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Featured Application: The method proposed in the article can judge the fault type of the
reciprocating compressor without damage through the collected electrical signals.

Abstract: With the development of machine learning in recent years, the application of machine
learning to machine fault diagnosis has become increasingly popular. Applying traditional feature
extraction methods for complex systems will weaken the characterization capacity of features, which
are not conducive to subsequent classification work. A reciprocating compressor is a complex
system. In order to improve the fault diagnosis accuracy of complex systems, this paper does not
use traditional fault diagnosis methods and applies deep convolutional neural networks (CNNs)
to process this nonlinear and non-stationary fault signal. The valve fault data is obtained from the
reciprocating compressor test bench of the Daqing Natural Gas Company. Firstly, the single-channel
vibration signal is collected on the reciprocating compressor and the one-dimensional CNN (1-D
CNN) is used for fault diagnosis and compared with the traditional model to verify the effectiveness
of the 1-D CNN. Next, the collected eight channels signals (three channels of vibration signals, four
channels of pressure signals, one channel key phase signal) are applied by 1-D CNN and 2-D CNN for
fault diagnosis to verify the CNN that it is still suitable for multi-channel signal processing. Finally,
further study on the influence of the input of different channel signal combinations on the model
diagnosis accuracy is carried out. Experiments show that the seven-channel signal (three-channel
vibration signal, four-channel pressure signal) with the key phase signal removed has the highest
diagnostic accuracy in the 2-D CNN. Therefore, proper deletion of useless channels can not only
speed up network operations but also improve diagnosis accuracy.

Keywords: reciprocating compressor; fault diagnosis; deep learning; CNN

1. Introduction

A reciprocating compressor is the most widely used compressor type in industry and key
equipment in gas transmission pipelines, petrochemical industry, fertilizer industry, oil refinery,
ethylene chemical industry, coal chemical industry, and other industries. Monitoring and fault
diagnosis of reciprocating compressors can help the machine to continue normal operation and it is of
great significance. For reciprocating compressors, the gas valve is one of the components with the
highest failure rate in the reciprocating compressor in [1].
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Research on the fault diagnosis of the reciprocating compressor valve mainly focuses on three

aspects: Vibration monitoring, thermal performance monitoring, and the indicator diagram.

(@)

(b)

(0

Vibration monitoring method: Gas valve faults often occur together with abnormal vibration
signal. Therefore, using vibration signal for analysis is the most common method for diagnosing
gas valve faults. Jiang et al. [2] used basis pursuit to extract the principal components of
the vibration signal and employed waveform matching to extract the signal features. Finally,
he applied support vector machines to identify the valve failure mode. Kurt et al. [3] transformed
the vibration signal of the valve into a high-dimensional vector space and defined the metric in this
space. Finally, the distance between the actual state of the compressor and the reference state was
calculated to determine whether a failure had occurred. Shao et al. [4] used the vibration signal of
the valve of the reciprocating compressor to the experiment. Firstly, he performed wavelet packet
decomposition to extract features. Next, he applied principal component analysis to reduce
the dimensionality of the obtained feature and then input the BP neural network for diagnosis.
The weight optimization of the network used a combination of particle swarm optimization and
the genetic algorithm, and the classification accuracy reached 100%. Cerrada et al. [5] employed
the symbolic dynamics and complex correlation measure to extract the features of vibration data
as input to two random forest algorithms (ensemble subspace k nearest neighbor and ensemble
bagged tree). The experimental results achieved a greater than 93% classification accuracy.
Thermal performance method: The thermal performance parameters of reciprocating compressors
mainly include the component temperature, lubricating oil temperature, exhaust volume during
operation, exhaust pressure, cylinder pressure, etc. Gord [6] established a zero-dimensional
numerical model of a single-stage reciprocating natural gas compressor. Next, he set a hole on
the valve plate to simulate valve leakage and monitored the changes in temperature, pressure,
and mass flow parameters at the inlet and outlet of the valve to diagnose valve faults. The model
was verified by comparison with the existing experimental data. Finally, he proposed that the
valve could be diagnosed by detecting the temperature change of the valve to diagnose whether
the valve was faulty. Wang [7] established a mathematical model of the working cycle of a
reciprocating compressor and applied software to simulate the dynamic pressure curve of the
compressor under the condition of air volume adjustment. Then, he added the fault influences
parameters to improve the mathematical model. This simulated the leakage fault of the suction
valve and the spring stiffness failure and the cylinder pressure data under failure was obtained.
Finally, based on the principal component analysis method, he classified the valve fault status.
However, if the method based on the above parameters is used in the early stage of the failure,
these thermal performance parameters do not change significantly, and the failure cannot be
predicted well. Therefore, professional technicians are required to monitor relevant parameters
and it is difficult to achieve real-time diagnosis. Besides, measuring parameters require many
sensors and the cost is relatively high.

Indicator diagram: The indicator diagram reflects the change curve of the piston position and
the corresponding pressure in the cylinder in a working cycle of the reciprocating compressor.
The piston position can be expressed by the cylinder gas volume, crank angle, piston stroke,
etc. For reciprocating compressors, the thermal performance can reflect various types of faults
and the indicator diagram can reflect many changes in thermal performance. Therefore, once
the gas valve fails, the shape of the indicator diagram will change accordingly. This is the
reason why many scholars have used indicator diagrams to perform fault diagnosis as well
as carrying out a lot of research. Tang et al. [8] used backpropagation neural network(BPNN)
to identify the fault type based on extracting the features of the geometric properties of the
indicator diagram. He effectively diagnosed four common faults of the gas valve. Feng et al. [9]
proposed curvelet transform to extract the typical features in the indicator diagram and reduced
the dimensions of the high-dimensional features through principal component analysis. Next,
he input features to support vector machines (SVM) for failure pattern recognition. This was
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effective in discriminating clogged exhaust valves, clogged intake valves, and leaked exhaust
valves, etc. However, the indicator diagram converts 1-D signal into 2-D signal, which increases
the complexity of feature extraction. The extracted features are difficult to fully cover all the
information of the indicator diagram. The information on the pressure in the cylinder and the
position of the piston is difficult to collect. As a result, diagnosis by the indicator diagram has
great limitations.

Xiao et al. [10] established a dynamic model of coupling translation joints with subsidence for
time-varying load in a planar mechanical system. He discussed 42 kinds of coupling rub-impact
scenarios of double translational joints with subsidence. Finally, Xiao et al. [11] employed the Poincaré
cross-section method and the maximum Lyapunov exponent method to prove the chaotic behavior of
the reciprocating compressor system. Wei et al. [12] explored the causes of self-excited oscillation caused
by the bearing by establishing a mathematical model of the rotor system and proves the instability
of the system. The chaotic behavior and the instability of system is often one of the reasons that
make the signal more complex. Therefore, the fault signal of a reciprocating compressor has complex
nonlinear and non-stationary characteristics. In addition, the signal contains a lot of noise, and some
traditional signal processing methods are not applicable. For instance, fast Fourier transform (FFT)
can be effectively applied to rotating machinery, but it cannot achieve good results when processing
reciprocating compressor signals. Hence, alternative methods are used for processing nonlinear or
transient signals, such as wavelet transform (WT) and empirical mode decomposition (EMD). They
decompose the signal into different frequency bands and extract steady-state and linear features from
different frequency bands. Jin et al. [13] used the wavelet transform with the basis function of Bior3.5
wavelet to decompose the original vibration signal into various frequency bands. Then, he utilized
energy spectrum analysis and used the energy spectrum features as the input of the support vector
machine for diagnosis. The experimental results show that the accuracy of fault identification exceeds
90%. Lin [14] employed ensemble empirical mode decomposition (EEMD) to decompose the vibration
signal into intrinsic modal functions (IMFs) of different frequencies and used the Hilbert spectrum to
extract the fault characteristics of the natural gas compressor. However, it is difficult to select the basis
function of the wavelet transforms and there is no standard to select the basis function for different
signals. EMD also has many problems, such as modal aliasing. In order to deal with the transient
characteristics of the signal, some scholars have proposed other methods to extract the faulty feature of
the vibration signal of the reciprocating compressor. A feature extraction method of local maximum
multi-scale entropy and extended multi-scale entropy was proposed by Zhao et al. [15]. The extracted
features can characterize bearing faults well. Van et al. [16] proposed the Teager—Kaiser energy operator
to simultaneously extract the vibration signal, pressure signal, and current signal of the reciprocating
compressor and then used the deep belief network to identify the fault. Tang et al. [17] proposed
adaptive peak decomposition to extract the characteristics of the vibration signal of the four-state
reciprocating compressor. Qi et al. [18] sparsely encoded the reciprocating compressor operating data
in 5 years and identified the faults using SVM. Tang et al. [19] calculated the normalized Lempel-Ziv
complexity of the signal using the mean symbolization method and applied artificial neural networks
to diagnose the unit fault.

The intelligent fault diagnosis of the reciprocating compressor includes two steps: Feature
extraction and pattern recognition. Features are mainly extracted in the time domain, frequency
domain, and time-frequency domain. The effectiveness of feature extraction directly affects the
subsequent diagnosis results. Because the reciprocating compressor contains many rotating and
moving parts, it would cause many vibration sources and the measured vibration signal usually
includes transient vibration and noise. As a result, the frequency bandwidth of the signal has a
complicated shape as well as showing nonlinear characteristics. Hence, conventional intelligent fault
diagnosis methods are often not suitable for reciprocating compressors and affect the accuracy of
failure mode identification.
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In recent years, as the concept of deep learning has been proposed, it has been widely used in
various fields because deep learning can effectively self-extract features and classify data. It is also
widely used in machine fault diagnosis. In some more complex mechanical systems, it can extract the
good characteristics of system faults and then perform fault classification or predict the remaining life of
the machine through regression. Guo [20] used a deep neural network model with an adaptive learning
ability and hierarchical learning rate, of which the testing accuracy was over 99.3% in the bearing
data set. Long- and short-term memory (LSTM) is very suitable for processing time series. It is a kind
of deep feedback neural network, which can effectively extract the characteristics of short and long
periods of signal. Therefore, it has been applied to fault diagnosis by many scholars. Diego et al. [21]
proposed LSTM based on deep learning, which directly extracts the original vibration signal features of
the reciprocating compressor and performs fault pattern recognition. He used Bayesian optimization
to select the hyperparameters of the model and compared with it several machine learning methods.
The comparison showed that his method obtained better diagnostic results. Shen [22] proposed a
network called SeriesNet, which is specially used to process time series. It consists of an LSTM network
and dilated causal convolutional neural network. It effectively predicts several stock and regional
temperature data sets and predicts the results. It is more consistent than the typical ANN, SVM, and
other prediction models. The convolutional neural network (CNN) is different from LSTM. It is a kind
of feedforward neural network. It pays more attention to the local characteristics of data, and the
effectiveness of the CNN has been proved in the field of fault diagnosis. Long et al. [23] applied a
CNN with a LeNet-5 architecture to convert the original vibration signal into an image. Furthermore,
he used this model for feature self-extraction and pattern recognition. As a result, he achieved high
recognition accuracy in the data sets of three different machines.

In most cases, a signal cannot reflect a potential failure because the failure of a reciprocating
compressor is often caused by the interaction of different factors and parameters. The collected
signal also usually contains information parameters, such as vibration, temperature, and pressure.
The relationship between these parameters is very complex and affects each other. Hence, it is necessary
to perform comprehensive fault recognition on multi-source signal data. In this paper, the CNN on
deep learning is utilized to realize the fault diagnosis of the air valve of the reciprocating compressor.

In order to solve the above problems, this article mainly studies from the following aspects:

(1) A 1-D CNN model is built and the original vibration signal of a single measuring point (only one
sensor is used to collect a one channel signal) is employed to train the network. Next, a nonlinear
mapping of the original vibration signal to the fault type is established. CNN is applied to extract
features of the original signal and realize fault diagnosis of the reciprocating compressor gas
valve. The experiment was conducted on the condition of a single measuring point.

(2) Eight-channel signals using multiple measuring points (four vibration sensors, four pressure
sensors, one key phase sensor) are applied in a 1-D CNN model and a 2-D CNN model for
reciprocating compressor valve fault diagnosis. Furthermore, this article studies the influence of
different fusion measuring points signals.

2. Convolutional Neural Network

CNN is a neural network specially used to process data with similar grid structures, for example,
1-D time series data (which can be considered as a 1-D grid formed by regularly sampling on the time
axis) and 2-D image data (which can be regarded as a 2-D pixel grid) [24]. CNN is a multi-layer neural
network and it contains an input layer, hidden layers, and an output layer. The hidden layer is mainly
composed of a convolution layer and a pooling layer. The hidden layer processes the input signal and
extracts features. Finally, the fully connected layer acts as a classifier to realize the mapping with the
output target.
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2.1. Convolution Layer
The convolution operation expression for discrete data is given as follows:

(o8]

s(t) = (xxw)(t) = Y x(a) xw(t-a) Q)

aA=—00

where x is the input and w is the kernel function. Here, the s output is called the feature map.
Equation (1) is a convolution operation for 1-D data. When the input data are a multi-dimensional
array, the parameters of the kernel are usually a multi-dimensional array (features) and trained by the
learning algorithm. For example, the formula for 2-D convolution with a 2-D convolution kernel of a
2D image is as follows:

S(i, j) = (1K) (i, 1) = Y Y 1(i+m, j+n)K(m,n) ?)

where 5(i, j) is the pixel value in the output image S at the point (i, j), and K(m, n) is the parameter
value of the convolution kernel at the point. Figure 1 shows an example of the convolution operation
on a 2-D tensor.
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Figure 1. Schematic of the 2-D convolution operation.

The convolution operation makes the CNN have sparse interactions, parameter sharing, and
equivariant presentations, etc. These properties make the convolution operation very suitable for
processing time series data collected by reciprocating compressors.

Each convolutional layer may contain more than one convolution kernel and each convolution
kernel corresponds to a channel of output data. The output after the convolution operation is necessary
to add a bias term and is then activated by a nonlinear activation function. The output of the convolution
layer is described as the following:

z}” = K}” x all=1 blm 3)

o) =g(z") 4)

where KW is the i-th convolution kernel in layer I, and al'~! is the output of layer /~1. The offset term
corresponding to the i-th convolution kernel in layer [ of b;l/l. z;[! is not the activated output of the
channel i in layer I. g is the nonlinear activation function. al’l is the output of the channel i of the I-th
layer and it is the input data of the next layer.

Among them, the activation function enables the model to learn the nonlinear mapping of
the input data, which improves the model’s learning features ability. Activation functions mainly
include the sigmoid function, tanh function, linear rectification function (ReLU), leakage rectification
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function, parametritis modified linear unit [25], softmax function, etc. Because ReLU does not easily
disappear when using the error back propagation algorithm for model training, it can make shallow
parameters easier to learn. Thus, the process of model training is accelerated, and the model converges
better. Therefore, ReLU is also employed as the activation function in the convolutional layer and the
expression of ReLU is as follows:

g(z) = max(0,2) ©)

For the convolutional layer, the parameters of each convolution kernel need to be obtained
through training.

2.2. Pooling Layer

The pooling layer compresses the output of the previous layer. Concretely, it takes the overall
statistics of the adjacent output of the convolutional layer at a certain position as the output of the
pooling layer. The pooling layer has no parameters that need to be trained and pooling functions
commonly include the maximum pooling function [26], average pooling function, norm, and weighted
average function. Among them, the most commonly use pooling function is the max pooling, which
uses a window to scan on the tensor and takes the maximum value in the window as the output. When
the data passing through the pooling layer are 1-D, the max pooling function is as follows:

Py = max {7} ®)

(-1)WH1<t<jW

where ;1] () is output of the channel i of the layer [I — 1] at point t and W is the size of the pooled area.
P11 (j) is the output by the data at the point j of the channel i after passing through the pooling layer.
When the input data are slightly shifted or fluctuated, pooling can obtain an approximately
constant output. Local translation invariance can make the model only care about whether a feature
appears but not where it appears. This means that the use of the pooling layer can significantly
compress data and reduce the size of the model. Hence, it can improve the calculation speed.

2.3. Fully Connected Layer

Features extracted through the pooling layer are input to the fully connected layer (dense layer) for
compressing data and pattern classification. The fully connected layer is a multi-layer neural network
and its structure is given in Figure 2. The number of layers and neurons in each layer are set manually
and different layers as well as the number of neurons affect the accuracy of the network output. Each
neuron is equivalent to an McCulloch-Pitts neuron Model (M-P Model), as shown in Figure 3 and
receives input data transmitted from the previous layer of neurons. These data are transmitted through
a connection with weight and the total input value received by the neuron needs to be added with a
bias term and activated by a nonlinear activation function to generate the d into a column v output of
the neuron. The M-P neuron model can be expressed as the following Equation (7):

y = () wa; +1b) @)
i=1

where 7 is the number of neurons in the previous layer. a; is the output of the i-th neuron in the
previous layer and wj; is the weight corresponding to the i-th neuron in the upper layer. b is the bias
term. The calculation results inside the brackets get the output y through the activation function g.

For each full connection layer, the weight parameter vector of Formula (7) is combined into a
matrix W1 and the bias b is grouped into a column vector bl'l. The output result after the activation
function gl'l can be expressed as follows:

A0 — wllgl=1 4l ®)
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all — gl () ©)

where the superscripts [I] and [ — 1] represent the layer where the parameters are located. Wl is a
matrix with dimensions (1, m). Among them, n and m are the number of neurons in the previous
layer and the next layer, respectively. The output al'~!l of the neuron in the previous layer undergoes a
linear transformation of W and the bias vector bl"! to obtain an inactive output zYl. Then, the nonlinear
mapping of zI'l through the activation function ¢! obtains the output al of the current layer.

Figure 3. M-P neuron model.

The output of each neuron also needs to be activated by a nonlinear activation function that is
like the convolutional layer. Because the different activation functions of each layer will affect the
performance of the model, it is necessary to choose the appropriate activation function for different
problems. In the output layer, if the study is preparing to solve the binary classification problem,
the output layer generally contains only one neuron and the activation function is usually the sigmoid
function as shown in Equation (10). However, the output layer generally contains multiple neurons and
the activation function is usually the softmax function for multi-classification problems. The expression
is given as Equation (11). Besides, the middle-hidden layer also usually selects ReLU as the activation
function:

1
8() = 1= == (10)
U]
I ¢i
3(z) = o (11)
Y€

where z!l represents the output value of the i-th neuron in layer ! before activation. For the fully
connected layer, the weight matrix and the bias term denote the parameters that need to be obtained
through training.

3. 1-D CNN Single-Measurement Point Diagnosis Model

The vibration signal of the reciprocating compressor is complex and difficult to get the features
that have good characterization capacity. In this paper, a 1D CNN single-measuring point diagnosis
model is proposed and its structure is shown in Figure 4. The end-to-end model using the original
vibration signal as an input to 1D CNN to perform feature self-extraction and fault diagnosis.
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Figure 4. Schematic of a fault diagnosis model for a single measuring point reciprocating compressor
ina 1D CNN.

The fault diagnosis model of 1D CNN single measuring point for reciprocating compressor valve
includes 5 1D convolutional layers (Conv1D), 4 maximum pooling layers (MaxPooling 1D) and 2 fully
connected layers (Dense). Among the model, the size of the convolutional layer and the convolution
kernel both are 3 and the convolution step size is 1. Besides, the size of the pooling layer is 2 and
the pooling step size is 2. Because this classification problem belongs to the 4 classifications problem,
the output of the last layer is 4 neurons and uses softmax as the activation function. Therefore,
the corresponding output is the probability value of each category and the category with the highest
probability is the type of fault diagnosed. The specific parameters of the network are given in Table 1.

Table 1. 1D CNN single-point reciprocating compressor gas valve fault diagnosis model structure.

Layer (Type) Dimensions of Output Data Number of Training Parameters
Input Layer (None,1024, 1) 0
ConvlD 1 (None, 1022, 32) 128
Conv1D 2 (None, 1020, 64) 6208
MaxPooling1D 1 (None, 510, 64) 0
ConvlD 3 (None, 508, 128) 24704
MaxPooling1D 2 (None, 254, 128) 0
ConvlD 4 (None, 252, 128) 49280
MaxPooling1D 3 (None, 126, 128) 0
ConvlD 5 (None, 124, 64) 24640
MaxPooling1D 4 (None, 62,64) 0
Tile Layer (None, 3968) 0
Dense 1 (None, 128) 508032
Dense 2 (None, 4) 516

In order to improve the generalization performance of the model, the model applies Dropout
regularization, batch normalization and data augmentation technology. Data augmentation is to
intercept part of the original signal by moving the interception window. When the moving window
intercepts the original signal once, a new sample is obtained. Among them, 6964 samples were obtained
after data augmentation and 70% of which were used as the training set and 30% as the test set.

4. 1-D CNN Multi-Measurement Point Diagnosis Model

Chen et al. [27] believe that due to the sensor layout and environmental interference, the collected
vibration signals are different, which may lead to different diagnostic results. In order to improve the
reliability of fault diagnosis, a new multi-sensor data fusion technology is proposed. Therefore, this
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chapter changes the previous chapter’s input signal to the signal collected by multiple sensors. Next,
the collected signal is combined and input to the 1D CNN for fault diagnosis.

A schematic of a multi-point fault diagnosis model built using a 1-D CNN is shown in Figure 5.
Here, the input data of the model is different from the previous section and it becomes an eight-channel
signal. Therefore, the output value of each layer of neurons is the comprehensive response of
the eight-channel signal. The convolution layer still uses a 1-D convolution kernel to perform the
convolution operation.

raw mult-point signal Multiple convolutional and pooling layers

1= convolution layer 1 /r T tile layer
) R convolution layer 2 e
- - o ‘ ‘ \_ fully connected layer
— r A ‘ ‘ ) py softmax
— ] ] ! pooling layer )
S H g g g e |
: ' S |
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A= P |eee —p[ | [} [— 4»‘ PR ‘
1 - _|e e o | ‘ ‘
= I S N | |
= i . | |
A | |
| |
|
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Figure 5. Reciprocating compressor valve fault diagnosis model of the 1-D CNN
multi-measurement point.

If the input data of each channel of the model is still 1024 sampling points, the information of the
pressure signal and the key phase signal cannot be fully expressed. Therefore, the input data of each
channel of this model is increased to 3000 sampling points, making the dimension of the input data
(3000, 8). Increased input data will cause the problem of too many parameters at the fully connected
layer. In order to avoid this problem, the model adds the convolution layer and pooling layer to the
model in the previous section to further compress the data features. The specific parameters of the
model are shown in Table 2.

Table 2. 1-D CNN multi-measurement point reciprocating compressor gas valve fault diagnosis
model structure.

Layer (Type) Dimensions of Output Data Number of Training Parameters
Input Layer (None, 3000, 8) 0
ConvlD 1 (None, 2998, 32) 800
Batch Normalization 1 (None, 2998, 32) 128
Conv1D 2 (None, 2996, 64) 6208
Batch Normalization 2 (None, 2996, 64) 256
MaxPooling1D 1 (None, 1498, 64) 0
ConvlD 3 (None, 1496, 128) 24704
Batch Normalization 3 (None, 1496, 128) 512
MaxPooling1D 2 (None, 748, 128) 0
ConvlD 4 (None, 746, 128) 49280
Batch Normalization 4 (None, 746, 128) 512
MaxPooling1D 3 (None, 373, 128) 0
ConvlD5 (None, 371, 64) 24540
Batch Normalization 5 (None, 371, 64) 256
MaxPooling1D 4 (None, 185, 64) 0
ConvlD 6 (None, 183, 64) 12352
Batch Normalization 6 (None, 183, 64) 256
MaxPooling1D 5 (None, 183, 64) 0
Tile layer (None, 5824) 0
Dense 1 None, 128) 745600

Dense 2 (None, 4) 516
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5. Multi-Point Diagnosis Model of 2-D CNN

Different from the 1-D CNN in the previous chapter, the convolution kernel shape of 1-D CNN is
a 2-D tensor (m, n), where n > 1, and the convolution kernel used by 2-D CNN is a 3-D tensor (m, n, I),
where n > 1, [ > 1. The number of channels output by each convolutional layer is the number of the the
convolution kernel. Therefore, 1-D CNN and 2-D CNN have different numbers of channels in each
convolutional layer.

The data of eight measuring points signal is combined into single-channel 2-D data (an image)
and the 2-D convolution operation is used to process the image, as shown in Figure 6. The image data
under four working conditions is the input of the model and the feature is extracted through 2-D CNN
and then the failure mode is identified.

valve rupture

Spring damaged

Valve notch

normal

Figure 6. Model input data under four working conditions.

The schematic of a 2-D CNN multi-measuring point fault diagnosis model is shown in Figure 7.
Because the input data is a one-channel gray scale image, the input dimension becomes (3000, 8, 1).
Next, each convolutional layer performs a 2-D convolution operation and the input data is converted
into multi-channel 2-D data by computing with different convolution kernels. Then, through the fully
connected layer, the features extracted by the convolutional layer are further compressed and pattern
recognition is performed. The specific parameters of the network are provided in Table 3 below.

multiple convolutional and pooling layers

convolution layer 1 convolution layer 2 P N
raw multi-point signal ] tile layer
)
pooling layer ‘ >_< fully connected layer
‘ () /) softmax
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a | =~ O (0
) . —
| —~ O (2
W N~ N
‘ o ° E/ AN
—p > - » —> oo o0 ‘ —> ——>—
s s
. F i Y
He )
‘ \// o
- () \,
N A v
| o
Rl
- | S
channel number N

I

Figure 7. Reciprocating compressor valve fault diagnosis model of the 2-D CNN multi-measurement
point.
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Table 3. 2-D CNN multi-measurement point reciprocating compressor gas valve fault diagnosis

model structure.

Layer (Type) Dimensions of Output Data Number of Training Parameters
Input Layer (None, 3000, 8,1) 0
ConvlD1 (None, 3000, 8,8) 80
Batch Normalization 1 (None,3000, 8,8) 32
ConvlD 2 (None, 3000, 8, 16) 3216
Batch Normalization 2 (None, 3000, 8, 16) 64
MaxPooling1D 1 (None, 1500, 8, 16) 0
ConvlD 3 (None, 1500, 8, 32) 4640
Batch Normalization 3 (None, 1500, 8, 32) 128
MaxPooling1D 2 (None, 750, 8, 32) 0
ConvlD 4 (None, 750, 8, 32) 1056
Batch Normalization 4 (None, 750, 8, 32) 128
MaxPooling1D 3 (None, 375, 8, 32) 0
ConvlD 5 (None, 375, 8, 16) 4624
Batch Normalization 5 (None, 375, 8, 16) 64
MaxPooling1D 4 (None, 187, 8, 16) (None, 187, 8, 8)
ConvlD 6 (None, 187, 8, 8) 1160
Batch Normalization 6 (None, 187, 8, 8) 32
MaxPooling1D 5 (None, 93, 8, 8) (None, 5952)
Tile layer (None, 5952) 0
Dense 1 (None, 128) 761984
Dense 2 (None, 4) 0

It can be seen from Table 3 that the model includes six 2-D convolutional layers (Conv2D), five
maximum pooling layers (MaxPooling2D), and two fully connected layers. In order to reduce the
amounts of parameters, the dimension of the convolution kernel is set to (3,3) and the convolution step
size is 1. Next, the size of the pooling area of the pooling layer is designed as (2,1) and the pooling step
is 2. The fully connected layer of the last layer uses softmax as the activation function, which is like the
previous 1-D CNN model, but the remaining layers all use the ReLU function.

Because the input image of this model is oblong and the image will be compressed after each
convolution, the key features at the edge of the image may be lost during convolution. In order
to prevent this problem and make better use of edge data, the input of each convolutional layer is
filled [28], which is to fill 0 around the image, as shown in Figure 8.

Figure 8. Padding diagrammatic sketch.
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An image is convolved with a convolution kernel of size (4, b). When the fill amount is p, the output
image sizeis (@ + 2p —f + 1, b + 2p — f + 1). Here, the expectation is that the size of the image remains
the same after convolution, so the parameters p = 1 and f = 3 are chosen to meet the requirements.

Overfitting is one of the common problems of deep learning models. Common solutions include
increasing the amount of data or adding regularization methods. Therefore, dropout regularization,
batch normalization, and data augmentation technology are applied to improve the generalization
performance of the model, which is like a 1-D CNN measuring-points experiment. After using data
augmentation technology, the data are sampled and 6964 samples are obtained. Among the samples,
70% of them are selected randomly as the training set and the remaining 30% of them as a test set.

6. Experimental Results and Discussion

6.1. Experimental Data Collection

It can be recognized from the most common failure type of the air valve of the reciprocating
compressor that the damage of the valve plate and the spring is the most easily damaged part of the air
valve. Therefore, fault simulation experiments were carried out on the secondary cylinder for the four
types of normal valve, broken valve, spring damage, and notched valve.

This experiment was carried out in the working unit of No. 1 compressor station of the South
District of Daqing Natural Gas Company in China and the basic structure as well as the sensor
(measuring points) arrangement of the reciprocating compressor is shown in Figure 9. These sensors
were used to collect vibration signals, pressure signals, and key phase signals. Several acceleration
sensors were utilized to collect vibration signals. The acceleration sensor and the pressure sensor are
installed on the pressure valve, and the key phase sensor is installed near the shaft between the motor
and the crankcase. The specific positions of the valves and sensors on the primary and secondary
cylinders are as depicted in Figure 9. In addition, the actual positions of the valves and sensors on the
secondary cylinder are shown in Figure 10.

accelerometer (X,Y,Z) 4

pressure sensor 4

Secondary cylinder

Crankcase

| I 1O

,eiii,,

cross head

normal valve

Figure 9. No.1 structure and two-stage gas valve measuring point layout.
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Crankcase

Sensor

Figure 10. Actual positions of the valve and sensors.

During the experiment, the outlet pressure of the secondary gas was 1040 kPa and the inlet pressure
was 310 kPa. Besides, the outlet temperature was 104 °C and the inlet temperature was 32 °C and the
gas flow was 3611 m>/h. The selection model of the acquisition system was as follows: INV306U-6660
intelligent data acquisition as well as processing analyzer and the INV-1021 program-controlled
multi-function signal conditioner of noise (China Orient Institute of Noise & Vibration). The data
storage format was stored in an 8-channel, including acceleration (3-channel), pressure (4-channel), and
key phase (1-channel). By the way, the key phase signal was the signal received by the sensor installed
nearby the spindle as shown in Figure 11. The sensor received a pulse signal when the sensor faced the
keyway every time the spindle rotated and the signal is given in Figure 12. When a single-measuring
point was used to collect signals, the collected single-channel signal was a vibration signal, which was
collected by an acceleration sensor. When multiple measuring points were applied to collect signals,
the collected eight-channel signals were composed of vibration signals (three acceleration sensors),
pressure signals (four pressure sensors), and key phase signals (one key phase sensor). Furthermore,
the data were saved in txt format and each column was a channel data. Under normal conditions,
120,000 data points were collected for each channel and 80,000 data points were collected for each of
the three valve states. Figure 13 depicts the acceleration waveform of the vibration signal of channel 1
when the valve disc is broken.

Sensor

Keyway
\\

Spindle

Figure 11. Key phase signal acquisition.
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Figure 13. Acceleration waveform of the vibration signal.

6.2. Comparisons of the 1-D CNN Model and Other Typical Methods

In order to verify the performance of the 1-D CNN single-measuring point model of reciprocating
compressor gas valve fault diagnosis, the test set was trained to optimize the model parameters.
Next, the 1-D CNN single-measuring and three other models were applied to compare their accuracy,
as shown in Table 4.

Table 4. 2-D CNN multi-measurement point reciprocating compressor gas valve fault diagnosis

model structure.

Power Spectrum Power Spectrum Wavelet Packet 1D CNN
Energy (SVM) Energy (BP) Energy (BP) Single-Point
Accuracy 69.08% 60.53% 93.75% 100%
Error task 47 60 10 0

Three classic models were used for comparison, including the SVM model with power spectrum
energy, BP model with power spectrum energy, and wavelet packet energy. Next, 78 working samples
with 4 states (normal valve disc, broken valve disc, broken spring, notched valve disc) were randomly
selected and each sample length was 1024 data points as input for the above model. Furthermore,
40 samples of each working condition were randomly selected to constitute the fault training set (160
in total) for model training and samples (152 in total) to constitute the test set of the model.

Table 4 compares the diagnostic effects of the four models on the test set. As can be seen, the 1-D
CNN single-measuring point model has the highest recognition rate with an accuracy of 100%, which
can effectively diagnose the reciprocating compressor valve failure.

6.3. 1-D CNN Comparisons of Single-Point and Multi-Point Model

The test set was used to test the multi-point and single-point models of 1-D CNN under different
noise intensities and the comparison results are shown in Table 4. It can be seen from Table 5 that the
accuracy of the 1-D CNN multi-point model on the test set was reduced, especially when the SNR was
reduced to below 20 dB, and the model accuracy was significantly reduced.
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Table 5. Comparison of the diagnostic effects of different models on the test set.

Failure Recognition Rate and Error Task

SNR 1-D CNN Multi-Point ~ 1-D CNN Single-Point ~ 2-D CNN Multi-Point
Model Model Model
5dB 47.32 %/1101 58.75%/881 49.67%/1052
10 dB 55.59%/928 85.58%/308 99.09%/19
20 dB 99.43%/12 100.00%/2 99.19%/17
50 dB 99.52%/10 100.00%/1 99.19%/17
No noise 99.43%/12 100.00%/2 99.19%/17

The test sets were extracted with different SNR at the output of the dense layer 1 and principal
component analysis (PCA) was performed on them to obtain Figure 14. It can be seen that when the
SNR is 5 dB, the output of the valve rupture and spring damage faults at the fully connected layer 1 are
too close. Consequently, they overlap widely after dimensionality reduction. In addition, the failure
data of the spring damage also overlaps with the gap data of the valve plate to a small extent, resulting
in a decrease in the accuracy of the model. More spring damage fault data were collected to better
extract the characteristics of this type of fault, which can improve model accuracy. When the SNR was
10 db, only a small number of samples were close to the output of the dense layer 1, but the model
accuracy was still only 55.59%. Thus, it is judged that the output layer may not be well classified.

.+ Breakage

+  Lessspring
Normal

+  Breakage

« Gap

*  Less spring
Normal

(c)

3
-
2599
g

+  Breakage

Figure 14. PCA of the output of the dense 1 of the 1-D CNN multi-point model of the test set samples
under different noise strengths. (a) SNR is 5 dB; (b) SNR is 10 dB; (c) SNR is 20 dB; (d) SNR is 50 dB.
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6.4. 1-D CNN and 2-D CNN Comparisons

The 2-D CNN model proposed in this section was compared with the first two models. The test
set was used to test under different SNR and the comparison results are shown in Table 5 above.
As can be seen, the performance of the 2-D CNN multi-measurement point model proposed in this
section was significantly improved in the 10 dB SNR over the 1-D CNN multi-measuring point model.
However, when the SNR was 5 dB, the accuracy of the 2-D CNN multi-measuring point model was
only 49.67%, which is lower than the accuracy of the 1-D CNN single-measurement point model.
However, when the SNR was 10 dB, the accuracy was significantly improved compared to the 1-D
CNN single-measuring point model, and when the SNR was higher, the two types of models behaved
similarly. Therefore, the greater the number of fusion points, the accuracy of the model is not necessarily
higher. The next chapter will study the influence of the number of measurement points and the
selection of the measuring points on the accuracy of the model.

The test set data with different SNR were extracted at the output of the dense layer 1 and PCA
was applied to obtain Figure 15. Though the model accuracy was not high when the SNR was 5 dB,
the output of the noise-added signal of the dense layer 1 was separable in the high-dimensional space.
This result indicates that the model can effectively extract the features of the signal. Therefore, adding
fully connected layers can improve the accuracy of the model. From Figure 15, there are a small number
of spring damage-type samples the valve disc notch type samples’ output at the fully connected layer 1
is too close, which is also the main reason for the small number of model identification errors.

PCA ; PCA

+  Breakage +  Breakage

*  Less spring +  Less spring
Normal Normal

B St
(a) (b)
PCA peA
Breakage r—
M Gap f:f, pring
q Less SK:“"Q Normal

A
o3
o

© (d)

Figure 15. PCA of the output of the test set samples in the dense 1 of the 2-D CNN multi-measurement
point model under different noise strengths (a) SNR is 5 dB; (b) SNR is 10 dB; (c) SNR is 20 dB; (d)SNR
is 50 dB.
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6.5. Influence of Fusion of Different Measuring Points

From the previous section, when the number of measuring points (sensors) increases, the diagnostic
accuracy is not necessarily improved. In addition, considering the calculation complexity, the larger
number of measuring points means the increase of the model parameters, which will increase the
calculation time. Therefore, it is necessary to study how many measuring points can make the
calculation time effectively shorten under the condition of ensuring high recognition accuracy in the
next section. Further, under the condition that the number of measuring points is fixed, our research
can choose which measuring points can have better recognition accuracy.

6.5.1. Influence of the Number of Different Measuring Points

The influence of the number of different test points was analyzed by comparing the accuracy of
the model when the number of measuring points was 4, 5, 6, 7, and 8 respectively, corresponding to
the above five kinds of training data and the deleted channels, which are shown in Table 6.

Table 6. Number of training parameters and training time for different measuring points.

Number of Measuring Points 4 5 6 7 8
Deleted Channel 3,5,7,8 3,6,8 3,8 8 Null
Training Parameters 396,796 492,028 587,260 682,492 777,724
Training Time 139.8 170.3 203.3 246.8 303.4

As the number of channels decreases, the parameters that need to be trained in the model also
decrease. Thus, the amount of calculation for each layer also decreases and the length of training time
and testing time decreases. The number of training parameters required for the five models and the
average duration required for each training set are shown in Table 6. It can be seen from Table 6 that
the reduction of the number of measuring points will significantly reduce the model training time.
Among them, when the number of measurement points is 4, training time is only 139.8 s, less than half
of the training time when the number of measurement points is 8. Therefore, selecting the appropriate
measuring points as the input of the model can speed up the model training.

The test results of the five models on the test set are shown in Figure 16. When the number
of measuring points is 7, the model has the highest diagnostic accuracy and is superior to the 1-D
CNN single-measuring point fault diagnosis model in the previous section. This shows that the key
signal of the channel 8 is not suitable for adding the fusion signal as the input of the model. However,
as the number of measurement points continues to decrease, the diagnostic accuracy of the model
also decreases. Hence, this phenomenon indicates that the data of other channels contains useful
feature information. Thus, if these measurement points are deleted, it will reduce the accuracy of
fault diagnosis.

6.5.2. Influence of the Fusion of Different Measuring Points

In this section, the focus was on estimating the influence of different measurement points. From
the above subsection, it can be known that when the number of measurement points is 7, the model
has the best diagnostic accuracy. Therefore, the number of measuring points was fixed at 7 and channel
8, channel 6, channel 4, channel 3, and channel 1 measuring points were deleted to respectively train
and test. Next, the accuracy of these cases was compared and the situation with the highest accuracy
was found.

As shown in Figure 17, when the key phase signal of the channel 8 was deleted, the model
performance was the best. However, when the model with the other channel was deleted,
the performance decreased. This phenomenon indicates that only the signal of channels 1 to 7
contains characteristic information handy for fault diagnosis. Combined with the conclusion of the
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previous section, it can be known that reasonable selection and deletion of measuring point signals can
not only reduce the training time but also improve the accuracy of the experiment.
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Figure 16. Comparison of the diagnosis effect under different numbers of measuring points.
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Figure 17. Comparison of the fusion diagnosis effect of different measuring points when the number of
measuring points is 7.

7. Conclusions

In this paper, a CNN-based method was proposed for diagnosing the faults of reciprocating
compressors based on single-measuring point vibration signal or multi-measuring points’ signal,
including vibration, pressure, and key phase signal. In single-point vibration signal, the 1-D CNN
model in the deep learning method was used for diagnosis and comparison with three typical methods.
The recognition accuracy of 1-D CNN was 100%, which is higher than the other three typical models
compared. The results demonstrate the effectiveness of the 1-D CNN model. Next, in order to compare
the accuracy of the single-point model and multi-point model, experiments based on 1-D CNN were
done to validate it. The experimental results showed that the accuracy of the 1-D CNN single-point
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model is higher than the 1-D CNN multi-point model under the 5 SNRs. When the SNR was 10 dB,
the difference was the largest and the accuracy of the 1-D CNN multi-point model was only 55.59%.
However, the accuracy of the 1-D CNN single-point model was 85.58%. Then, a 2-D CNN multi-point
diagnosis model was established and compared with the previous two models. The results showed
that the diagnostic accuracy of the 2-D CNN multi-measuring point model was slightly lower than
the previous two models when the SNR was higher (20 dB, 50 dB, no noise). However, the accuracy
was significantly higher than the previous two models when the SNR ratio was 10dB. When the
signal-to-noise ratio was 5 dB, the accuracy of the three models was relatively low, less than 60%. This is
enough to prove the effectiveness of the 2-D CNN multi-measuring point model, but the performance
of the model needs to be improved. Therefore, the influence of the number of measurement points
and the type of measurement points were studied on the diagnosis results under several original
signals with different SNRs and it was found that when the number of measurement points was 7
(the key phase signal was deleted), the diagnostic accuracy was the highest(10 dB, 5 dB) in the different
measuring points’ layout. It was proven that the proper selection and reduction of the measuring point
signal can improve the efficiency of diagnosis while ensuring a higher diagnosis accuracy.
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