0

M−1∏
e=1

P(e)
ie

P(e)
0

. (5)

The unknown P000...0 state of the system (all buffers are empty) from Equation (5) can be determined

using the well-known condition
N1∑

i1=0

N2∑
i2=0

N3∑
i3=0

. . .
NM−1∑

iM−1=0
Pi1i2i3...iM−1 = 1, i.e., it follows that:

P000...0 =
1

N1∑
i1=0

P(1)
i1

P(1)
0

·

N2∑
i2=0

P(2)
i2

P(2)
0

·

N3∑
i3=0

P(3)
i3

P(3)
0

· . . . ·
NM−1∑

iM−1=0

P(M−1)
iM−1

P(M−1)
0

. (6)
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Equation (6) can be modified by extracting 1/P(e)
0 in the denominator yielding:

P000...0 =
1

1
P(1)

0

N1∑
i1=0

P(1)
i1
·

1
P(2)

0

N2∑
i2=0

P(2)
i2
·

1
P(3)

0

N3∑
i3=0

P(3)
i3
· . . . · 1

P(M−1)
0

NM−1∑
iM−1=0

P(M−1)
iM−1

. (7)

Since
Ne∑
ie

P(e)
ie

= 1, the Equation (7) is simplified into the form:

P000...0 = P(1)
0 P(2)

0 P(3)
0 . . .P(M−1)

0 =
M−1∏
e=1

P(e)
0 . (8)

3.3. Performance Measures

Performance measures are of particular interest for the PSE and Markov chain framework.
It is, therefore, of great significance to develop simple expressions for the production rate (PR),
work-in-process (WIP) for each buffer, as well as the probabilities of blockage (BL) and starvation
(ST) for each machine [2]. The production rate, PR, is the average number of parts produced by the
last machine of the production line. Therefore, it is an intersection of events

{
mM is in state up

}
and{

bM−1 is not empty
}
, i.e.:

PR = P(
{
mM is in state up

}
∩

{
bM−1 is not empty

}
). (9)

Equation (9) can be expressed using the stationary distribution as:

PR = pM

1−
N1∑

i1=0

N2∑
i2=0

N3∑
i3=0

. . .
NM−2∑

iM−2=0

Pi1i2i3...iM−20

. (10)

By applying Equation (5), the production rate can be formulated in terms of the finite state
elements as:

PR = pM

1− P000...0

N1∑
i1=0

N2∑
i2=0

N3∑
i3=0

. . .
NM−2∑

iM−2=0


M−2∏
e=1

P(e)
ie

P(e)
0


. (11)

Substitution of Equation (8) into Equation (11) yields:

PR = pM

1− P(1)
0 P(2)

0 . . .P(M−1)
0

P(1)
0

P(1)
0

+
P(1)

1

P(1)
0

+ . . .+
P(1)

N1

P(1)
0

P(2)
0

P(2)
0

+
P(2)

1

P(2)
0

+ . . .+
P(2)

N2

P(2)
0


. . .

P(M−2)
0

P(M−2)
0

+
P(M−2)

1

P(M−2)
0

+ . . .+
P(M−2)

N2

P(M−2)
0

, (12)

which can be simplified using a relation
Ne∑
ie

P(e)
ie

= 1 to the form:

PR = pM

[
1− P(M−1)

0

]
. (13)

Therefore, the production rate can be expressed simply in terms of the probability of the state
{up} of the last machine, pM, and the first component of the elementary eigenvector obtained using the
pm-NM−1-pM element.
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Similarly, the work-in-process as the average number of parts contained at buffer bi is equal to:

WIPi = WIPe =

N1∑
i1=0

N2∑
i2=0

N3∑
i3=0

. . .
NM−1∑

iM−1=0

iePi1i2i3...iM−1 . (14)

Again, using Equation (5), the work-in-process can be expressed as:

WIPe = P000...0

N1∑
i1=0

N2∑
i2=0

N3∑
i3=0

. . .
NM−1∑

iM−1=0

ie
M−1∏
e=1

P(e)
ie

P(e)
0

. (15)

Substitution of Equation (8) into Equation (15) after algebraic manipulation and by using identity
Ne∑
ie

P(e)
ie

= 1 yields:

WIPe =

Ne∑
ie=0

ieP
(e)
ie

= WIPi. (16)

Consequently, the work-in-process associated with the ith buffer depends solely on the elementary
eigenvector

{
P(e)

}
obtained using the corresponding finite state element.

A machine blockage is commonly formulated using union and intersections of several events, i.e.:

BLi = P(
{
mi is up

}
∩

{
mi+1 is down

}
∩ {bi is full})+

P(
{
mi is up

}
∩ {bi is full})BLi+1.

(17)

The probability of blockage, BLi, of the machine mi, Equation (17), can be expressed using the
finite state elements as:

BLi = pi(1− pi+1 + BLi+1)

N1∑
i1=0

N2∑
i2=0

N3∑
i3=0

. . .
NM−1∑

iM−1=0

Pi1i2i3...(ie=Ne)...iM−1
, (18)

which after inserting Equations (5) and (8), yields:

BLi = pi(1− pi+1 + BLi+1)P
(e=i)
Ne

. (19)

Since the last machine can never be blocked, i.e., BLM = 0, the probability of the blockage of the
penultimate machine equals:

BLM−1 = pM−1(1− pM)P(M−1)
Ne

. (20)

The probability of starvation, STi, of the machine mi can be determined using the intersection
of events:

STi = P(
{
mi in state up

}
∩

{
bi−1 is empty

}
). (21)

Using the finite state elements, Equation (20) can be formulated as:

STi = pi

N1∑
i1=0

N2∑
i2=0

N3∑
i3=0

. . .
NM−1∑

iM−1=0

Pi1i2i3...(ie=0)...iM−1
. (22)

Again, using Equations (5) and (8), the probability of starvation of the ith machine is equal to:

STi = piP
(e=i−1)
0 . (23)
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As the first machine cannot be starved, the probability of starvation of the machine m1 takes a
zero value.

Finally, it is important to point out that a complete reconstruction of the stationary distribution of
the considered line is not necessary. It is sufficient to evaluate only the stationary distributions at the
finite state element level and to collect the first and the last components to determine the production
rate as well as the probabilities of blockage and starvation. Evaluation of the work-in-process, however,
requires more detailed data on all components of the considered finite state element. The FSM approach
is, therefore, very convenient for practical and daily factory-floor applications.

4. Validation and Application of the Developed Theory

Validation of the developed FSM is performed in cases of the serial Bernoulli lines L1–L9 with
probabilities of the state {up} specified in Table 1. Performance measures were calculated using
Equations (12), (15), (18), (19) and (22) for each line using the analytical solution (AN), the aggregation
procedure (AGG) and the FSM using ProLab, an in-house software developed by the authors,
and PSEToolbox (Production System Engineering Toolbox) [2]. Evaluation of the performance
measures was performed for the specified lines as well as for their permutations including even and
uneven distribution of the buffer occupancy. However, only selected and the most interesting results
are presented here. In addition, to enable a simple graphical presentation of the results, all of the buffer
occupancies were selected as fractions or multiplies of the first or the last buffer’s capacity. Nevertheless,
the considered approach was valid in case of the arbitrary buffer occupancies. Buffer occupancy was
specified separately for each considered case.

Table 1. List of considered serial Bernoulli production lines with probabilities of the state {up} (authors’ work).

Line M p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

L1 2 0.6 0.9
L1R 2 0.9 0.6

L2 3 0.6 0.75 0.9
L2′ 3 0.6 0.75 0.9

L2′R 3 0.9 0.75 0.6

L3A 4 0.6 0.7 0.8 0.9
L3B 4 0.7 0.6 0.8 0.9
L3C 4 0.9 0.7 0.6 0.8

L4 5 0.6 0.675 0.75 0.825 0.9
L5 6 0.6 0.66 0.72 0.78 0.84 0.9
L6 7 0.6 0.65 0.7 0.75 0.8 0.85 0.9
L7 8 0.6 0.643 0.686 0.729 0.772 0.815 0.858 0.9
L8 9 0.6 0.637 0.674 0.711 0.75 0.787 0.824 0.862 0.9
L9 10 0.6 0.633 0.666 0.699 0.732 0.765 0.798 0.831 0.864 0.9

As the first step of the FSM validation, a line L1 was considered to check the fundamental accuracy
of the method against the well known analytical solution of the line composed of two machines
and one buffer. The performance measured in the case of the line L1 and its reverse were evaluated
using AN, AGG, and FSM approaches and are compared in Figures 4 and 5. Both AGG and FSM
approaches agreed very well with the analytical results in this simplest case, except for some negligible
discrepancies due to numerical reasons. An excellent agreement could also be noticed in the asymptotic
values approached by the performance curves in all three cases. In addition, a reversibility property of
the line was excerpted nicely.

The performance measures of the line with three machines were evaluated in several cases.
The first case, L2, took into account the original arrangement of machines (see Table 1) and even buffer
capacity distribution along the line. Figure 6 presents the distribution of the performance measures as
a function of buffer capacity. A good agreement of both AGG and FSM with the analytical results was
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evident, except for slight discrepancies in PR and ST3 between AN and FSM solution for the lowest
level of buffers’ capacity.

Uneven distribution of the buffer capacity and perturbed arrangement of the machines were
evaluated in the case of the line labeled as L2′ . The third case, L2′R, considered a reverse of the
L2′ line. The performance measures obtained using AN, AGG, and FSM approaches are presented
in Figures 7 and 8 as functions of the buffer capacity. It can be seen that generally, all three methods
agreed well, particularly in asymptotic values of the performance measures. It can also be noticed that
the reversibility property held for lines L2′ and L2′R.

Performance measures of the line with four machines were evaluated in three cases of different
machine arrangements including the uneven distribution of the buffer capacity. A comparison
between the obtained results is presented in Figures 9–11 in cases of lines L3A, L3B, and L3C. Again,
the discrepancies were related to the smallest state spaces of buffers with small capacity. As the state
space increased, the methods approached the same asymptotic values. It is interesting to notice a
relationship between the position of the worst machine, WIP, BL, and ST. In a case when the worst
machine was in position i = 2, 3, . . . , M, WIPi−1 altered from the asymptotic function to an almost
linear curve, while BLi−1 and STi altered pertaining asymptotes.

The above examples proved a quite good agreement between the aggregation procedure, the finite
state method, and the analytical solution. Therefore, the analytical solution could be omitted from
further evaluations of lines L4–L9 as it would require considerably more CPU time as compared to
the AGG and FSM algorithms. Further, to avoid the presentation of extensive data generated by
the evaluation, only asymptotic values of the performance measures of lines L4–L9 are presented in
Figures 12 and 13. The machine arrangement is presented in Table 1, while the buffer occupancy is
considered to be even along the lines. The obtained asymptotic value of the production rate was,
as expected, the same for both lines and was equal to 0.6. The probability of machine blockage was also
equal to 0 since the first machine was also the worst one. The asymptotic values of the work-in-process
for each buffer of lines L4–L9 are presented in Figure 12. It can be seen that both methods yielded
almost the same values. Additionally, the asymptotic values of the probability of starvation for each
machine of the considered lines are presented in Figure 13. A nice agreement between the results can
be noticed.

Discussion

Three different methods were considered in the research: The analytical solution, the aggregation
procedure, and the newly developed finite state method. Both approximation methods demonstrated
respectable accuracy as compared to the analytical results. Therefore, both the AGG and the FSM
approaches could be recommended for further application for the performance evaluation of the serial
Bernoulli production line. This also includes the decomposition method since it was already verified
successfully against the aggregation method [34].

Some drawbacks of the FSM as compared to the aggregation algorithm manifest in the range
of the small buffer occupancy due to relatively rough system state discretization using the finite
elements. This drawback is more pronounced as the probabilities pi approach the same value. However,
this issue diminishes with the augmentation of the state space. The presented FSM was a powerful
and analytically-based tool that enabled validation of the aggregation and decomposition procedure
in complex cases that were previously unreachable to the conventional analytical approach. Its CPU
requirements were comparable to other approximation algorithms, while the analytical approach
remained an extremely CPU-demanding approach. Additional advantages of the FSM in comparison
to other approximation methods are the differentiability and reconstruction of the production system
eigenvector. The differentiability is of great significance in the field of improvement of production
lines. This feature was enabled by the FSM since the performance measures were analytically related
to the governing line properties. Additionally, the reconstruction of the system’s stationary probability
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distribution vector (eigenvector) was of great value to the researcher in the PSE field as it enabled a
deeper understanding of the behavior of complex production systems.Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 22 
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5. Conclusions

Manufacturing is of great importance for the global economy and society. It is, therefore, of great
significance to master the analysis and design of various production systems. In that respect, research on
the performance measures evaluation of the Bernoulli serial production lines was presented in this paper.
Several important aspects of the modeling and analysis using transition systems within the Markovian
framework were addressed, including analytical and approximation methods. The “dimensionality
curse” problems of the large scale and dense transition systems in the PSE field were pointed out as
one of the main research and development obstacles.

Given that, a new analytically-based FSM approach was developed based on the proportionality
property of the stationary probability distribution across the systems’ state space. An analytical solution
of the two machine-one buffer line was exploited to formulate finite state elements used to model a
complete Bernoulli serial production line. Simple and differentiable expressions for the performance
measures including the production rate, the work-in-process, and the probabilities of machine blockage
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and starvation were developed. The FSM accuracy and applicability were successfully validated by
comparing the obtained results against the rigorous analytical solution. In addition to that, a thorough
validation of the aggregation method was provided, proving its accuracy and applicability. Currently,
the FSM is limited to the evaluation of the single product lines as the cycle time was assumed to be equal
at each machine along the line. Other limitations are related to the assumption of a Bernoulli reliability
model of each machine along the line as well as to the assumption of occurrence of the machine
breakdowns and repairs at the beginning of each cycle which may not be in complete agreement with
the real production system.

Further research in the PSE field, as well as further development and application of the FSM,
should focus on the analytical formulation of problems like improvability analysis, design of lean
production lines, closed Bernoulli lines, Bernoulli lines with rework, assembly systems, the steady-state
and transient behavior of transition systems, etc. Additionally, further effort should be put into
FSM modeling of the production lines involving multiple products of different processing times.
Such research will make it possible to model complex stochastic relationships in cases of systems
like ship production or other job shop production systems. A significant impact on the PSE research
body would also be accomplished in case of validation of the evaluation methods against the factory
floor data. Last but not the least, it would be interesting to research a possibility to apply the FSM
approach in cases of other large scale transition systems typically encountered in fields of physics,
biology, chemistry, ecology, etc.
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