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Abstract: Industry 4.0 is revolutionizing industrial production by bridging the physical and the
virtual worlds and further improving digitalization. Two essential building blocks in industry 4.0
are digital twins (DT) and the internet of things (IoT). While IoT is about connecting resources and
collecting data about the physical world, DTs are the virtual representations of resources organizing
and managing information and being tightly integrated with artificial intelligence, machine learning
and cognitive services to further optimize and automate production. The concepts of DTs and IoT are
overlapping when it comes to describing, discovering and accessing resources. Currently, there are
multiple DT and IoT standards covering these overlapping aspects created by different organizations
with different backgrounds and perspectives. With regard to interoperability, which is presumably the
most important aspect of industry 4.0, this barrier needs to be overcome by consolidation of standards.
The objective of this paper is to investigate current DT and IoT standards and provide insights to
stimulate this consolidation. Overlapping aspects are identified and a classification scheme is created
and applied to the standards. The results are compared, aspects with high similarity or divergence are
identified and a proposal for stimulating consolidation is presented. Consensus between standards
are found regarding the elements a resource should consist of and which serialization format(s) and
network protocols to use. Controversial topics include which query language to use for discovery as
well as if geo-spatial, temporal and historical data should be explicitly supported.

Keywords: digital twin; internet of things; interoperability; standardization

1. Introduction

The fourth industrial revolution and the underlying digital transformation, known as Industry 4.0,
is revolutionizing industrial production. Following the third industrial revolution, also known as the
Digital Revolution, Industry 4.0 is about optimization and automation of the previously introduced
computerization by intelligent networking of machines and processes [1,2]. A central element is
the integration of already-existing concepts such as the internet of things (IoT), digital twins (DT),
artificial intelligence (AI), machine learning (ML), big data, and cognitive services and applying them
to industrial production. Three of the integral design principles of Industry 4.0 are interconnection,
information transparency, and decentralized decisions [3]. Interconnection refers to the ability of
machines, devices, sensors, and people to connect and communicate with each other via the internet,
which is the cornerstone of the IoT. Information transparency refers to the ability to collect, manage,
and organize the vast amount of data from connected machines, devices, and sensors. This requirement
is addressed by the concept of DT, which is ‘a formal digital representation of some asset, process or
system that captures attributes and behaviors of that entity suitable for communication, storage,
interpretation or processing within a certain context’ [4]. The requirement for decentralized decisions
can be fulfilled by incorporating aspects of AI and ML into DTs to provide cognitive services and
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thereby enable better decision-making and increasing the level of automation as well as overall
productivity. DTs with such enhanced capabilities are also referred to as cognitive twins (CT) [5].

The importance of industry 4.0 and its related concepts and technologies has been widely
acknowledged [6–9]. Between 2012 and 2016, IoT (or the similar ‘internet of everything’) was
considered one of the ten most important technology trends of the year by Gartner, followed by
DT as one of the five most important technology trends between 2017 and 2019 [10–17]. In 2020,
the most important technology trend according to Gartner is hyperautomation, which refers to the
totality of automation efforts across an entire organization and is tightly coupled to industry 4.0 and
DT as ‘hyperautomation often results in the creation of a digital twin of the organization’ [18].

It seems obvious that ‘the rise of digital twins coincides with the rise of the IoT’ [19] as only the
vast amount of sensor data and device metadata from the IoT creates the requirement for organizing
and managing all that information in an adequate way, which is realized by the concept of DTs.
Although the relation between DT and IoT seems to be clear at first glance—IoT connects devices to
the internet and collects data while the concept of DTs is used to structure and manage that data to
be further used for optimization and automation with the help of AI and ML algorithms—they have
some overlap and therefore are not clearly separable in some aspects.

A fundamental aspect of both IoT and DT is the fact that they center on resources and require
a formal and machine-readable representation of these resources. Resources can be devices, sensors,
actuators, or machines in the context of IoT or assets, processes, or systems in the context of DT.
Figure 1 provides a visual representation of further resource-related functionality that is part of
both domains. Besides a formal and machine-readable resource description created by a provider,
they share the functionality for potential consumers to discover such resource descriptions and access
the resources.

Resource

Provider Consumer

create

Resource 
Description

discover

<<describes>>

access

Figure 1. Functional overlap between internet of things and digital twins that is subject to standardization
in both domains.

As industry 4.0 is about optimization on a large scale, interoperability not only within a factory or
organization but along the whole value chain is essential and should be addressed globally [20,21].
Achieving interoperability on a global level requires formal standardization. Multiple SDOs are
currently working on standardization of IoT or DT, e.g., the European Telecommunications Standards
Institute (ETSI), the International Electrotechnical Commission (IEC), the Internet Engineering
Task Force (IETF), the Industrial Internet Consortium (IIC), the International Organization for
Standardization (ISO), the Open Geospatial Consortium, the Plattform Industrie 4.0, the World Wide
Web Consortium (W3C), and many more. Many of the standards related to DT or IoT address
issues that are unique to the domain, i.e., not part of the overlap between IoT and DT, for example,
network protocols for wireless connectivity, which belongs to IoT but is not considered a relevant
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subject for standardization in the DT domain. Furthermore, different SDOs have different backgrounds
and focuses, e.g., ETSI is rooted in the telecommunication domain, OGC focuses on geospatial
information management, and the IIC is focused on accelerating the development and adoption
of IoT technology in the industry. Several standards that focus on the three basic aspects common
to both IoT and DT, resource description, resource discovery, and resource access, are either already
existing or currently being developed by different SDOs in parallel.

Having multiple competing standards solving the same problem in different ways without
aligning with each other massively hinders interoperability. As interoperability is the key requirement
of industry 4.0 [21,22], this is an actual threat for the further development and success of industry 4.0.
Previous work focuses on either the IoT or the DT domain or addresses the IoT only as a source of
data for DTs, ignoring the fact that the domains actually overlap in functionality. A recent survey from
Minerva et al. acknowledges the fact that interoperability plays an important role in industry 4.0 on IoT
on the DT level and that ‘interoperability and standardization will occur as part of the evolution’ [23].
Although the relationship and alignment between existing and upcoming IoT and DT standards have
been discussed in multiple SDO groups, to the best of the author’s knowledge, there has not been any
published formalized and structured analysis and comparison. The objective of this paper is to narrow
this gap and stimulate the evolution of standards by identifying how well current standards from both
the IoT and the DT domain are aligned regarding resource description, discovery and access. This not
only provides an overview of the current state of the art on DT interoperability, but can also nourish
further consolidation of standards to improve interoperability in industry 4.0.

Market research report predicts that until 2027, using DTs will become standard for IoT
applications and IoT platforms will support the creation of DTs. At the same time, the total IoT
market is predicted to rise from $465 million in 2019 to $1.5 trillion in 2030 whereby 40% thereof
depend on successfully addressing interoperability [24–26]. As ‘Industry 4.0 is only possible with the
digital twin’ [27], identifying and resolving ambiguities in and closing the gap between standards and
thereby fostering interoperability is of relevance for the success of industry 4.0.

The reminder of the paper is organized as follows. The classification scheme for IoT and DT standards
is presented in Section 2. In Section 3, multiple standards from the domains IoT and DT are presented
and analyzed based on the previously introduce classification scheme. This is followed by a summary
including a comparison matrix discussing the findings and conclusions in Sections 4 and 5, respectively.

2. Classification Schema

Both IoT and DT center on resources. In the context of IoT, resources are internet-connected
devices, whereby communication between consumer and device can happen either directly or via some
kind of software system. In the context of DT, resources are defined in a broader sense, e.g., as assets,
devices, and physical or virtual entities. Both concepts share the vision that communication between
resources should happen mostly without human interaction, i.e., machine-to-machine (M2M).

Figure 1 depicts basic functions that are both required for realizing IoT and DT. As M2M
communication requires a formal representation of the resource to interact with, the first step that needs
to happen in such a scenario is always the creation of a resource description. A resource description is
exactly that formal representation required and describes a resource with all its capabilities and interfaces
that should be exposed to others. The creator of a resource description has the role of the provider. Once a
resource description is created, it can be discovered by a consumer. A consumer can be a software system
(i.e., M2M) or a human. Different modes of resource discovery can be supported, e.g., peer-to-peer (P2P)
or directory-style (see Section 2.2). Once discovered, a consumer can parse/read the resource description
and extract the information needed to access the described resource.

Although these are basic functions used in many other domains, these are the very functions
enabling the IoT and DT to revolutionize many aspects of today’s IT landscape.

In the following, we present a classification schema for IoT and DT standards centered on the
identified three main functions: resource description, resource discovery, and resource access.
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2.1. Resource Description

Having a formal and machine-readable resource description is essential for IoT and DT, as it
enables consumers to gain knowledge about available resources and defines how to interact with them.
Resource descriptions are typically defined using a specific language or (meta) model, which can differ
in many aspects, e.g., complexity, serialization formats, etc. In this paper, we discuss the following
different classification criteria in the context of resource description.

2.1.1. Resource Term

What term is the central element of the language/(meta) model? Strictly speaking, this is not a
real classification criterion but a helpful fact to find your way around the different terminologies used
in different standards and platforms.

2.1.2. Model Type

Resource descriptions are expressed in the terms of a model (sometimes also referred to as a language).
Depending on the expressiveness and generalizability, this model can be categorized as a different
level following the Object Management Group (OMG) basic concept of multilevel metamodeling [28].
A detailed meta model hierarchy for IoT and DT is present in Figure 2. For each level, its content
is described in the terms of the level above, whereas the top-level (M3) is typically self-describing.
For example, a grounding in M3 could be RDF(S) (Resource Description Format Schema, optionally in
combination with RDF Schema), M2 could be the Web Ontology Language (OWL), M1 could contain
multiple (cross-)domain or application models like the Semantic Sensor Network (SSN) Ontology and M0
would contain the actual application data. M1 and M2 are often a hierarchy or network themselves built
by re-using existing (and typically standardized) models combined with custom extension In Figure 2,
this is shown for M1 in an exemplary manner to reflect the hierarchical organization of models typically
used in IoT and DT.

Grounding (Metadata Data Model)M3

M0 Data

Meta-ModelM2

<<instanceOf>>

Cross-Domain Model

Application Model

M1 Domain Model Domain Model

<<extends>> <<extends>>

<<extends>> <<extends>><<extends>>

<<instanceOf>>

<<instanceOf>>

Figure 2. The metamodel hierarchy based on the Object Management Group basic idea of multilevel
metamodeling [28] with an expanded M1 layer to reflect hierarchical organization of models typical for
the internet of things and digital twins.

2.1.3. Resource Identification

Unique identification of any resource across system boundaries is essential in such highly
distributed environments as IoT and DT (DTs may be passed along the supply chain along with
(intermediate) products). Creating and keeping track of globally unique identifiers is not a trivial
task and itself subject to standardization. Supporting different types of resource identifiers is also
important when adding semantics through referencing external resources. Internationalized Resource
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Identifiers (IRIs) are essential when working with ontologies as it is one of the basic building blocks
of the Semantic Web. Other important external sources for semantics are international standards,
e.g., eCl@ss [29], which often use International Registration Data Identifiers (IRDIs) to identify terms
or concepts.

2.1.4. Type System

None of the considered standards provides a ‘ready-to-use’ application model but rather offer one
or more models of a higher level (see Figure 2). This means that for a real-world application, a provider
must define an application model based on the given higher-level models defining the concrete
resource classes and their properties. This requires a type system defining the allowed/supported data
types. Most standards re-use existing type systems, e.g., from XSD, JSON, or RDF, either directly or
with slight restrictions and/or extensions.

2.1.5. Serialization Formats

To be exchanged between provider and consumer, a resource description needs to be serialized.
This can be done in different formats like XML, JSON, JSON-LD, RDF or many others. Theoretically,
most of these formats are interchangeable which also manifests in the fact that some standards
support multiple serialization formats. However, the choice of serialization format can still influence
other aspects, because e.g., a format might be coupled to a communication protocol or the type systems
of the serialization formats might be difficult to match.

2.1.6. Resource Elements

The structure and expressiveness of a resource description language are one of the most important
aspects of this classification. It defines what kind of information about a resource description can
contain. The purpose of a resource description is to provide a consumer with all the necessary
information to understand what this resource is and how to interact with it. It can be divided into
two parts, one describing the capabilities of a resource and another one describing how to access it.
The description of capabilities is very similar to the concept of interfaces in high-level programming
languages and comes down to three types of elements: properties, functions, and events.

Properties refer to attributes of the resource and allow reading/writing or subscribing to them.
Functions allow executing some logic on the resource supporting optional input and output parameters.
In the context of IoT and DT, the term function is rarely used but instead the same concept is referred to
as ‘service’. Events are notifications about the occurrence of a state (change) or an action, e.g., ‘battery
level is critical’ or ‘button X has been pressed’.

2.1.7. Kinds of Data

The great variety of different use cases and application domains of IoT and DT require coping
with different kind of data. The Big Data Value Association (BDVA) identified six different types
of data, including time series, geo-spatial, temporal, and multimedia data, as well as the fact that
different types of data require different query capabilities [30]. Adding explicit support for a special
kind of data is something that is beyond the absolute core of a standard, i.e., it can be seen as adding a
cross-domain main model according to Figure 2 below the meta-model (which is part of the absolute
core). As most IoT and DT standards considered in this paper are either rather new or still being
defined, they are still focusing on the core of the standards and often did not yet add explicit support
for different kinds of data. In this paper, we, therefore, consider only the support for geo-spatial,
historical, and temporal data as these are the most important aspect that are already covered at least
by some platforms.

Geo-spatial data is typically needed when there is any interaction with the physical world, e.g.,
a resource with a physical location, typically somewhere on earth but in some scenarios, this could
also be somewhere in space. Historical and temporal data is quite similar, as both require data to
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be considered in the context of time. Historical data represent the history of a resource over time
with a focus on the timely order of different states. Temporal data is considered simply data in the
context of time. It can comprise data about the past but also the future of different resources at once,
e.g., time-series data or results of prediction algorithms.

If standards support these different kinds of data is often determined by the paradigm followed.
Probably most common is a device-centered paradigm where the virtual resource representing a
physical device is considered a proxy reflecting the current state of the physical device as-is. Therefore,
historical and temporal data is typically not available following this paradigm. Less common is an
observation-based paradigm where observed changes in the environment are not only represented as
changes in the state but also documented as an observation that was made by a sensor.

2.1.8. Resource Interlinking

As IoT and DT are highly dynamic environments of heterogeneous devices/resources, interlinking
of resources essential to represent their (network) structure. The considered standards have different
approaches and levels of support for resource interlinking which will be analyzed in detail for each
standard in Section 3.

2.1.9. Semantic Annotation

In general, semantics is defined as ‘the meaning or relationship of meanings of a sign or set of
signs’ [31]. In this context, signs are elements such as classes, properties, relations or instances of a
knowledge base, expressed by their identifiers, e.g., http://qudt.org/vocab/unit/#DegreeCelsius.
In technical systems, multiple levels of interoperability are to be considered [32]. Technical
interoperability enables exchanging data on a physical level, syntactic interoperability that a system
can parse the incoming data and semantic interoperability refers to ‘the ability of computer systems
to exchange data with unambiguous, shared meaning’ [33]. As application models are not part of
the standards, it cannot be expected that they are known to a consumer. Semantic annotation allows
including references in the used (application) model(s), enabling consumers to discover the meaning
of classes and properties on the fly.

2.2. Resource Discovery

For a consumer to know about existing resources, a discovery mechanism is needed. Discovering
resources connected to a network is a common task, e.g., billions of resources are discovered via search
engines every day.

Multiple well-established paradigms addressing resource discovery already exist, e.g.,
directories-style systems, search engines, crawlers, networking protocols (such as UPnP), etc. They can
be divided into two groups; the ones defining how information about the existing resource is gathered
and the ones defining how this gathered information could be accessed by users or other software
systems. Information gathering can happen via e.g., (manual) registration of resources, networking
protocols or crawlers. All of the considered standards default to manual or self-registration of a
resource with some kind of resource directory. Some of them consider using special network protocols
for resource discovery in the future but currently do not provide any solutions in this aspect. Therefore,
we focus on how to access gathered information about existing resources, especially with the focus on
supported network protocols and query capabilities.

2.2.1. Communication Protocols

Which communication protocols are supported for communication with the resource directory?

http://qudt.org/vocab/unit/#DegreeCelsius
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2.2.2. Query Capabilities

When trying to access a resource, a consumer typically does not want to access just any resource
but a resource matching some defined criteria, e.g., measuring a certain property or offering a
certain service. Although not always supported, it is a good idea for a resource directory to allow
searching for resource matching certain criteria. In case searching is not supported, resource directories
typically return the complete list of known resources, which then has to be filtered client-side. Therefore,
our first classification criterion is whether queries generally are supported by the system.

In this paper, we focus only on the, from our perspective, most important aspects of query
languages which are explained in the following. As query languages are often rather complex and differ
in many small details, this set of classification criteria could be extended in the future. Because already
many query languages exist, the most important criterion for us is which pre-existing query languages
are supported. Typically, one pre-existing query language is chosen and used in a standard but
some standards also support more than one or create a new one. Another criterion is if the query
language(s) supports geo-spatial and temporal/historical queries. Although not directly affecting the
query capabilities, we consider the possibility to add information about desired result formatting in
a query a relevant criterion as it can massively improve usability and reduce network traffic when
done right.

2.3. Resource Access

The actual goal in IoT and DT is accessing resources and communicating with them.
Resource description and discovery are only intermediate steps required to achieve this goal. Of course,
accessing and communicating with resources without underlying (IoT and DT) standards is also
possible. However, this inevitably leads to writing lots of ‘glue code’, i.e., manually written code to
communicate with different types of devices as they all use their own data formats and protocols.
Especially in such a heterogeneous and dynamic environment like IoT where new devices are
developed, connected to the internet and dynamically discovered by applications, writing clue code
no longer is a viable solution.

2.3.1. Paradigm

We identified two different paradigms regarding resource access: API definition and API description.
The most common paradigm to ensure unified resource access is to define some kind of resource API
and require every resource to implement it. Although this is the easiest and most common approach,
it does not take into account resources with existing APIs that cannot be updated to expose a new API.
To properly address these issues and allow integration of legacy devices, the other paradigm is to not
define a new resource API but rather provide a meta-model to describe existing APIs. On the downside,
a lot of complexity is shifted to the client, i.e., implementing a client library becomes much harder as they
now have to not only execute predefined commands via a single predefined protocol, but also understand
the API description and potentially speak multiple protocols to communicate with a resource.

2.3.2. Communication Protocols

Resource access can happen via multiple different protocols, such as HTTP, CoAP, MQTT or
OPC UA. Besides that, standards can be defined in a protocol-agnostic way and allow for mappings
to other protocols to be added dynamically. This is especially important for standards using the API
description paradigm.

3. Standards for Digital Twins and the Internet of Things

In this section, we introduce different standards related to TD and IoT and evaluate them according
to the classification criteria defined in the previous section. The selection of standards was done based
on discussions in different standardization bodies [34–36], recent scientific publications, as well as the
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authors’ knowledge and experience in the areas of DT and IoT and their subjective relevance of the
standards in practice. A previous work [5] focused on the extension of DTs with cognitive capabilities
provides some additional insights to existing IoT and DT implementations.

3.1. Asset Administration Shell

The Asset Administration Shell (AAS) is a concept developed by the Plattform Industrie 4.0,
a network of companies, associations, trade unions, science and politics in Germany [37]. It is part of
the Reference Architectural Model Industry 4.0 (RAMI4.0) [38] and driven by the idea to manifest the
concept of DT in factories and industrial production plants. The standard is divided into three parts.
Part 1 [39] introduces the AAS meta-model and specifies how to serialize the content of an AAS, Part 2
defines how to interact with an AAS instance at runtime and Part 3 covers the infrastructure aspects
and how to discover and interconnect multiple AASs [40]. This matches exactly our identified basic
set of common functions: resource description, resource discovery, and resource access. At the time
of writing, only Part 1 is officially released. Part 2 is available to the authors in a draft version.

An AAS is, just like a DT, a digital representation of a resource. Resources are referred to by the
term ‘asset’, hence the name AAS. Figure 3 shows a class diagram of the AAS meta model. They main
element is the AssetAdministrationShell, representing an Asset and composed of multiple Submodels.
A Submodel is a container for SubmodelElements that can be properties, operations, collection,
files, etc. The intention behind grouping sets of elements together into submodels and not adding
those directly to an AAS is to allow standardization of submodels. By supporting multiple types of
resource identifiers, IRI, IRDI and custom types, the standard provides much flexibility when referring
to external resources e.g., for semantic annotations. The used type system is adapted from XSD
complemented by the RDF data type langString. AAS descriptions can be serialized using XML, JSON,
RDF, OPC UA data model and AutomationML. There is no explicit support for neither geo-spatial,
temporal nor historical data although the standard is generic enough so this could be implemented on
a higher level.

Exemplary SubmodelElement 
“Property”, other subelement 
subtypes include operations, 
collections, files, etc

AssetAdministrationShell
security: Security [0..1]
derivedFrom: AssetAdministrationShell* [0..1]

HasDataSpecification
Identifiable

AccessPermissionRule
targetSubjectAttributes: 
SubjectAttributes
permissionsPerObject: 
PermissionsPerObject[0..*]

Qualifiable
Referable

ConceptDictionary

Referable

Asset
kind: AssetKind
assetIdentificationmodel: 
Submodel* [0..1]
billofMaterial: Submodel* 
[0..1]

HasDataSpecification
Identifiable

AssetKind
Type
Instance

<<enumeration>>

View
containedElement: Referable* [0..*]

HasDataSpecification
HasSemantics

Referable ConceptDescription
isCaseOf: Reference [0..*]

HasDataSpecification
Identifiable

Submodel

HasDataSpecification
HasKind

HasSemantics
Identifiable
Qualifiable

Identifier
idType: IdentifierType
id: Id

IdentifierKind
Custom
IRDI
IRI

<<enumeration>>
Property

valueType: DataTypeDef
value: ValueDataType [0..1]
valueId: Reference [0..1]

DataElement

SubmodelElement

HasDataSpecification
HasKind

HasSemantics
Identifiable
Qualifiable

<<abstract>>

DataSpecificationIEC61360
preferredName: LangStringSet
shortName: LangStringSet [0..1]
unit: string [0..1]
unitId: Reference [0..1]
sourceOfDefinition: string [0..1]
symbol: string [0..1]
datatype: DataTypeIEC61360 [0..1]
definition: LangStringSet [0..1]
valueFormat: string [0..1]
valueList: ValueList [0..1]
value: ValueDataType [0..1]
valueId: Reference [0..1]
levelType: LevelType [0..*]

<<Template>>
DataSpecificationContext

External Concept Descriptions

Property Definition 
IEC 61360

<<external>>

Qualifier
type: QualifierType
valueType: DataTypeDef
value: ValueDataType [0..1]
valuedId: Reference [0..1]

Constraint
HasSemantics

Exemplary data 
specification 
template for 
properties, values 
and value lists

<<external global 
reference>>

in
cl

.

1 0..* 0..*

0..*

0..*

0..*

Figure 3. Class diagram depicting the metamodel of the AssetAdministrationShell concept developed
by Plattform Industrie 4.0 (based on Figure 11 from [39]).
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Resource discovery for this standard cannot be evaluated, as Part 3 is not yet released. However,
Part 2 and [40] indicate that there will be an AAS registry to register AAS instances with some level of
liability and a minimum set of metadata, e.g., endpoints. As an extension, AAS directories or even
AAS catalogs may be built with further meta data elements that can be queried to discover resources.

For resource access, the standard will define a set of technology-specific APIs that each
AAS instance has to implement. These APIs are derived from conceptual, technology-neutral
interface specifications, which are currently being defined in Part 2. For the design of Industrie 4.0
systems and applications, they will be aggregated into services [41] by system and software architects,
optionally extended with other, possibly proprietary interfaces. Therefore, the following information
may be subject to changes in the future. At the core of the interfaces are basic CRUD (create, read,
update, delete) operations for submodels and submodel elements. The interfaces will be defined for
multiple communication protocols: HTTP(S), OPC UA, and probably MQTT.

3.2. Digital Twin Definition Language

The Digital Twin Definition Language (DTDL) [42] is developed by Microsoft and used in different
products of their Azure services. Although not developed by an SDO, the DTDL is mentioned
here because being already used in many commercial services offered by Microsoft like IoT Hub,
IoT Central, and Azure Digital Twins. As the name suggests, the DTDL only covers the aspect of
resource description and does not address resource discovery and resource access. There are two
versions: Version 1 and Version 2. If not otherwise mentioned, we refer to Version 2 in this paper.

In the DTDL, resources are called interfaces and can contain a set of telemetry, properties,
commands, relationship, and components as shown in Figure 4. For identification of resources
and their elements DTDL uses a special form of URIs called Digital Twin Modeling Identifier (DTMI)
of the form <scheme>:<path>;<version>. Telemetry describes data emitted by a resource in the form of
a data stream. It corresponds to a combination of events and property subscriptions in our general
terms. Commands correspond to functions that can be invoked with optional input and output
parameters. Components are a similar concept as the submodels in the AAS providing a way to
structure functionality in re-usable blocks. DTDL uses a custom type schema called Digital Twin
Schema Definition Language, which is compatible with popular serialization formats, including JSON,
Avro, and Protobuf. It supports complex interlinking of resources through explicit modeling of
relationships including min/max cardinality. DTDL also supports semantic annotation for the type
and unit of properties and telemetries. Unfortunately, only predefined semantic annotations are
supported, i.e., extensibility is not given. JSON and RDF are supported in serialization formats.
DTDL does neither support geo-spatial, temporal, nor historical data. Although in Version 1 a schema
for geo-spatial data is defined (based on GeoJSON), it is not mentioned in Version 2 and therefore
remains unclear if it still applies.
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Property
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<<interface>>
Schema

Element

<<interface>>
ComplexSchema

EnumValue
name: String
enumValue: Integer|String

Element

MapValue
name: String

Element

ObjectField
name: String

Array

<<interface>>
PrimitiveSchema

Enum
valueSchema: Schema 
(Integer|String)

MapKey
name: String
schema: Schema (String)

Element
Map

Date

DateTime

Double

Duration

Boolean Float

Integer

Long

String

Time

Figure 4. Class diagram depicting the metamodel of the digital twin definition language.

3.3. Next Generation Service Interfaces-Linked Data API

The Next Generation Service Interfaces-Linked Data (NGSI-LD) API [43] is an IoT standard defined
by the ETSI Industry Specification Group (ISG) crosscutting Context Information Management (CIM).
I is based on the Open Mobile Alliance (OMA) NGSI 9 and 10 interfaces [44] and FIWARE NGSIv2 [45].
In this paper, we refer to version 1.2.2 released 02/2020 [43]. Although never mentioning the term DT,
the standard revolves around so-called ‘Entities represent[ing] physical or conceptual objects existing in
the real world’ [46], which is more or less the definition of DT. In contrast to other standards, resources
(entities) in NGSI-LD only comprise properties and relations to other resources. Services and events
are not supported, although events can be partially realized through subscribing to property changes,
which is supported.

As shown in Figure 5, NGSI-LD does not only provide a meta model defining general concepts
such as Entity, Relationship and Property, but also a cross-domain ontology defining essential temporal
and geo-spatial terms and concepts. Besides explicitly providing temporal and geo-spatial terms
and concepts, the standard further supports historical data by allowing querying the state of an
entity at any time in the past. Although, on a technical level, NGSI-LD could support resource
identification via IRIs, they decided to allow only URIs (URI ⊂ IRI) for the sake of being compliant
to the Linked Data principles [47]. Because of the focus on Semantic Web technologies and Linked
Data principles, NGSI-LD provides good support for semantic annotations. Serialization happens in
JSON-LD, which since version 1.1 is compatible to basic JSON as well as RDF.
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Figure 5. Class diagram depicting the metamodel hierarchy of the Next Generation Service
Interfaces-Linked Data (NGSI-LD) API as defined by European Telecommunications Standards Institute
(ETSI) (based on Figure 4.2.3-1 from [43]).

Resource discovery is realized by a component named ‘Context Registry’. NGSI-LD supports
different types of architectures: centralized, distributed, and federated. In the centralized architecture,
only one context registry exists whereas in the distributed and federated there can be multiple
(hierarchically organized) registries. Any registry supports resource discovery via HTTP and custom
query languages enabling geo-spatial, temporal and historical queries. Although there are already
well-established query languages for RDF such as SPARQL or GeoSPARQL, NGSI-LD decided to
define custom query languages from scratch. The reason for this is that NGSI-LD does not use the
RDF data format where data is represented as triples in the form of <subject, predicate, object> but
rather uses the concept of property graphs [48] where predicates of such triples can contain further
key-value data.

Resource access in NGSI-LD is fundamentally different from the other standards as there is
no direct communication between producer and consumer. Instead, the producer provides their
information to a broker and consumers can then access these data or subscribe to be notified upon
changes. These interactions are defined in a communication protocol-agnostic manner but currently
only a binding to HTTP is provided.

3.4. Open Data Protocol

The Open Data Protocol (OData) [49] allows the definition of standardized but data
model-agnostic RESTful APIs. It was initially developed by Microsoft in 2007 and Version 1.0, 2.0,
and 3.0 were released under the Microsoft Open Specification Promise. In 2014, Version 4.0 was
standardized by the Organization for the Advancement of Structured Information Standards (OASIS).
This is the version we are referring to in this paper. Although not developed with IoT or DT explicitly
in mind, we consider OData relevant for them as it is all about describing and accessing resources
(even though originally resources were not considered physical).

The primary concept of OData is called ‘service’. Amongst others, a service comprises entity
and entity set definitions as well as functions (must not have side effects, must have a result) and
actions (may have side effects, may have a result). OData services are described by an Entity Data
Model (EDM) expressed via the Common Schema Definition Language (CSDL), which in turn can
be serialized via XML and JSON. The CSDL, therefore, corresponds to what we refer to as resource
description in this article. The identification of resources happens primarily via URLs. Additionally,
resources can also be identified via their entity type and ID, which, together with the URL conventions,
implicitly defines the URL [50]. Resources can easily be interlinked and contain annotations, which can
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be used to add (external) semantic. OData do not support defining events on resources, nor subscribing
to property changes.

Similar to NGSI-LD, there is no direct communication between producer and consumer in OData
and all communication happens via a central server running the service. The standard defines a
HTTP-based API for communication with the service that includes a powerful custom URL-based
query language supporting geo-spatial filtering.

As all communication, resource access in OData happens via HTTP(S). URLs in OData are defined
by the URL conventions in combination with the data model defined by the EDM. An example URL is
shown in Figure 6. The service root part is given by the OData service and can be followed by any
entity set name in the resource path. After that, any path defined by the EDM is allowed, e.g., accessing
a single entity in an entity set by appending its ID in parenthesis as well as following relations or
addressing properties by adding a followed by the name. The query options part of a URL can be
used to specify the desired result more fine-grained.

http://host:port/path/ExampleService.svc/Building(1)/Rooms?$top=2&$orderby=Name

service root URL resource path query options

Figure 6. Components of URLs according to the Open Data Protocol specification.

3.5. SensorThings API

The SensorThings API (STA) standard [51] developed by the OGC SensorThings Standards Working
Group (SWG) [52] provides a framework for interconnecting IoT devices, data, and applications over
the Web. It is divided into multiple parts. Part 1 [53] was published in 2016 and covers the domain
of sensing. Part 2 [54] addresses tasking, i.e., sending commands to devices, and was published in 2019.
An updated version (v1.1) of Part 1 is finished and formal publication is underway.

Since 2001, the OGC is working on a suite of standards for managing sensors and actuators called
OGC Sensor Web Enablement (SWE). It is designed to enable the connecting sensor and actuator to
the Web and make them discoverable and query-able. As sensors and actuators are usually physical
devices, geo-location is a key element of OGS standards. The older SWE standards, e.g., Sensor
Observation Service (SOS) and Sensor Planning Service (SPS), use rather old technologies like XML
and SOAP but more importantly, they are also missing some basic features like publish/subscribe
(pub/sub) support or capabilities to update/delete data. STA addresses those issues and at the same
time redesigns the APIs to fit modern web-based principles like REST-based services and JSON as
payload format.

STA is strongly inspired by OData and re-uses some essential aspects, e.g., most parts of the
URL conventions and query language, but is not fully compliant to OData. Besides leaving out
some complexity of OData, STA also adds functionality where needed, e.g., pub/sub via MQTT
and additional geo-spatial query capabilities. As OData itself is model-agnostic, STA provides a
cross-domain model that can be further refined for any use case by providing an application model
according to the metamodel hierarchy shown in Figure 2. The STA data model is shown in Figure 7.
In STA, resources are called Things and are identified using URLs. The type system used is custom-built
but re-using multiple existing type definitions, e.g., from previous SWE standards. Services are
realized by modeling (virtual or physical) actuators with their capabilities and linking them to a thing.
Events are only supported in the form of a subscription of changes of properties via MQTT. Resource
interlinking and semantic annotation is hardy explicitly supported (only the class ObservedProperty
has a property definition for semantic annotation) but can potentially be added by custom extension.
Historical data is also only partially supported, as observations are stored over time, i.e., discovering
past observations are possible but reading the value of properties at any time in the past is not possible.

Resource discovery works almost identically as in OData although STA provides enhanced
geo-spatial query capabilities.
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Resource access works also very similar to OData as both do not support direct communication
between resource and consumer. In addition to OData, STA allows subscribing to the creation and
update of resource collections, resources and properties. Having no direct communication between a
consumer and a resource drastically improves usability in real-world applications, e.g., an actuator
can subscribe to newly created tasks and immediately start processing them.
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Figure 7. Class diagram depicting the data model of the SensorThings API Part 1 and 2 in version 1.0
(based on Figure 2 from [53] and Figure 1 from [54]).

3.6. Web of Things

The goal of the W3C Web of Things (WoT) Working Group is to counter the fragmentation of
the IoT by providing so-called building blocks that should complete and enhance already existing
standards. The most important of those building blocks is the WoT ThingDescription (WoT TD or only
TD) [55], which became an official W3C Recommendation in April 2020. The TD provides a meta-model
to describe existing resources in the IoT, e.g., a DT or a part of a DT, called Thing. As Figure 8 shows,
a Thing comprises a set of properties (which can be read-only or read/write), actions, i.e., methods that
can be invoked on the Thing, and events. The type system is based on JSON with additional support
for adding constraints, e.g., regular expression for strings, based on JSON Schema. TDs use URI-based
identifiers and can be serialized as either JSON-LD, JSON, or RDF. The standard does not contain any
kind of (cross-)domain model and therefore neither supports geo-spatial, temporal nor historical data.
One highlight of the TD is that by being grounded in Semantic Web technologies, is it easily possible
to add semantic information to every aspect of a TD.

A serialized TD can be published and a consumer will be able to access the described
resource. Resource discovery, i.e., how these TDs can be found, is still work in progress but
is expected to be published in Q1 2021 [56]. Not yet standardized, there are also at least two
existing implementations (https://github.com/thingweb/thingweb-directory) (https://github.com/
linksmart/thing-directory) providing sophisticated search capabilities, e.g., via DNS-Based Service
Discovery [57], CoRE Resource Directory [58], SPARQL queries or JSON-LD framing [59].

Unlike other standards, the TD does not define any API that has to be implemented by any resource.
Instead, it defines a meta-model to describe existing APIs including e.g., protocol, payload format, security,
in a machine-readable way. This is a unique and promising approach at closing the gap between existing
(and future) standards and enabling interoperability.

https://github.com/thingweb/thingweb-directory
https://github.com/linksmart/thing-directory
https://github.com/linksmart/thing-directory
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Figure 8. Class diagram depicting the metamodel of the Web of Things Thing Description (based on
Figure 1 from [55]).

4. Summary

Table 1 provides an overview on the classification of the different IoT and DT standards analyzed.
Although the standards were developed independently by different SDOs, they ended up with quite
similar approaches/solutions to some aspects.

To enable resource description, providing a meta-model is the way to go. NGSI-LD and STA also
provide some cross-domain model, primarily defining terms needed for support of geo-spatial and
temporal data. At first glance, the standards seem to use quite different types of resource identifiers.
Considering that IRI ⊃ URI ⊃ URL, URI ⊃ DTMI, and URL ∩ DTMI = ∅ it seems that URI might
be a good compromise for a unified identifier type in the future. An even more flexible, but also
more complex, approach is the one used in the AAS by defining meta-level constructs to describe any
kind of identifier. All standards supporting resource interlinking (or at least having it on the agenda)
reflects the fact that relations between resources are essential for IoT and DT. Besides, using different
terms to describe the kind of elements that make up a resource, there seems to be more-or-less general
consent that a resource should at least contain properties and services. Only half of the standards
support resources defining custom events, but almost all support at least notification upon property
changes. For serialization of resource descriptions, JSON is the common denominator between all
standards. Since version 1.1, JSON-LD [60] supports interpreting basic JSON as JSON-LD when
using HTTP and setting the header appropriately. Additionally, JSON-LD is compatible with RDF,
the cornerstone of the Semantic Web. For this reason, almost all standards make use of JSON-LD
to provide, on the one hand, easy-to-use JSON-based access and, on the other side, fine-grained
access with full Semantic Web support. Again, the AAS provides a more generic approach supporting
different kinds of serialization formats. This is partially because it also supports different protocols for
resource access and some protocols require a certain serialization format, e.g., OPC UA.

Resource discovery is something on the agenda of most of the SDOs and will be properly addressed
in the future. No standards currently supporting resource discovery allow direct communication between
the consumer and the resource, i.e., they already have a central repository-like component by design.
Furthermore, there is no consensus about which query language to use. Query languages are a complex
subject itself. In fact, AAS and WoT are currently still evaluating different query languages that might
be suited for them. Probably the main issue is the trade-off between the expressivity of a language
and the complexity to implement it. Additionally, query languages are also often tied to specific data
formats and/or protocols. SPARQL is a rather complex but powerful query language for RDF with
SQL-like syntax. As most standards already support RDF data, SPARQL is one of the most promising
candidates for a unified query language. Furthermore, there are already existing extensions for geo-spatial
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queries in SPARQL, e.g., GeoSPARQL. Another promising approach are URL-based query languages like
OData/STA and JSONPath. The query language of OData/STA has proven quite powerful in real-world
applications but is much simpler to implement than SPARQL. JSONPath is adapting the concept of XPath
from XML to JSON. It has been around for over ten years but has never been properly standardized by
an SDO. Recently, efforts have been made initiated by the IRTF Thing-to-Thing Research Group (T2TRG)
to pursue an official standardization and to push JSONPath as a query language in the IoT context [34,61].

Table 1. Comparison of the following internet of things and digital twin standards: AssetAdministrationShell
(AAS), Digital Twin Definition Language (DTDL) v2.0, Next Generation Service Interfaces—Linked
Data API (NGSI-LD API), Open Data Protocol (OData) v4.0, SensorThings API (STA) v1.0, and Web of
Things (WoT).

AAS DTDL NGSI-LD OData STA WoT
Resource Description
Resource Term Asset Interface Entity Entity Thing Thing
Model Type(s) Meta Meta Meta

Cross-Domain
Meta Cross-Domain Meta

Resource Identification IRI
IRDI
custom

DTMI URI URL
custom

URL
custom

URI

Type System (based on) XSD custom JSON
GeoJSON
JSON-LD

custom JSON
SWE-standards

JSON
JSON Schema

Resource Interlinking X X X X - a X
Semantic Annotation X O b X - O c X
Resource Elements

Properties X X X X X X
Services X X - O d O X
Events X X O e - O e X

Serialization Format JSON
RDF
XML
OPC UA
AutomationML

JSON
RDF
Avro
Protobuf

JSON
RDF

JSON
XML

JSON JSON
RDF

Supported Kind of Data
geo-spatial - - X X X -
temporal - - X X X -
historical - - X - O f -

Resource Discovery
Protocols - a - HTTP HTTP HTTP HTTP g

CoAP g

DNS-SD g

Querying supported? - a - X X X O g

Query Language
Query Language based on - a - custom custom OData SPARQL a,g

geo-spatial queries - - X X X -
historical queries - - X - O f -

Resource Access
API: Define vs. Describe define - define define define describe
Protocols HTTP

MQTT
OPC UA

- HTTP HTTP HTTP
MQTT

HTTP
MQTT
CoAP

Protocols extendible? - - X - - X
a extension under discussion; b only predefined definitions and only for telemetries, properties, and units; c only explicitly
for observed properties and units, possible for everything else via custom properties; d only on service-level; e only property
changes; f only for observations; g not part of standard, only in implementation(s); x y; Abbreviations: CoAP: Constrained
Application Protocol; DNS-SD: Domain Name System - Service Discovery; HTTP: Hypertext Transfer Protocol; IRDI:
International Registration Data Identifier; IRI: Internationalized Resource Identifier; JSON: JavaScript Object Notation;
JSON-LD: JavaScript Object Notation - Linked Data; MQTT: Message Queuing Telemetry Transport; OPC UA: Open Platform
Communications Unified Architecture; RDF: Resource Description Format; SPARQL: SPARQL and RDF Query Language;
SWE: Sensor Web Enablement; URI: Uniform Resource Identifier; URL: Uniform Resource Locator; XML: Extensible Markup
Language; XSD: XML Schema Definition.

Regarding resource access, the most prominent paradigm is to define a new API that each resource
has to implement. The only standard adapting to another paradigm is WoT. Their idea is that there
are already plenty of IoT devices and systems deployed and changing/updating their interfaces is
not an option. Therefore, the WoT approach is to provide a way to describe existing resources and
their APIs. Although WoT is the only standard following this approach, it seems like a valid claim
considering there are already trillions of IoT devices deployed, often without the possibility to update
them over-the-air. For resource access protocols, HTTP seems to be general consent. Typically, it is
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accompanied by MQTT adding pub/sub functionality that HTTP is missing. Not limiting itself to a
specific set of communication protocols seems like a good idea, as APIs should, in general, be protocol
agnostic and also because the past shows that almost every communication protocol evolves over time
and will eventually be replaced.

In general, it is to notice, that besides IoT and DT being broad domains with heterogeneous
applications and partially different requirements, there exists some shared common core functionality
of resource description, discovery and access. Different standards, developed by different SDOs,
having different backgrounds like, e.g., environmental measurements, industrial production,
appliances, or consumer electronics, came up with partially very similar standards, showing that
there might be a chance for even better convergence. Furthermore, there is a need to abstract from
the underlying technologies when mapping requirements on resource management and their DT
counterparts systematically to capabilities of underlying IoT infrastructures [62]. DT Engineering will
become a crucial methodology in future IoT environments.

5. Conclusions

The paper highlighted the relevance of IoT and DT and the importance of interoperability and
standardization for industry 4.0. The description and managing of resources were identified as
overlapping functionality between DT and IoT that is addressed by standards from both domains
that need consolidation. This paper introduced a classification scheme based on the categories
resource description, discovery, and access and presented relevant current standards from both
domains. The standards were evaluated using the classification scheme and the results were compared.
This analysis revealed commonalities and differences between the considered standards that can be
used to stimulate the consolidation of standards in the future. Commonalities can essentially be found
for basic aspects, e.g., that resources should be described by a set of properties, services, and events
and that JSON-LD should be used as a serialization format for resource descriptions. There further
seems to be an agreement that resource access through HTTP should be the default while additional
protocols can be supported. Differences are typically related to more complex aspects, such as if
geo-spatial, temporal, and historical data should be explicitly supported or which query language to
use for resource discovery.

Some standards, especially the ones focused on DTs, are divided into multiple parts, and can be
considered work in progress, as not all of those parts are published yet. The problem of competing
and overlapping standards in these domains and the need for consolidation has already been
acknowledged [35,63]. Cooperation between the involved SDOs is already happening but primarily on
a working group level in a rather informal manner, e.g., by inviting representatives of other SDOs to
present their work or persons that are active in multiple relevant working groups. This paper may be
used as a starting point to steer this cooperation to a more formalized and technical level and thereby
stimulate and advance the consolidation of standards in these domains.

In future work, the presented classification scheme can be extended and elaborated, e.g., with focus
on semantic interoperability. Furthermore, additional standards may be added or existing ones updated
as they evolve over time.
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AAS Asset Administration Shell
AI Artificial Intelligence
API Application Programming Interface
BDVA Big Data Value Association
CIM Context Information Management
CoAP Constrained Application Protocol
CoRE Constrained RESTful Environments
CRUD Create, Read, Update, Delete
CSDL Common Schema Definition Language
CT Cognitive Twin
DNS Domain Name System
DT Digital Twin
DTDL Digital Twin Definition Language
DTMI Digital Twin Model Identifier
EDM Entity Data Model
ETSI European Telecommunications Standards Institute
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
I4.0 Industry 4.0
IEC International Electrotechnical Commission
IETF Internet Engineering Task Force
IIC Industrial Internet Consortium
ISG Industry Specification Group
IoT Internet of Things
IoT-EPI IoT-European Platforms Initiative
IRDI International Registration Data Identifier
IRI Internationalized Resource Identifier
IRTF Internet Research Task Force
ISO International Organization fpr Standardization
ITU-T International Telecommunication Union Telecommunication Standardization Sector
JSON JavaScript Object Notation
LD Linked Data
M2M machine-to-machine
ML Machine Learning
MQTT Message Queuing Telemetry Transport
NASA National Aeronautics and Space Administration
NGSI Next Generation Service Interfaces
OASIS Organization for the Advancement of Structured Information Standards
OData Open Data Protocol
OGC Open Geospatial Consortium
OMA Open Mobile Alliance
OMG Object Management Group
OPC UA Open Platform Communications Unified Architecture
OWL Web Ontology Language
pub/sub publish/subscribe
RAMI4.0 Reference Architectural Model Industry 4.0
RDF Resource Description Format
RDFS RDF Schema
REST Representational State Transfer
SDO Standards Developing Organization
SOAP Simple Object Access protocol
SOS Sensor Observation Service
SPARQL SPARQL and RDF Query Language
SPS Sensor Planning Service
SSN Semantic Sensor Network (Ontology)
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STA SensorThings API
SWE Sensor Web Enablement
SWG Standards Working Group
T2TRG Thing-to-Thing Research Group
TD ThingDescription
UPnP Universal Plug and Play
URI Uniform Resource Identifier
URL Uniform Resource Locator
XML Extensible Markup Language
XSD XML Schema Definition
W3C World Wide Web Consortium
WoT Web of Things
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