

Features of Electrophoretic Deposition of a Ba-Containing Thin-Film Proton-Conducting Electrolyte on a Porous Cathode Substrate

Elena Kalinina ^{1,2,*}, Alexander Kolchugin ^{3,4}, Kirill Shubin ⁵, Andrei Farlenkov ^{3,4} and Elena Pikalova ^{3,6,*}

- ¹ Laboratory of Complex Electrophysic Investigations, Institute of Electrophysics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg 620016, Russia
- ² Department of Physical and Inorganic Chemistry, Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg 620002, Russia
- ³ Laboratory of Solid Oxide Fuel Cells, Institute of High Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences, Yekaterinburg 620137, Russia; laba50@mail.ru (A.K.); a.farlenkov@yandex.ru (A.F.)
- ⁴ Laboratory of Chemical Design of New Multifunctional Materials, Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg 620002, Russia
- ⁵ Laboratory of Cross-Cutting Technologies in Distributed Power Generation (InEnergy), Institute of High Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences, Yekaterinburg 620137, Russia; k.shubin@ihte.uran.ru
- ⁶ Department of Environmental Economics, Graduate School of Economics and Management, Ural Federal University, Yekaterinburg 620002, Russia
- * Correspondence: jelen456@yandex.ru (E.K.); e.pikalova@list.ru (E.P.) ; Tel.: +7-343-267-87-82 (E.K); +7-343-362-31-94 (E.P.)

Received: 18 July 2020; Accepted: 16 September 2020; Published: date

Featured Application: The results of the study can be used for the development of the production technology of cathode-supported SOFCs with a thin-film electrolyte using the electrophoretic deposition method.

Figure S1: XRD patterns of the BCGCuO powder (final synthesis temperature of 1050 °C).

Figure S2. XRD patterns of the LBNOss powders (final synthesis temperature of 1250 $^{\circ}$ C).

Figure S3: XRD patterns of the micro-sized LBNOnc powder (final synthesis temperature of 1100 °C).

Figure S4. XRD patterns of the LNFO_P powder (final synthesis temperature of 900 °C).

Figure S5. XRD patterns of the LNFOss powder (final synthesis temperature of 1250 °C).

Figure S6. XRD patterns of the BCGCuO compact sample (sintering temperature of 1450 °C).