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Featured Application: The UTOPIA Smart Video Surveillance System can be used for object
recognition, tracking, and behavior analysis as well as object detection, and can also use Storm
and Spark as well as MapReduce.

Abstract: A smart city is a future city that enables citizens to enjoy Information and Communication
Technology (ICT) based smart services with any device, anytime, anywhere. It heavily utilizes Internet
of Things. It includes many video cameras to provide various kinds of services for smart cities.
Video cameras continuously feed big video data to the smart city system, and smart cities need to
process the big video data as fast as it can. This is a very challenging task because big computational
power is required to shorten processing time. This paper introduces UTOPIA Smart Video Surveillance,
which analyzes the big video images using MapReduce, for smart cities. We implemented the smart
video surveillance in our middleware platform. This paper explains its mechanism, implementation,
and operation and presents performance evaluation results to confirm that the system worked well
and is scalable, efficient, reliable, and flexible.

Keywords: networked video system; smart video surveillance; smart processing; big video data;
MapReduce; cloud computing; image processing

1. Introduction

This paper presents a research result for smart cities that converge Information and Communication
Technology (ICT) with city infrastructures, the activities in a city, environmental, medical, social,
residential, and governmental systems. It provides smart services for citizen care, infrastructure
management, traffic management, ecological environment management, energy management, etc.
There are definitions for smart cities in global use. The Europe Union defines that “A smart city is
a place where traditional networks and services are made more efficient with the use of digital and
telecommunication technologies for the benefit of its inhabitants and business.” [1]. The International
Telecommunication Union (ITU) defines that “A smart sustainable city is an innovative city that uses
information and communication technologies and other means to improve quality of life, efficiency of
urban operation and services, and competitiveness, while ensuring that it meets the needs of present
and future generations with respect to economic, social, environmental as well as cultural aspects.” [2].
The International Standard Organization (ISO) also has its definition for smart cities.

In smart cities, there are many video cameras that continuously produce big video data to provide
smart city services. In general, smart cities need to stream and process a huge amount of video data
efficiently and fast, and by many times in real-time [3,4]. Cloud technology can successfully address
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this requirement. In particular, Hadoop open source solution [5] with Cloud can be a good solution
because it provides a platform to manage data with a simple MapReduce programming model and
store data in a Hadoop Distributed File System (HDFS) [6]. It has been observed that the smart cities
continuously generate unstructured big data. MapReduce allows us to handle large unstructured data
as well as semistructured data. They were previously difficult to process.

This paper presents Cloud-based UTOPIA Smart Video Surveillance (USVS) for smart cities.
The Cloud-based USVS system gathers video data with scalable video streaming to effectively and
smoothly handle video data flow from numerous video cameras even when network bandwidth
is limited and fast process them for object detection with MapReduce models. The USVS is for
UTOPIA, which is a smart city paradigm that consists of three tiers: UTOPIA infrastructure tier,
UTOPIA middleware platform (SOUL) Tier, and UTOPIA portal tier. Video cameras are deployed in the
UTOPIA infrastructure tier. Video cameras in the UTOPIA infrastructure tier can be remotely controlled
according to the stored scenarios in the UTOPIA middleware platform tier. The administrator and
authorized end users can also remotely control the video cameras in the UTOPIA infrastructure tier
through the UTOPIA portal tier. The UTOPIA middleware platform tier plays a central role in the
operation of smart cities and plays a pivotal role for USVS. The UTOPIA middleware platform tier has
various functions such as Cloud computing, grid computing, ontology based context-aware intelligent
processing, stream reasoning, real-time processing, image processing, scalable big data (including
video data) streaming, ubiquitous computing, location-based processing, etc., so that UTOPIA can
provide a variety of converged intelligent services and enable dynamic serviced execution [3,4]. It has
layer architecture so that it can have advantages of layer architecture such as good reusability and
maintenance of functionality, easiness to add more functions, easy modification, better environment
for scalability and fault tolerance, and better environment to deal with security threats. It provides a
user-transparent infrastructure that generates smart city services. It enables users to control remote
devices in real-time. It provides a convenient and easy-to-use user interface and supports various kinds
of ubiquitous user portals. With a special device interface layer, it does smoothly support various kinds
of Internet of Things (IoT) devices including many kinds of video cameras, sensors, sensor networks,
and communication protocols for the UTOPIA infrastructure tier. SOUL has an alias name of SmartUM
and was first announced in 2007. UTOPIA and SOUL are outputs of a project by the Smart City
Consortium, which was made by the Seoul Metropolitan Government, major Korean universities in
Seoul such as University of Seoul, Seoul National University, Korea University, Yonsei University, etc.,
and other organizations in 2005, used over an eight million US dollar research fund during the first
research period (2005-2010), and has had more than two hundred participating researchers. SOUL has
been continuously evolving since 2010. Further details of SOUL will be explained in Section 3.

With powerful functions and architecture, SOUL has been supporting the following applications
as well as the smart surveillance service for UTOPIA.

- Smart traffic management;

- Smart traffic accident management;

- Smart fire management;

- Smart disaster management;

- Smart real-time air-pollution map service;
- Smart real-time nose-map service;

- Smart remote control;

- Smart water management;

- Smart and green environment management;
- Smart building management;

- Smart apartment management;

- Smart security management;

- Smart public service management;
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- Smart health care service management;

- Smart medical service management;

- Smart rescue service management;

- Smart city infra-structure management;

- Real-time lost child search service;

- Many other smart city service managements.

The Cloud-based smart video surveillance with scalable video streaming was implemented in
SOUL and became a part of SOUL, therefore it inherits all the capabilities, features, and benefits of
SOUL. This paper proposes an all-in-one system of USVS, which includes video surveillance, scalable
video streaming, Cloud computing, a middleware platform (SOUL) for a smart city, and a smart city
paradigm (UTOPIA), and deals with image processing for object detection with MapReduce. Thus,
our work in this paper is novel. We could not find any similar work. Thus, we think this work is
unique yet.

This paper gives the following contributions:

1.  This paper proposes an all-in-one system of USVS, which includes video surveillance,
scalable video streaming, Cloud computing, a middleware platform (SOUL) for smart city,
and a smart city paradigm (UTOPIA), and deals with image processing for object detection with
MapReduce. The all-in-one system of USVS is unique and novel. This contributes to smart
city research.

2. The Cloud-based smart video surveillance with scalable video streaming was implemented in
SOUL, thus the middleware of a smart city was expanded to include the Cloud-based smart
video surveillance with scalable video streaming. This contributes to the smart city middleware
research and smart city research.

3.  This paper presents the performance evaluation with our prototype system for USVS, SOUL,
and UTOPIA written using Linux Standard Base and Linux Kernel. This paper contributes to the
research of performance evaluation by a real measurement in a smart city.

This paper is organized as follows. Section 2 explains related works. Section 3 gives an overview
of the USVS. Section 4 presents the mechanism of the USVS. Section 5 explains the big video processing
using the USVS in detail. Section 6 presents the performance evaluation. Finally, Section 7 concludes
our study.

2. Related Work

Our work in this paper was based on general purpose smart city middleware. A few academic
or research papers for general purpose smart city middleware and platform are available. So far,
we have not been able to find any work that is completely similar to the work presented in our paper,
even though there are good works for video surveillance itself and smart city itself. Thus, we believe
that our paper presents a novel and unique system. In this related work section, we selected the works
that were useful to understand the work in our paper or supplement the portion that our paper did
not deal with or that our paper did not give a detailed explanation for.

A video surveillance system for smart cities must be able to process big data that is continuously
generated by video cameras. Traditional distributed system technology could not handle big data
properly [7-9]. Cloud computing successfully helps us to manage big data, and novel technology
based on the Cloud seems to be a new trend in video surveillance systems.

White et al. [10] present a study on the implementation of image processing algorithms in various
types of computer systems. In comparison, our paper does not deal with various computer vision
algorithms, but only explains our used algorithm. So, we asked readers who are interested in the
image processing algorithms to refer to [10]. White et al. [10] present their study for data mining and
do not deal with a smart city and any middleware for smart cities, but our paper is for a smart city and
based on a middleware for smart cities.
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Pereira et al. [11] suggest split and merge architecture that reduces video encoding time. Our paper
presents a middleware platform based approach for smart cities, but Pereira et al. [11] do not.

Mehboob et al. [12] propose an algorithm for 3D conversion from traffic video content to Google
Map. Time-stamped glyph-based visualization is used in outdoor surveillance videos for the algorithm,
which can be used for event-aware detection. In comparison, our paper dealt with object detection with
MapReduce, but Mehboob et al. do not, and our paper dealt with real-time scalable video streaming
using a smart city middleware, but Mehboob et al. do not.

Memos et al. [13] propose an algorithm for a media-based surveillance system to improve media
security and privacy of wireless sensor networks in the Internet of Things (IoT) network for a smart city
framework. Compared to their paper, our paper proposed the USVS system as an all-in-one system for
object detection with MapReduce rather than an algorithm for a media-based surveillance system and
our paper did not deal with media security or the privacy of wireless sensor networks.

Duan et al. [14] discuss the standard for the future deep feature coding to manage the Al-oriented
large-scale video, existing techniques, standards, and the possible large-scale video analysis solutions for
deep neural network models. In comparison, their paper focuses on deep learning with neural network
models, but our paper proposed an all-in-one system of USVS, which includes video surveillance,
scalable video streaming, Cloud computing, a middleware platform (SOUL) for a smart city, and a
smart city paradigm (UTOPIA), and dealt with image processing for object detection with MapReduce
using USVS.

Tian et al. [15] propose a block-level background modeling algorithm to support a long-term
reference structure for efficient surveillance video coding and a rate-distortion optimization for the
surveillance source algorithm to process big video data in a smart city. In comparison, their paper
focuses on a block-level background modeling algorithm, but our paper proposed an all-in-one system
of USVS, which includes video surveillance, scalable video streaming, Cloud computing, a middleware
platform (SOUL) for a smart city, and a smart city paradigm (UTOPIA), and dealt with image processing
for object detection with MapReduce using USVS.

Jin et al. [16] present optimization algorithms and scheduling strategies based on an Unmanned
Aerial Vehicle (UAV) cluster. In comparison, our paper proposed an all-in-one system of USVS,
which includes video surveillance, scalable video streaming, Cloud computing, a middleware platform
(SOUL) for a smart city, and a smart city paradigm (UTOPIA), and dealt with image processing for
object detection with MapReduce using USVS.

Calavia et al. [17] propose an intelligent video surveillance system that can detect and identify
abnormal and alarming situations by analyzing object movement in smart cities. It does ontology
based semantic translation. Compared to our paper, it does not mention any smart city middleware,
nor it does mention that it uses Cloud computing.

Hossain et al. [18] present a study on virtual machine resource allocation to support video
surveillance platforms that uses the Amazon Web Service to process linear programming formulas
with migration control and simulation. They focus on Cloud computing. Compared to our paper, their
work does not deal with MapReduce, scalable video streaming, and any smart city middleware. They
do not mention smart city . On the other hand, our paper proposed an all-in-one system of USVS,
which includes video surveillance, scalable video streaming, Cloud computing, a middleware platform
(SOUL) for a smart city, and a smart city paradigm (UTOPIA), and dealt with image processing for
object detection with MapReduce using USVS.

Lin et al. [19] propose a video recorder system based on Cloud. A digital video recorder
and network video recorder with their methodology are suggested. Their distributed replication
mechanism uses the Hadoop distributed file system and handles the deployment design of public
and private/hybrid Clouds. In comparison, they focus on the video recorder system and do not deal
with image processing for object detection, but we did, and they do not mention MapReduce but we
did use MapReduce. We proposed an all-in-one system of USVS, which includes video surveillance,
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scalable video streaming, Cloud computing, a middleware platform (SOUL) for a smart city, and a
smart city paradigm (UTOPIA), but they do not.

Wau et al. [20] propose a system that has a peer-to-peer architecture with the Hadoop distributed
file system to solve the network bottlenecks that centralized video data processing systems typically
have. They divide the input video source by chunk size, however we divided the input video source by
the video static Group-Of-Picture (GOP) length. The advantage of our approach is explained in detail
in Section 5. They focus on the P2P and Cloud in their architecture and its operation, but they do not
mention MapReduce, any smart city middleware, or a smart city. We proposed an all-in-one system of
USVS, which includes video surveillance, scalable video streaming, Cloud computing, a middleware
platform (SOUL) for a smart city, and a smart city paradigm (UTOPIA).

Rodriguez-Silva et al. [21] propose a Cloud-based traditional video surveillance architecture
that consists of a Cloud processing server, a Cloud storage server and a web server. They stored a
video in Amazon S3 storage. They do not mention any smart city middleware or smart city . On the
other hand, our paper proposed an all-in-one system of USVS, which includes video surveillance,
scalable video streaming, Cloud computing, a middleware platform (SOUL) for a smart city, and a
smart city paradigm (UTOPIA), and dealt with image processing for object detection with MapReduce
using USVS.

Shao et al. [22] present an intelligent processing and utilization solution to big surveillance video
data based on the event detection and alarming messages from front-end smart cameras. In comparison,
they do not deal with MapReduce and do not mention any smart city middleware . On the other hand,
our paper proposed an all-in-one system of USVS, which includes video surveillance, scalable video
streaming, Cloud computing, a middleware platform (SOUL) for a smart city, and a smart city paradigm
(UTOPIA), and dealt with image processing for object detection with MapReduce using USVS.

Nasir et al. [23] present fog computing based resource-efficient distributed video summarization
over a multi-region fog computing paradigm for IoT-assisted smart cities. In comparison, our paper
dealt with a cloud-based system, but Nasir et al. deal with a fog-based system, they use Spark but we
used MapReduce, they do not mention smart city middleware but we proposed an all-in-one system,
USVS, of video surveillance, a middleware platform (SOUL) for a smart city, and a smart city paradigm
(UTOPIA).

Janakiramaiah et al. [24] present an intelligent video surveillance framework using the deep
learning algorithm with convolution neural networks. In comparison, their framework is not a
general purpose framework for a smart city and their paper focuses on the deep learning algorithm
with convolution neural networks, but our middleware platform was a general purpose middleware
platform, and we dealt with MapReduce for object detection using USVS.

Xu et al. [25] present their approach for abnormal visual event detection in smart city surveillance
with edge computing, multi-instance learning, and the autoregressive integrated moving average
model. In comparison, they do not mention any smart city middleware but we proposed an all-in-one
system of USVS, which includes video surveillance, scalable video streaming, Cloud computing,
a middleware platform (SOUL) for a smart city, and a smart city paradigm (UTOPIA), and dealt with
image processing for object detection with MapReduce using USVS. They use edge computing, but we
used Cloud computing. They deal with abnormal visual event detection, but we dealt with object
detection. SOUL is going to support edge computing soon.

3. Smart Video Surveillance in UTOPIA

Since 2000, we have developed a smart city model called UTOPIA that has a three-tier architecture
to support smart city services. Citizens can enjoy a variety of converged smart city services in
UTOPIA. As introduced in the introduction section, UTOPIA consists of three tiers: the UTOPIA
infrastructure tier, the UTOPIA middleware platform tier, and the UTOPIA portal tier. In UTOPIA,
various IoT technologies are implemented to change each city component into a smart element and all
smart elements are connected using various communication technologies to make a super-connected
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city, and further, various ICT technologies are applied to operate the super-connected city and give
converged smart services to citizens. We call the body of the UTOPIA “the UTOPIA Infrastructure Tier”.
The UTOPIA infrastructure tier supports various kinds of IoT devices, video cameras, sensor networks,
GPS, etc. UTOPIA collects various types of data through integrated networks from the UTOPIA
infrastructure tier.

The UTOPIA middleware platform tier acts as the brain in UTOPIA smart cities. It manages the
data received from the UTOPIA infrastructure tier. Various integrated smart city services should be
provided online in UTOPIA smart cities and many decisions for the smart city should be made in timely
manners. Thus, we the developed SOUL middleware platform system. SOUL has a multilayered
architecture so that it can have many advantages: component reusability, decreasing complexity;,
expandability, etc. SOUL has the Common Device Interface (CDI) that supports video cameras,
sensor networks, converged networks, GPS, etc. The CDI supports variable kinds of protocols and
provides a gateway function for SOUL. The CDI collects data through scalable video streaming,
and sends the collected data to the smart city video analyzer [3,4,26]. SOUL processes the acquired data
to smart services with ontology-based context data management by the Intelligent Processing Layer
(IPL) that has an inference engine [3,27]. The inference engine enables automatic service discovery,
service deployment, and service execution, based on the inferred results [3,27]. The Smart Processing
Layer (SPL) supports Cloud computing and grid computing and does various convergence processing
to create smart services for various applications [3,28]. The Application Interface Layer (API) supports
the UTOPIA portal with an easy-to-use and convenient user interface [3]. It supports various types
of smart city applications and user devices [3]. Using the functions of this layer, the user can control
remote IoT devices such as IoT fire door and other emergency remote IoT devices in the real-time mode.

At the UTOPIA portal tier, smart city end-users use smart city services interactively and smart city
administrators and smart city operators can operate the smart city. Users at the portal tier can use all
kinds of user devices including mobile devices such as smartphones, tablet computers, etc. UTOPIA
supports ubiquitous computing so that users at the portal tier can use the smart city services anytime,
anywhere, and with any device. Authorized users at the smart city portal can control remote devices:
remote networked video cameras, emergency devices, fire doors, etc. [3,26,29-37]. The content in this
paper utilized the result of our previous accumulated works. For a detailed explanation of content not
essential to the main content of this paper, we refer you to the reference given in this paper [3,4,26-40].

USVS in Figure 1 works as follows. The video cameras in the UTOPIA infrastructure tier make
videos for smart cities. The video is streamed according to the available network bandwidth of the
computer network connected to the video camera. USVS saves network resources by using the network
adaptive scalable video streaming [38—40]. The streaming service is provided by the Scalable Video
Streaming (SVS) in the UTOPIA middleware platform tier. The video manager provides functions to
control all of these processes, and enables smart city system administrators to control SVS remotely.
The Smart City Video Analyzer (SCVA) analyzes the video received through the SVS with the help of
the Cloud Computing Platform (CCP). The Smart City Video Analyzer is used for object detection,
object recognition, tracking, and behavior analysis functions. In this paper, we present the results of
research on object detection using MapReduce. For distributed parallel processing using MapReduce,
UTOPIA’s Cloud Computing facility in Figure 1 was used.
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UTOPIA Administration, Operation, Remote Control,

Portal Tier Presentation, Interaction, etc.
Video Manager

UTOPIA
Middleware

Platform Smart-City Video Analyzer &= COS":SM

(SOUL) ]

Tier
Scalable Video Streaming
UTOPIA cloud

Infrastructure ||| Networked i cee Computing
Tier Sensor Resources

Figure 1. UTOPIA Smart Video Surveillance (USVS).

4. Video Surveillance System Architecture

The USVS system consists of SVS, a Smart-City Video Analyzer (SCVA), and a Video Manager
(VM) in the SOUL middleware platform tier, as shown in Figure 2. The VM manages the SVS and the
SCVA. The Camera Manager (CM) manages and monitors the status of cameras connected to the smart
city. The Storage Manager (SM) monitors the status of the storage in the SCVA. The Analyzer Manager
(AM) manages the frame rates, codec, and resolution of video at the user’s request and monitors
the status of the MapReduce Analyzer (MA). The Protocol Manager (PM) manages video streaming
protocols. The real time messaging protocol and real time streaming protocol were supported.

UTOPIA Administration, Operation, Remote Control,
Portal Tier Presentation, Interaction, etc.
Video Manager
Camera Storage Analyzer ‘ Protocol
Manager Manager Manager ‘ Manager
UTOPIA —_—
Middleware Smart City Video Analyzer
Platform
(SOUL) MapReduce Analyzer
Rl Mapper Reducer Storage
Scalable Video Streaming
Infrlgal—gﬁ‘lzﬁure Converged Network
Tier
t ® o .. e w

Figure 2. The architecture of USVS.

The SCVA had components of the Streaming Receiver (SR), the storage, and the MA. The SR
receives video streams from the SVS to collect video data over converged networks from scattered
video cameras. HDFS was used by the SR to store large video data. In the next section, the MA is
described in detail.

Many video cameras are required to efficiently operate a smart city in smart cities. So, the USVS
system was designed to efficiently manage big video data, and its scalable video streaming component
enables smooth management of big video data traffic from numerous network video cameras.
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Figure 3 shows that it uses a novel mechanism to control the admissions of clients, extracts the bit
stream, and allocates appropriate channels for context-aware and network-adaptive video streaming.
Self-learning using scalable video coding techniques saves the system and network resources [40].

UTOPIA Administration, Operation, Remote Control,
Portal Tier Presentation, Interaction, etc.
Smart City Video Analyzer
MapReduce Analyzer
Mapper Reducer Stora‘ge
UTOPIA Streaming Receiver ' " Media Decoder
Middleware Network - ~ Incoming Buffer
Platform Interface . Feedback Control
(SOUL) : : :
Tier : Scalable Video Streaming i
Network o] Stream Networked Channel
Interface Man?ger Bandwidth Monitor
Bit-stream H
Media Encoder ~~  Extractor QP Changer
UTOPIA ' Converged Network
Infrastructure
Tier = & . > & =

vee

Figure 3. The operation of the USVS.

The working mechanism of the SVS is explained now. The data from each networked video
camera in the smart city are encoded by a Media Encoder (ME). The SVS checks the change instructions
from the Quantization Parameter (QP) changer when encoding the data. The QP changer encodes
the obtained data with various QP values determined using the information of the Network Channel
Bandwidth Monitor (NCBM). The NCBM plays the role of a network analyzer. It uses the available
bandwidth of the Streaming Receiver (SR), the strength of radio wave signals, and a feedback signal to
analyze the network bandwidth in real-time. When initialized, the SVS sends a message to the SR of
the SCVA and the Feedback Control (FC) of the SR respond with available bandwidth. The SR thinks
that the network channel is in good condition, if the signal is strong. Conversely, the SR thinks that
the network channel is in poor condition, if the signal is weak. The FC of the SR helps the NCBM
evaluate the condition of the network channel. The SR responds after receiving data. If the channel
condition changes very often, the FC sends the information at a minimum until the channels stabilize.
In order to evaluate the network channel, this information is used again. The FC sends the information
of the current bandwidth of SR to the SVS. The SVS determines the QP value using this information.
The NCBM continuously monitors the condition of the network channel. The NCBM evaluates the
available bandwidth and communicates with the QP changer to control the encoding rate according to
a predetermined QP value. After it, the QP changer adjusts the encoding level. For network adaptive
live streaming, live video data are encoded with the determined QP value by the ME. After encoding,
the encoded video data are transmitted to the Bit-stream Extractor (BE) and the Stream Manager (STM),
which packetize data appropriately. Finally, the data packets are separated for adaptation to various
network conditions.
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5. Cloud-Base Big Video Data Processing
Figure 4 shows the video data processing by the MapReduce Analyzer (MA). Firstly, video input

data are divided by static offset. Our approach to divide input video data is different from others’
approach. For example, Wu et al. [20] divide the input video source by chunk size, however we divided
the input video source by the video static Group-Of-Picture (GOP) length. When video data are stored,
it is usually compressed and stored using a codec. Special care must be taken when dividing a video
data compressed in GOP units using a codec. GOP consists of a key frame and a non-key frame.
The key frame is a frame that is independently restored without referring to other frames and is also
called an Infra Frame (I-frame). The non-key frame has only information created by the difference
between the current frame and the previous I-frame. Therefore, when dividing video data without
considering the GOP, the information of the I-frame, which is a key frame, is lost, and the data of other
frames that refer to the key-frame cannot be read. As a result, the video data is damaged. To prevent
this, the compressed file can be restored and then divided, but it is inefficient because it takes a very
long time to process the encoding operation. Therefore, in this study, in order to prevent the key
frame from being lost the video data was divided by the GOP unit. When dividing video data by the
GOP unit, there are several other advantages, and there are other considerations, but they were not
explained in this paper.

Videos

Video Video Video Video V|deo Video

‘ Mapper % Segment Segment Segment Segment Segment
<video path, offset> | N3 T
Analyzing Analyzing Analyzing Analyzing l Analyzmg I Analyzing
l Module Module Module Module Module Module
< video ID' Ana\kzed Ana]l;zed Analyzed Anakzed Analyzed Ana]kzed
analyzed data> Data Data Data Data Data Data
List(analyzed List(analyzed List(analyzed
data) data) dafta)
Reducer { K v
. Time Time Time
. < video ID, Sortin Sortin Sortin
list(analyzed data)>
Output OQutput Output

Figure 4. The video data processing by the MapReduce Analyzer.

The MA divides each video source into segments by GOP units and provides them to the Mapper
with the key-value pairs of the path information of each divided segment and the offset. Table 1
shows the key-value pairs of our MA. Secondly, the Mapper does its given work. Thirdly, the Mapper
produces an output in key-value pairs of “video ID” and “analyzed data”. Fourthly, the intermediate
data are sorted by “video ID”. Fifthly and finally, the Reducer does receive the key value pair of
“video ID, list (analyzed data)” does its given work, sorts the analyzed data by time, and writes the
output to HDFS.
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Table 1. The key-value pairs used for the MapReduce Analyzer.

Step I/O <Key, Value> Operation
Map Ste Input <video path, offset> Dividing the input video and
p>tep Output <video ID, analyzed data> analyzing the divided portions.

Reduce Step Input <video ID, list (analyzed data)>  Sorting the analyzed input by time.

The MA can do video processing such as object detection, object recognition, object tracking,
and behavior analysis. The functional modules in the MA can be replaced so that the administrator
can select the appropriate Mapper module and a Reducer module from UTOPIA’s library of the video
surveillance system according to smart city requirements and predefined scenarios.

The video surveillance system processes big video data with UTOPIA’s Cloud computing system.
Figure 5 shows that when a cloud computing service is required, the USVS can request the cloud
computing service through the Cloud Computing Platform (CCP) to receive the required service.
The Cloud Computing Engine (CCE) of the CCP provides Cloud computing services to the USVS by
managing Cloud computing resources.

pUT(O|P-|I-A Administration, Operation, Remote Control, Presentation, Interaction, etc.
ortal Tier
UTOPIA UTOPIA Cloud Computing Platform
Middleware Smart
Platform Video
(SOUL) Surveillance ‘ Cloud Computing Engine ‘
Tier
UTOPIA ‘
Infrastructure Cloud Computing Resources ‘
Tier

Figure 5. UTOPIA’s Cloud computing.

Figure 6 shows a brief architecture of the UTOPIA CCE. UTOPIA’s Cloud supports both the
domestic Cloud and the foreign Cloud and both the private Cloud and public Cloud. The domestic
Cloud refers to having Cloud computing resources inside the UTOPIA infrastructure. The foreign
Cloud refers to having Cloud computing resources outside the UTOPIA Infrastructure. Various types
of hybrid Cloud computing are possible through the aggregation of them in UTOPIA. The UTOPIA
CCE leases computing resources based on a VM (Virtual Machine) infrastructure and usually supports
the master-slave deployment setting as shown in Figure 7. Users such as the system programmer
specify the required computing power using the user menu provided by the UTOPIA CCP. Users can
fix the requested computing power or ask an intelligent service to adjust the computing power to the
required computing power automatically and dynamically after the first run.
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UTOPIA Cloud Computing Engine

Cloud Interface Layer

Cloud Core Layer

Driver Layer

Domestic Cloud Drivers ’ ‘ Foreign Cloud Drivers

Domestic Cloud Foreign Cloud
Servers | “{ Network | Storage | Servers | { Network ) Storage
s — §——

Figure 6. The architecture of the UTOPIA Cloud Computing Engine.

Master Node
VM
[ Driver } [ Images } RePOSitory
A A ) )
{ SSH Images } [ SSH Images }
{ Hypervisor } [ Hypervisor }
Slave Node 1 Slave Node 2

Figure 7. The Cloud computing deployment for domestic Cloud computing.
6. Performance

Detecting a person in a given image was performed in our experiments. Two approaches are
the most widely used for object detection: one is the temporal difference method and the other
is the background subtraction method [7,41-44]. Our experiments use the temporal difference
method, even though our USVS can use any algorithm. The temporal difference method is known to
have good performance in dynamic environments because it is very adaptive, but the background
subtraction method is known to have good performance in case of extracting object information.
In UTOPIA, we selected and used an appropriate algorithm according to our requirement in each
case. Our main concern in the performance evaluation experiments of this paper was neither to
evaluate the performance of any specific algorithm, nor to compare the performance of different kinds
of algorithm, but to evaluate the overall performance of our suggested all-in-one system of USVS
with SOUL in UTOPIA. Detailed information regarding experiments, experiment results, and the
performances of various algorithms and comparison among various kinds of algorithms is also well
explained in [45-51]. Figure 8 shows the flowchart of the temporal difference method used for our
experiments. The algorithm works as follows. Firstly, video input data are divided by static offset to
get working frames. Then, a difference image is obtained by calculating the difference of successive
frames. Next, the algorithm converts a difference image to a gray-scale image. Finally, the object is
extracted by converting the gray-scale image into a binary image using a threshold value.
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Figure 8. Flow chart of the object detection algorithm implemented for performance evaluation experiments.

We conducted performance evaluation experiments on a Linux-based UTOPIA prototype system
with the Linux Standard Base (LSB) in the experimental environment that resembled actual field
environments. Currently the ISO Linux Standard Group (WG24) under JTC1/SC22 is making new LSB
standards for compatibility among different Linux distributions. Our experiments used an open-source
for MPEG H.264 codec, “x264 codec”, and libavutil and ffprobe in FFmpeg library written in Java.
We made the MapReduce Analyzer in C++ using OpenCV 2.4.3 since we think OpenCV 2.4.3 is well
made and good in performance. The MapReduce Analyzer uses the Apache Hadoop MapReduce
environment 0.23.0 that is written in Java.

The characteristics of the workload used for our experiments are as follows. The video resolution
was 1920 x 1080 (FHD: Full High Definition). For a workload, video files from networked video
cameras were collected in the “Storage” of USVS for 10 min with 19.4 Mbps transfer rate using the
UTOPIA prototype system. The networked cameras send video data to USVS and USUV collected the
workload online and processed it online in real-time as explained in previous sections in the UTOPIA
prototype system. A workload contains a total of 36,000 frames. The size of a workload is 1.35 Giga
Bytes. For our experiments, we divided the video data by the 25 frames GOP length, to prevent losing
the key frame. When two frames were executed on one node, the execution time of a frame was 0.035 s,
and when a workload that contained 36,000 frames was executed on one node, the total execution time
was 1278 s.

From our Cloud Iaa$S (Infra-structure as a Service) facility, we used a cluster system, which consisted
of fourteen homogeneous distributed nodes where each node had Intel i5 760 2.8 GHz Quad-Core
processors, DDR3 8 GB RAM, and a 7200 rpm 500 GB hard disk. A Giga-bit Ethernet switch connects
all nodes as shown in Figure 9. The cluster system used a homogenous Ubuntu 12.04 LTS 64bit server
edition and the homogenous JVM version 1.6.0_31 for the experiments. The HDFS was mounted using
“hdfs-fuse” in all nodes.

We performed experiments using the UTOPIA prototype system in the experimental environment
to confirm that the developed USVS system works properly and efficiently. Figure 10 shows how the
total execution time changed when the number of frames allocated to each Map task was increased.
The total execution (or processing) time means the time period from the time when USVS starts to
receive the workload from the given networked video cameras to the time when USVS finishes the
processing for the given workload. Two workloads were fed at the same time, so, it means that
72,000 frames were given and the size of the total workload was 2.7 Giga Bytes. Fourteen nodes of the



Appl. Sci. 2020, 10, 6572 13 of 17

cluster system were used in the experiments. When the number of frames allocated to each map task
increased, the total processing time in USYS decreased until it reached 200 frames. After that, the total
processing time began to increase. Thus we know that there was the optimal number of allocated
frames per map task that gives the best total processing time and the optimal number of allocated
frames per map task was 200 in the experiments. We think that the optimal number of allocated
frames per map task will be different if we change the experiment environments such as the system
configuration and the workload.

Gigabit Ethernet Switch

Sk EE— !
Node1 | Node2 ©® ® ® |Node14| ®® | Noden

Each node (Node K)
Processor
CPU1 CPU 2 CPU 3 CPU 4
8MB 500GB
Memory HDD

Figure 9. Configuration of the cluster system for Cloud computing in performance evaluation experiments.
1800 |

1600 |

-

~
=]
=]

Total processing time

50 100 150 200 250 300 350 400 450 500 550 600

Number of frames per Map task

Figure 10. The total processing time when the number of frames allocated to each map task
was increased.

We also performed experiments using the UTOPIA prototype system in the experimental
environment to check the scalability of the developed USVS. Figure 11 shows the total processing
time in USYS when the number of workloads was increased. In the experiments, the number of
frames allocated to each map task was fixed to 200, which was the optimal number of frames per
map task, 14 nodes of the cluster system were used, and we increased the number of workloads by
2. The Figure 11 shows that the “total processing time” increased linearly. Thus we confirm that the
scalability of our USVS was good.



Appl. Sci. 2020, 10, 6572 14 of 17

me

— 2000

Total processing t

4 6 8 10

Number of workload inputs

Figure 11. The total processing time when the number of workloads was increased: the number of
frames allocated to each map task was fixed at 200.

7. Conclusions

In this paper, we introduced the Cloud-based UTOPIA Smart Video Surveillance (USVS) that uses
MapReduce to manage big video data. The USVS system can gather huge video data from various
kinds of video cameras through Scalable Video Streaming (SVS) so that the data can be effectively
and smoothly managed even when network bandwidth is limited and fast processed with a novel
MapReduce method.

We implemented our Cloud-based Smart Video Surveillance in UTOPIA, which consists of three
tiers: the UTOPIA infrastructure tier, the UTOPIA SOUL middleware platform tier, and the UTOPIA
portal tier. Video cameras are deployed in the UTOPIA infrastructure tier and can be remotely
controlled according to the stored scenarios and remote users. The SOUL middleware platform tier is
the brain of UTOPIA, includes USVS and provides various smart convergence solutions and functions
including Cloud computing. The USVS has the VM, the SCVA, and the SVS in the SOUL middleware
platform tier. The VM has the CM, the SM, the AM, and the PM. The VM manages the SCVA and the
SVS. The SCVA has the MA, the storage, and the SR.

Detecting a person in a given image was performed for the performance evaluation experiments.
Libavutil and ffprobe in the FFmpeg library written in Java were used with an open-source for MPEG
H.264 codec, “x264 codec”, and MA was implemented in C++ using OpenCV 2.4.3 with the Apache
Hadoop MapReduce environment 0.23.0. The experiments were performed in a cluster system, that
used a Giga-bit Ethernet switch for connection and had fourteen homogeneous distributed nodes
where each node had an Intel i5 760 2.8 GHz Quad-Core processors, DDR3 8 GB RAM, and a 7200 rpm
500 GB hard disk with a homogenous Ubuntu 12.04 LTS 64bit server edition and a homogenous JVM
version 1.6.0_31, where the HDFS was mounted using “hdfs-fuse” in all nodes. In our experiment,
we divided the video data by the 25 frames GOP length so that we did not lose the key frame. The video
resolution was 1920 x 1080 (FHD) and the used video workload was collected online for 10 min and the
workload was processed online in real-time in an experimental UTOPIA environment with SOUL and
USVS for performance evaluation. We confirmed that our developed USVS worked well with good
performance in the first experiments and the scalability was good in the second experiments. The USVS
can be used for object recognition, tracking, and behavior analysis functions, as well. Our USVS can
also uses Storm and Spark for real-time processing as well.
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