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Abstract: In patients of very severe obstructive sleep apnea (OSA) with confined framework, reducing
volume is difficult to achieve a postoperative apnea-hypopnea index (AHI) qualifying the classical
surgical success. However, a higher AHI with a larger part of hypopneas may have similar or
even less severity of oxygen (O2) desaturation, compared to a lower index mostly made of apneas.
Here, in 27 consecutive enrolled patients, we show that besides the improvement of mean AHI,
the multilevel surgery increased hypopnea in AHI from 29.1% to 77.3%, and improves postoperative
O2 saturation by reducing desaturation frequency (mean desaturation index decreased from 62.5 to
24.4 events/h) and level (mean oxyhemoglobin saturation of pulse oximetry (SpO2) desaturation cut
down from 10.0 to 5.8%). The mean SpO2 improved from 92.3% to 94.7%, and the improvement
was positively related to the proportion increase of hypopnea/AHI. The results suggest that the
non-framework surgery could help patients with very severe OSA whose AHIs are ≥60 events/h in
terms of improving postoperative O2 saturation. Due to the improvement also presented in those not
qualified as classical surgical success, further studies are needed to clarify the connection between O2

desaturation and various consequences to reconsider defining a surgical success.

Keywords: palatoplasty; one-stage; comorbidity; retropharynx; maxillomandibular advancement;
Continuous Positive Airway Pressure (CPAP)

1. Introduction

Intermittent O2 desaturation in adult obstructive sleep apnea (OSA) patients has been
proven to correlate with possible consequences such as hypertension [1–4], cognitive deficits [5,6],
and cardiovascular disorders [7–9] (e.g., pulmonary hypertension [8], coronary artery disease [8,9],
cerebrovascular disease [8,9], idiopathic cardiomyopathy [8], and congestive heart failure [8,9]).
However, O2 desaturation with different severities may result from similar apnea-hypopnea indexes
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(AHIs) and vice versa [10,11]. Studies have shown that deeper and longer O2 desaturation events may
contribute more to the daytime sleepiness [12,13] and harmful health consequences than the shallower
and shorter events [10]. More severe O2 desaturations come from apneas, compared to hypopneas
(e.g., see [11]). Intermittent O2 desaturation results from sleep apneas and hypopneas, which constitute
a variety of components in most of the AHI.

A common ground of treating OSA patients could be improving O2 saturation to reduce
consequences. However, surgically treating very severe OSA patients (defined to AHI ≥ 60 events/h
here) can be difficult due to their narrow retroglossal space and confined framework, which is hard
to enlarge via conventional uvulopalatopharyngoplasty (UPPP) surgery [14]. In the literature, very
severe OSA refers to having a high AHI or respiratory disturbance index (RDI) of 40 [15,16], 50 [17–21],
60 [22–26], 70 [27], or 100 events per hour [28]. It is a distinct subgroup and differs from OSA with
other severities. For example, patients with very severe OSA may have a low level (as 77 mmHg)
of diurnal partial pressure of oxygen while they are not in sleep [29]. There may be residual on-
Continuous-Positive-Airway-Pressure (CPAP) AHIs > 20 events per hour [30]. They have less positional
OSA [31], a high prevalence of hypertension [29], higher insulin resistance [32], and about three times
the chances of heart block compared to an unselected group of OSA patients [33]. The unfavorable
anatomy is not necessarily related to obese or high body mass index (BMI) (e.g., see [23,25]).

The anatomical limitations and the characteristics of this group of very severe OSA make it hard
(e.g., Walker’s 17% (1/6) [34], Vilaseca’s 9% (1/11) [23], and Mickelson’s 30% (3/10) [35]) to achieve the
commonly used “surgical success” in sleep surgeries, i.e., AHI < 20/hour and AHI reduction > 50%,
first proposed by Sher et al. [36]. It is unclear whether increasing hypopnea in AHI, regardless of the
qualification of surgical success, improves postoperative O2 saturation and reduces the consequences.
It is also unclear whether the one-stage multilevel surgery we proposed for severe OSA without
operating on the bone [37] successfully improves the postoperative O2 saturation with an unfavorable
anatomical stage.

If more severe O2 desaturations come from apneas than hypopneas [11] and the surgery may
shift apneas to hypopneas, it is reasonable to hypothesize that increasing hypopnea in AHI improves
postoperative O2 saturation in refractory very severe OSA patients. Here, we compared the pre- and
post-operative postoperative polysomnographies (PSGs) and showed how increasing hypopnea in AHI
reduces frequency of desaturation (by desaturation index (events/h)), reduces severity of desaturation
(by mean SpO2 desaturation (%)), and improves mean SpO2 after the one-stage multilevel surgery in
very severe OSA patients. We also showed how the improvement can be seen in classical non-surgical
success patients.

2. Materials and Methods

Between March 2015 and May 2020, we enrolled consecutive patients with very severe OSA who
met these criteria to the study:

• Age ≥ 20 years
• Unsuccessful or refusal of CPAP
• AHI ≥ 60 events/h
• Received a one-stage multi-level sleep surgery with the modified ZPP performed with one-layer

closure and open partial tongue-base glossectomy
• Available preoperative and postoperative PSGs for required recordings, including desaturation

index and SpO2.

Patients were not specially selected for surgery by any other criteria unlisted above. There were
no specific exclusion criteria. Every PSG was conducted overnight in the level 1 sleep laboratory of the
authors’ tertiary referral hospital. In a PSG, an apnea is defined as the complete cessation of airflow for
at least 10 s. A hypopnea is defined as a decrease in airflow ≥ 30% for at least 10 s that is accompanied
by either EEG signs of arousal or by a 4% or greater decrease in oxygen saturation. We performed pre-
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and post-operative endoscopies to evaluate the anatomy. Patients received general anesthesia by oral
intubation to allow routine septomeatoplasty, and breathed through the mouth for 2 to 3 days before
we removed the nasal packing. Modified Z-palatoplasty (ZPP) with one-layer closure was performed
as illustrated in our previous report [37]. Partial open tongue-base resection was completed with
transoral (CO2) laser microsurgery or transoral robotic surgery (TORS) for hypopharyngeal obstruction
according to the preoperative endoscopic assessment. After the surgery, we cared for all patients
in general ward areas with oximeter monitor. Intravenous Dynastat was prescribed twice daily on
patients’ request. No intravenous or oral narcotics were given to prevent respiratory depression.

A PSG followed about 6 months (193 ± 67 days) after the surgery, and sleep parameters
were considered stable. We measured the mean change in AHI compared to the mean AHI before
surgery, AHI reduction, as suggested by Caples, S. M. et al. [38]. In the components of AHI, we then
calculated the percentage of hypopnea in AHI and compared the desaturation index, the mean SpO2

desaturation, and the mean SpO2 before and after the surgery. We performed a paired t-test to
examine the changes in AHI reduction, percentage of hypopnea in AHI, desaturation index, mean
SpO2 desaturation, and mean SpO2, against no change after the surgery. We plotted scatter graph to
exclude outliers and justify the application of correlation coefficient. We calculated the correlation
coefficient to show the relationship between proportion change of hypopnea/AHI (defined here as
(postoperative-preoperative)/preoperative fraction of hypopnea in AHI) and change of mean SpO2

(defined here as (postoperative-preoperative)/preoperative mean SpO2). We then tested the change of
mean SpO2 in “non-surgical success” patients to see if clinical and statistical improvements can be seen
if a classical surgical success could not be qualified. The statistical significance was tested as α = 0.05.

All statistical examinations were performed in MATLAB 9.4.0.813654 (MathWorks, Natick,
MA, USA).

3. Ethical Statements

The Institutional Review Board of Chang Gung Medical Foundation, Taiwan, approved the study
methods, protocols, and informed consent of subjects, with relevant guidelines and regulations.

4. Results

This study enrolled 27 very severe OSA patients with 24 men and 3 women between 29 and
63 years of age (mean = 47.4; standard deviation (SD) = 10.6). The mean BMI was 28.5 with a standard
deviation of 3.5 kg/m2. All patients received ZPP with one-layer closure and partial open tongue-base
resection. Twenty-five received routine septomeatoplasty. One patient underwent UPPP at another
hospital before visiting our clinic. Three and one patients underwent routine endoscopic sinosurgery
and adenoidectomy, respectively.

After the surgery, the mean AHI (with 1 SD; the same for the follows) was reduced from 73.8 ± 10.3
to 33.2 ± 20.4 events/h (p < 0.001). The mean AHI reduction was 40.5, with a 95% confidence interval of
31.9 to 49.1 events/h. Figure 1 illustrated the individual AHI reductions. In these AHIs (including
central and mixed indexes), the mean obstructive apnea index reduced 35.7 events/h, with a 95%
confidence interval of 28.1 to 43.3 events/h (p < 0.001) (Figure 2). The hypopnea index almost remained
the same, with a small change of 2.2 events/h (p = 0.6562) (Figure 3). The mean portion of hypopnea
in AHI increased from 29.1 ± 23.9 to 77.3 ± 25.1% (p < 0.001) (Figure 4). The mean increase was
48.2%, with a 95% confidence interval of 37.7 to 58.8%. The mean desaturation index decreased from
62.5 ± 12.5 to 24.4 ± 16.3 events/h (mean reduction was 38.1, with a 95% confidence interval of 30.6 to
45.6 events/h, p < 0.001) (Figure 5), and the mean SpO2 desaturation was cut down from 10.0 ± 5.0 to
5.8 ± 1.9% (mean reduction was 4.2%, with a 95% confidence interval of 2.3 to 6.1%, p < 0.001) (Figure 6).
The mean SpO2 improved from 92.3 ± 3.4 to 94.7 ± 1.5% (mean improvement was 2.4%, with a 95%
confidence interval of 1.0 to 3.8%, p = 0.0014) (Figure 7). A correlation of the data revealed that the
improvement of mean SpO2 was positively related to the proportional increase of hypopnea/AHI,
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r = 0.483, p = 0.011, two-tailed test (Figure 8). However, the Spearman correlation was 0.374, p = 0.0557,
showing the probable limitations of small case number or existence of outliers.Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 11 
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Figure 8. Scatter plot and correlation of proportion change of hypopnea/AHI (defined here as
(postoperative-preoperative)/preoperative fraction of hypopnea in AHI) vs. change of mean SpO2

(defined here as (postoperative-preoperative)/preoperative mean SpO2). It shows that the improvement
of mean SpO2 was positively related to the proportional increase of hypopnea/AHI.

Nineteen out of 27 patients did not qualify the classical surgical success because each had a
postoperative AHI > 20 events/h, although all had AHI reductions > 50%. In these 19 “non-surgical
success” patients, the mean SpO2 improved from 91.7 ± 3.7 to 94.3 ± 1.6% (p = 0.0087) (Figure 9).
Among the remaining eight patients, the AHI reduced from 73.0 ± 13.0 to 10.5 ± 5.6 events/h and
qualified as “surgical success”. However, the improvement of mean SpO2 from 93.8 ± 2.0 to 95.7 ± 0.8%
did not show statistical significance (p = 0.0625).
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5. Discussion

The results show that the multilevel surgery shifted (Figure 4) apneas that cause more severe O2

desaturations (Figure 2) to hypopneas that allow some passing airflow (Figures 3 and 4). The surgery
increased the portion of hypopnea in AHI. Although we believe apnea reduction is the key to
improve O2 saturation, apnea index after the surgery easily reaches the floor (floor effect, i.e., close
to 0, see Figure 2) and distorts the pre- and post-operative comparison. That is why we selected
hypopnea/AHI ratio as the measurement. The improvement of postoperative O2 saturation in very
severe OSA patients was seen in several ways: 1. Reduced desaturation frequency by desaturation
index; 2. Reduced desaturation severity by mean SpO2 desaturation; and 3. Improved mean SpO2.

The surgery improved mean SpO2 in the 19 “non-surgical success” patients, regardless of the
qualification of surgical success. Although the improvement of mean SpO2 in the eight “surgical
success” cases did not reveal statistical significance (p = 0.0625), it needs to be aware that this could be
the limitations of a small number or the ceiling effect—these 8 patients had higher preoperative mean
SpO2 of 93.8%, and it is harder to get better than 95% after the surgery.

Classical surgical success—AHI < 20 events/h and AHI reduction > 50%, first proposed by
Sher et al. [36]—was frequently reported in associated studies with less severity and might serve
as an outcome measure for comparison. The surgical success of the present study was 29.6% (8/27),
which was worse than Mickelson’s 30% (3/10) [35] but better than Walker’s 17% (1/6) [34] and
Vilaseca’s 9% (1/11) [23] (calculated from detailed subject information provided in available literature
for non-framework sleep surgeries in very severe OSA patients). The mean AHI reduction in the
present study was 40.5 events/h, which was worse than Mickelson’s 42.2 events/h [35] but better than
Walker’s 38.2 events/h [34] and Vilaseca’s 14.4 events/h [23].

If improving O2 saturation to reduce consequences is the goal, we may need to redefine “success
of surgery”, at least for very severe OSAs. The results suggest that factors evaluating surgical success
could include a combination of AHI reduction and hypopnea ratio, desaturation index, mean SpO2

desaturation, and mean SpO2. Future studies are needed to clarify the connection between the O2

desaturation, including level and frequency, and various consequences. These results may intrigue
future works to investigate a better classification of surgical success, taking into account initial, but not
only, AHI.
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6. Conclusions

Besides AHI reduction, the multilevel surgery in this study increased hypopnea in AHI from
29.1% to 77.3%, and improves postoperative O2 saturation by reducing desaturation frequency and
level in very severe OSA patients. In other words, the multilevel surgery not only reduced the total
number of sleep breathing disturbance per hour, but also shifted apneas that cause more severe O2

desaturations to hypopneas that allow some passing airflow. The mean desaturation index decreased
from 62.5 to 24.4 events/h, and the mean SpO2 desaturation cut down from 10.0% to 5.8%. If improving
O2 saturation to reduce consequences is the goal and the key for surgical success, the results suggest
that the surgery could benefit patients with very severe OSA whose AHIs are ≥60 events/h in terms of
improving postoperative O2 saturation. Since the improvement of O2 saturation also presented in
those cases not qualified classical surgical success, we may need to reconsider the definition of surgical
success, at least in very severe OSA patients.
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