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Featured Application: This article presents a photovoltaic (PV)-powered charging station for
electric vehicles with power management that integrates vehicle-to-grid (V2G). Based on a DC
microgrid integrating PV sources, the charging station is controlled by a searching peak and valley
algorithm. Following the description and the validation simulation, a PV-powered charging
station for electric vehicles represents a high potential for application because it can be easily
implemented as a project pilot in urban areas.

Abstract: The increase in the number of electric vehicles (EVs) has led to an increase in power demand
from the public grid; hence, a photovoltaic based charging station for an electric vehicle (EV) can
participate to solve some peak power problems. On the other hand, vehicle-to-grid technology is
designed and applied to provide ancillary services to the grid during the peak periods, considering the
duality of EV battery “load-source”. In this paper, a dynamic searching peak and valley algorithm,
based on energy management, is proposed for an EV charging station to mitigate the impact on the
public grid, while reducing the energy cost of the public grid. The proposed searching peak and
valley algorithm can determine the optimal charging/discharging start time of EV in consideration
of the initial state of charge, charging modes, arrival time, departure time, and the peak periods.
Simulation results demonstrate the proposed searching peak and valley algorithm’s effectiveness,
which can guarantee the balance of the public grid, whilst meanwhile satisfying the charging demand
of EV users, and most importantly, reduce the public grid energy cost.

Keywords: electric vehicle; charging station; energy management; searching peak and valley algorithm;
power management; microgrid; vehicle-to-grid

1. Introduction

Due to the advantages of no noise, low environmental pollution, high efficiency of energy use,
and simple structure, electric vehicles (EVs) have received widespread attention [1,2]. With the
development and popularization of EVs, large-scale EVs will be connected to the public grid for
charging in the future [3,4]. The EV distribution in time and space has great randomness and
uncertainty [5,6], thus, a large number of random and unmanaged EVs having access to the public grid
will inevitably have a serious impact on the public grid: load growth, increased difficulty in public
grid operation control, and a large number of power distribution network upgrades [7,8]. Therefore,
how to coordinately control the energy flow between EVs and the public grid is a key issue.

In order to reduce the peak loads, the paper [9] proposes a real-time dynamic pricing model
for EVs charging/discharging service and building energy management. In practice, many EVs are
traveling on the road for only 4–5% of the day, while they are parked for the rest of the time [10].
Research on bidirectional on-board chargers makes electric vehicle (EV) discharge possible [11].

Appl. Sci. 2020, 10, 6500; doi:10.3390/app10186500 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-7358-4671
https://orcid.org/0000-0002-1728-3700
http://dx.doi.org/10.3390/app10186500
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/18/6500?type=check_update&version=2


Appl. Sci. 2020, 10, 6500 2 of 21

EVs can discharge into the public grid during its “peak” periods and can be charged during its “valley”
periods to achieve the purpose of peak shaving and valley filling [12]. When EVs need an energy
supply, they are connected to the public grid as charging loads; when EVs are idle, i.e., EVs are seen
as distributed power sources, EV battery energy can be injected into the public grid. This is the
vehicle-to-grid (V2G) operation. Thus, V2G technology makes it possible for EVs to have a mobile
battery function [13]. Moreover, compared with common loads, EVs have greater flexibility and
dispatchability. When reasonable scheduling strategies for V2G technology are designed, and the
charging/discharging behavior of EVs is planned, EV charging costs will be reduced, most importantly,
the load curve of the public grid will be improved. The paper [14] proposes a time-based charging
group dispatching approach to schedule the charging of numerous EVs, which enables EVs to play
an important role in peak shaving and valley filling, meanwhile solving the stability problem of the
microgrid system brought by the penetration of renewable energy. EV batteries and related power
electronics can be used to mitigate photovoltaic (PV) sources’ impact and support the public grid with
appropriate control strategies. The paper [15] develops a controllable charge/discharge pattern to
optimize the limitation of EV battery capacity and the impacts of PV sources. Most importantly, EVs can
provide instant power, which is much faster than starting a standby power source. So, V2G technology
enables EVs to act as emergency power sources in the event of a power outage [16,17]. V2G can
bring economic benefits to EV users, offset part of the EV costs, promote communication between
the public grid and EVs, meanwhile, protect the environment, and solve the shortage of fossil energy.
V2G services are important for reducing environmental pollution, mainly referring to the emission of
greenhouse gases such as CO2 [18].

With the continuous development of renewable energy, such as PV sources, more and more
renewable energy is being integrated into the power system in large quantities. Considering the
intermittency and distribution of PV sources, microgrids are proposed to achieve small-scale renewable
energy penetration while reducing the public grid stress [19,20]. Surveys show that most EV users
can accept the intelligent EV charging station based on a microgrid [21,22]. The paper [23] proposes
the model for an EV charging station. However, the above microgrid models and simulations do not
consider V2G. Traditional V2G technology mainly refers to EVs directly connected to the public grid for
energy exchange. Generally, two types of control exist in systems: centralized control and decentralized
control [24]. The former has high construction costs, while the latter has the problem of difficult control.
Therefore, the V2G based on a direct current (DC) microgrid control mode is proposed, which makes
EVs connect to the public grid through a DC microgrid, moreover, it effectively integrates renewable
energy, whilst meanwhile saving the cost of buying electricity from the public grid. V2G based on the
microgrid is used for multi-objective optimization coordination between EVs and the public grid to
minimize grid load fluctuation, maximize renewable energy utilization, and maximize the benefits
for the EV users [25]. The paper [26] proposed a centralized model to co-optimize the transformer
loss-of-life with benefits for EV users on charging/discharging management. As an optimal energy
cost solution, cyber insurance was introduced to guarantee the best price for charging/discharging,
which is effective not only in dealing with cyber risks but also in maximizing revenue for EV users [10].
The paper [27] develops a model predictive control-based approach to address joint EV charging
scheduling and power control to minimize both EV charging cost and energy generation cost in meeting
both residence and EV power demands.

A DC microgrid with integrated V2G has also been examined in other papers [28,29]. The paper [28]
proposes an optimal day-ahead operation planning procedure that aims to minimize microgrid
operation daily costs, according to suitable load demand and source availability forecast without
involving MATLAB/SIMULINK modeling. The review paper [29] focuses on the charging system
components, architecture, operational modes, and control, including the interaction between the
PV sources, public grid, energy storage unit, and power electronics, however, it does not take into
account the management of multiple EVs. In addition, V2G was characterized as a comparatively
advantageous means of peak load shaving [10]. The paper [24] proposes an optimal logical control



Appl. Sci. 2020, 10, 6500 3 of 21

algorithm based on V2G to reduce the average charging cost of EVs, which is dedicated to the French
energy billing system within the peak/base hour’s contract. The algorithm can minimize the EV
charging cost and maximize energy selling by using daily energy price profiles, considering constraints
and disruptions: EV arrival/departure times, and the desired state of charge (socEV) for the next use.
However, this algorithm has not yet involved a PV-powered charging station and research in the
microgrid field.

In a V2G system, the EV charging station can obtain the optimal charging/discharging start time by
reading the EV’s arrival time, departure time, initial state of charge namely SOCEV_in, and the state of
charge limit at the time of departure, namely SOCEV_ f inal_lim. Based on the above, this paper proposes
an EV charging station management with integrated V2G, in which the optimal charging/discharging
start time for EVs can be achieved to perform the purpose of peak and valley filling through a dynamic
searching peak and valley algorithm (SPVA). Compared with the power limit of the public grid in the
“valley” period, the power limit of the public grid absorbed from the microgrid is larger, while the
power limit of the public grid released to the microgrid is smaller during the “peak” period. Therefore,
when EVs connect to discharge, the charging station will select a time point near the “peak” periods
for EVs; when EVs connect to charge, the charging station will choose a time point far away from the
“peak” periods, which can not only relieve the pressure on the public grid but also reduce unnecessary
charging costs.

In order to protect the stability of the public grid, the energy injected into the public grid needs to
be limited, namely the self-protection mechanism of the public grid. To better ensure the stability of
the public grid, the power limit of the power grid is set to different values according to the “peak”
periods and “valley” periods.

This paper studies the power management of a PV-powered charging station with integrated V2G
from two aspects of energy scheduling and real-time control. The main contributions of this work are:

(1) An EV charging station model combined with V2G based on a DC microgrid is proposed,
which consists of four parts: PV sources, a storage system, a public grid connection, and EVs.
This model makes use of EV’s “load-source” character to bring benefits to users while meeting
user needs.

(2) A suitable power management strategy for the EV charging station with integrated V2G is
proposed. In the strategy, the priority order for charging EVs is PV sources, the storage system,
the public grid. During the “peak” periods of the public grid, the DC microgrid discharges to
the public grid, and the discharge priority order is PV sources and then the EVs, considering the
discharge cost.

(3) The SPVA is proposed to calculate the optimal charging/discharging start time of EVs to achieve
the effect of peak shaving and valley filling, while meeting the charging requirements of
EVs, taking into account the EV arrival time, departure time, SOCEV_in, and SOCEV_ f inal_lim.
Most importantly, it reduces the cost of the public grid, which is beneficial to the public grid and
EV users.

(4) A reasonable electricity price mechanism is set which provides the possibility for SPVA. In order
to protect the stability of the public grid, the charge/discharge power limits are different in
accordance with the “peak” periods and “valley” periods of the public grid.

The presented DC microgrid structure with integrated V2G is described in Section 2. Power flow
management: grid-to-vehicle (G2V) and V2G algorithm is introduced in Section 3. Simulation results
and analyses are presented in Section 4. Conclusions and further works are given in Section 5.

2. DC Microgrid Structure with Integrated V2G

The microgrid, which plays an important role in the production of a smart grid, which can produce
the integrated operation of multiple power sources and loads, can coordinately control the public grid
and can meet users’ requirements for power quality, power reliability, and safety.
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A microgrid based on a DC common bus is considered due to its superior current control because
there are no negative and zero sequence currents [30]. The design of an EV charging station including
V2G is based on DC microgrid. As shown in Figure 1, the DC microgrid is composed of four parts:
PV sources, a storage system, a public grid connection, and EVs.
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Figure 1. DC microgrid with integrated vehicle-to-grid (V2G). PV: photovoltaic sources, EV: electric vehicles.

DC microgrid power flow is shown in Figure 2: “PV” represents PV sources, “PG” represents the
public grid, “S” represents the storage system, “EV” represents EVs. The real-time power priority is
shown by the arrow. For example, PV sources firstly support EVs, secondly charge storage, then thirdly
inject into the public grid.
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Figure 2. DC microgrid power flow. PG: public grid, S: storage system.

According to the “peak” periods and “valley” periods of the public grid, the energy flow of the DC
microgrid can be divided into two cases. During the “valley” periods of the public grid, the electricity
produced by PV sources is first used to charge EVs. Storage is the second-ranked energy source for
charging EVs; in addition, it is also used to absorb excess energy produced by PV sources. The public
grid is the third-ranked energy source for charging EVs, and it can buy excessive energy from PV
sources. During the “peak” periods of the public grid, the order of charging EVs is the same as the
“valley” periods of the public grid, and the difference is that V2G is achievable during this period.
If the energy produced by PV sources is still surplus after being supplied to the EVs, to adjust the
peak–valley difference of the public grid, PV sources can inject excess energy into the public grid.
Besides, the energy released by EVs can be injected into the public grid. Considering the energy cost,
the order of injecting energy into the public grid is PV sources firstly, then EVs batteries.

During the period of V2G, in order to ensure the power balance of the public grid, the power
injected into the public grid, namely pinject_G, should be limited. It may be assumed that the maximum
power injected into the public grid cannot exceed the estimated PV power under standard test
conditions (STC), namely PPV_STC, which is shown in Equation (1), where pPV is PV power that can
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be injected into the public grid, pEV_total is the power that EVs can output. cPV is the coefficient of PV
power, and cEV is the coefficient of the energy that EVs can release.

pinject_G= PPV_STC= cPVpPV+ cEVpEV_total , with cPV, cEV ∈ [0, 1] (1)

3. Power Flow Management: G2V and V2G Algorithm

According to users’ wishes and the actual situation of EVs batteries, EVs can be divided into
two types, only accept to charge, i.e., grid-to-vehicle (G2V), and only accept to discharge, i.e., V2G.
The stored energy of the EV battery is E, the maximum energy that EVs can discharge is Edischarge,
and the maximum energy that EVs can be charged is Echarge, which can be calculated by Equations (2)
and (3), respectively.{

Echarge = E · (SOCEV_ f inal_lim − SOCEV_in) if SOCEV_in < SOCEV_ f inal_lim
0 if SOCEV_in = SOCEV_ f inal_lim

(2)

{
Edischarge = E · (SOCEV_in − SOCEV_ f inal_lim) if SOCEV_in > SOCEV_ f inal_lim
0 if SOCEV_in = SOCEV_ f inal_lim

(3)

This section presents two algorithms for power flow management of G2V and V2G, which are
demonstrated within an EV charging station to simultaneously support multiple EVs.

3.1. Immediate Charge/Discharge Algorithm (ICDA)

ICDA means that after the EV is successfully connected to the charger, as long as the EV operating
power is within the EV power limit, the EV can be charged/discharged immediately, without considering
other restrictions. The flow chart of ICDA is shown in Figure 3.
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Figure 3. Flow chart of immediate charge/discharge algorithm (ICDA).

When a new EV arrives, if there is a free charger, the charger is directly allocated to the EV.
By comparing the EV operating power with the power limit of the EV charging station, it is determined
whether the EV enters the waiting state or can be directly charged/discharge until socEV_ f inal_lim is
reached, and finally, the EV leaves the EV charging station at the time set by the user. The EV power
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limit is calculated according to the state of the EV charging station. If there are no free chargers when
the EV arrives, the EV can choose to leave directly or wait until a free charger appears.

3.2. Dynamic Searching Peak and Valley Algorithm

The method to estimate the optimal start operating time is shown in Figure 4. As shown in
Figure 4, the EV estimator is the related function of EV information and grid power information.
The purpose of SPVA is to estimate the optimal start operating time of EVs by searching the “peak”
periods and “valley” periods of the public grid.

The flow chart of SPVA is shown in Figure 5. When a new EV arrives, the EV estimator calculates
the optimal operating time of EVs. After the EV is connected to the charger, the EV remains to wait
until the optimal operation time appears.
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4. Simulation Results and Analyses

In the DC microgrid system, PV sources include 400 PV panels (40 in parallel and 10 in series),
and its power under standard conditions is 100 kW [31]. The storage voltage and capacity are 300 V and
300 Ah, respectively. The public grid is a low-voltage three-phase network with a frequency of 50 Hz.
The charging method of lithium-ion batteries in EVs is constant current/constant voltage, while the
discharge is constant power. The battery energy of EV is about 24 kWh, namely JEV_ERF. There are
three charging modes in the charging station: fast mode whose maximal charging power is 83 kW,
namely PFAST_MAX; average mode whose maximal charging power is 27 kW, namely PAVER_MAX;
slow mode whose maximal charging power is 7 kW, namely PSLOW_MAX.

4.1. Simulation Conditions and Assumptions

In order to ensure the validity of the simulation, it is assumed that all EVs have the same battery
characteristics. We can configure different battery characteristics, such as capacity, according to the EV
model [32], which will be mentioned in future research. Figure 6 shows the real solar irradiance and
PV cell temperature from 8:00 to 22:00 on 28 May 2019, at Compiegne, France.
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In order to highlight the “peak” periods of the public grid, the energy tariff of the public grid
from 8:00 to 22:00 is designed as shown in Figure 7. It exists two grid “peak” periods 11:00–13:00 and
18:00–20:00, and the tariff is fixed during the two time-periods. The closer the time point to these two
time-periods, the higher the tariff to absorb power from the public grid, which encourages EVs to
discharge close to the “peak” periods of the public grid and charge away from the “peak” periods of
the public grid.
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The simulation parameters of the system are detailed in Table 1 [31], where PDIS is the constant
discharge power, which was chosen 89.6 kW, IS_MAX is the storage current limitation, SOCMIN and
SOCMAX are the soc lower limit and the soc upper limit, respectively, CERF is the capacity of the storage,
and vC_REF is the rated voltage of DC bus.
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Table 1. Simulation parameters of the system.

Parameter Value Parameter Value

PFAST_MAX 83 kW IS_MAX 115 A
PAVER_MAX 27 kW SOCMIN 20%
PSLOW_MAX 7 kW SOCMAX 80%

PDIS 89.6 kW CERF 300 Ah
Number o f chargers 5 vC_REF 400 V

JEV_ERF 24 kWh PPV_STC 100 kW

The power limits of the point of common coupling of the EV charging station with the public
grid are shown in Table 2. Since loads of the public grid are different according to different periods,
the power limits are set accordingly to ensure the stability of the public grid. There are two types of
power limits: grid injection power limit and grid supply power limit. In the “peak” periods of the
public grid, the injection power limit is 100 kW, the supply power limit is −10 kW, and in other periods,
the injection power limit is 50 kW, and the supply power limit is −50 kW.

Table 2. Power limits of the public grid.

Period 8:00–11:00 11:00–13:00 13:00–18:00 18:00–20:00 20:00–22:00

Grid injection power limit (kW) 50 100 50 100 50
Grid supply power limit (kW) −50 −10 −50 −10 −50

The simulation parameters of EVs are shown in Table 3. The three charging modes for EVs, i.e.,
fast mode, average mode, and slow mode, are considered. When a new EV arrives, the user can
choose waiting or departure if there is no free charger. “CH” represents “charge”, “DCH” represents
“discharge”, “F” represents “fast mode”, ”A” represents ”average mode”, ”S” represents “slow mode”,
”W” represents ”waiting”, and ”D” represents ”departure”. OrdinalEV represents the ordinal number
of EVs.

Table 3. Simulation parameters of EVs. CH: charge, DCH: discharge, F: fast mode, A: average mode,
S: slow mode, W: waiting, D: departure.

OrdinalEV 1st 2nd 3rd 4th 5th 6th 7th 8th

Tarrive(100s) 17 20 87 198 213 331 336 343
Tdepart(100s) 42 75 204 311 222 388 405 400
SOCEV_in(%) 66 87 47 21 49 37 12 44

SOCEV_ f inal_lim 11 97 1 78 82 87 9 40
Type DCH CH(F) DCH CH(S) CH(A) CH(A) DCH DCH

Choice W W W D D W D W

OrdinalEV 9th 10th 11th 12th 13th 14th 15th 16th

Tarrive(100s) 356 375 382 398 428 462 471 484
Tdepart(100s) 449 464 423 460 431 601 495 499
SOCEV_in(%) 48 38 41 40 26 37 17 66

SOCEV_ f inal_lim 26 81 44 92 19 27 65 80
Type DCH CH(S) CH(A) CH(A) DCH DCH CH(S) CH(F)

Choice W W D D W W W D

In this case, in order to reflect the effectiveness of the algorithm, the EV number is randomly given
16, and “Type” and ”Choice” are randomly generated by an algorithm. Tarrive represents the time
each EV arrives at the charging station. Tdepart represents the time each EV leaves the charging station.
SOCEV_in represents the initial socEV, SOCEV_ f inal_lim represents the limit value of socEV when the EV
departures that set by users. According to the willingness of users, EVs come to charging stations for
two purposes: being charged and discharging.
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4.2. Simulation Results under ICDA

The first simulation case works under ICDA and the EV can directly be charged/discharge
within the EV power limit. As shown in Figure 8, the steady DC bus voltage is 400 V within the
simulation period, which proves that the power management strategy works well to balance the
powers under ICDA.
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Figure 9 shows the storage soc and distribution coefficient k under ICDA. The soc of storage is
limited between 20% and 80% to extend storage life [33]. k = 1 means only the storage is working
and k = 0 means only the public grid is working. 0 < k < 1 means the storage and the public grid are
working simultaneously.
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Storage current evolution under ICDA is shown in Figure 10. The storage current is between
−115 A and 115 A to reduce the damage of the storage. The value −115 A is the maximum discharge
current of batteries, while the value 115 A is the maximum current for batteries to be charged.
The simulation result shows that the current is successfully limited.
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The power flow of the DC microgrid under ICDA is shown in Figure 11. PV source can switch
freely between PV-constrained production control and PV - maximum power point tracking control [34].
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The power pEVs < 0 means that EVs show a total tendency to discharge, pEVs > 0 means that EVs
show a total tendency to be charged. During the “peak” periods of the public grid: 11:00–13:00 and
18:00–20:00, the injection power limit is 100 kW, and the supply power limit is −10 kW to prevent the
public grid from overloading. During the “valley” periods of the public grid, the injection power limit
is 50 kW, and the supply power limit is −50 W. Setting different power limits according to the “peak”
periods and “valley” periods of the public grid is beneficial to improve the stability of the public grid,
which also respects the power flow given in Figure 2.
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Figure 12 shows the parking periods of EVs. The parking periods of EVs are different according
to the willingness of users. From EV_charger_1 to EV_charger_5 represent EVs connected to chargers
one to five, respectively, e.g., EV_charger_1 represents the ordinal number and parking periods of the
EVs connected to the charger one.
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Figure 12. Parking periods of EVs at each charger.

The power evolutions of EVs under ICDA are shown in Figure 13. If the power is positive, it means
that the EV is being charged; if it is negative, it means that the EV discharges. Figure 14 shows the
socEV evolutions under ICDA.
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Figure 14. State of charge socEV evolutions under ICDA.

The operating time of EVs connected to charger 1 is shown in Figure 15. tEV_charger_1 represents
parking periods of EVs connected to charger 1. tEV_operate represents the start operating time of EVs.
tEV_arrive represents the arrival time of EVs. tEV_depart represents the departure time of EVs.
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Figure 15. Operating time of EVs connected to charger 1 under ICDA.

As shown in Figure 15, EVs connected to the charger 1 in chronological order are the 1st, 3rd, 5th, 6th,
12th, 14th. After an EV arrives at the charging station, when the power is met, the charging/discharging
operation begins. EVs that immediately start charging/discharging operations after arriving at the
charging station are the 5th, 6th, 12th, while the 3rd EV enters the waiting state after arriving at the
charging station, then discharges when power is met. Moreover, the 1st and 14th did not discharge
until they left because of unsatisfactory power.

The operating time of EVs connected to charger 2 is shown in Figure 16. As shown in Figure 16,
EVs connected to the charger 2 in chronological order are 2nd, 4th, 7th, 13th, 15th. EVs that immediately
start charging/discharging operations after arriving at the charging station are the 2nd, the 4th,
the 13th, the 15th EVs, while the 7th EV enters the waiting state after arriving at the charging station,
then discharges when power is met.
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The operating time of EVs connected to charger 3 is shown in Figure 17. As shown in Figure 17,
EVs connected to the charger 3 in chronological order are the 8th and the 16th EVs. The 8th EV enters
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the waiting state after arriving at the charging station, then discharges when power is met, while the
16th EV did not charge until it left because of unsatisfactory power.Appl. Sci. 2020, 10, 6500 12 of 21 
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The operating time of EVs connected to charger 4 is shown in Figure 18. As shown in Figure 18,
the EV connected to charger 4 is the 9th EV. The 9th EV enters the waiting state after arriving at the
charging station, then discharges when the power is met.
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The operating time of EVs connected to charger 5 is shown in Figure 19. The EV connected to the
charger 5 is the 10th EV, which immediately starts charging/discharging operations after arriving at the
charging station.
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Figure 20. Recording of EV charging under ICDA.

The ratings arrive_N1, park_N2, finish_N3, not_finish_N4, and depart_N5 are, respectively,
the number of EVs arrived at the charging station, the number of EVs parking at the charging station,
the number of EVs that have completed operations, the number that has not completed operations,
and the number of EVs leaving directly. The rating arrive_N1 is expressed by Equation (4):

arrive_N1 = park_N2 + f inish_N3 + not_ f inish_N4 + depart_N5 (4)

4.3. Simulation Results under SPVA

The second simulation works under SPVA and the EV cannot be charged/discharged until
the estimated optimal start operating time of EVs is given by searching the “peak” periods and
“valley” periods of the public grid; tEV_best_st represents the optimal start operating time, and tEV_latest_st
represents the estimated latest operating time.

As shown in Figure 21, the steady DC bus voltage is 400 V within the simulation period,
which proves that the power management strategy works well to balance the powers under SPVA.
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Figure 22 shows the storage soc and distribution coefficient k under SPVA. The evolutions of the
state of charge soc and distribution coefficient k show the feasibility of SPVA and respect the power
flow given in Figure 2.
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Storage current evolution under SPVA is shown in Figure 23. As already mentioned, the absolute
value of the storage current is limited to 115 A, and the simulation result shows that the current is
successfully limited.
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Figure 23. Storage current evolution under SPVA.

The power flow of DC microgrid under SPVA is shown in Figure 24. The grid power is within
the imposed power limits during the simulation period, respecting the power flow given in Figure 2.
Setting different power limits of the public grid in the “valley” period and the “peak” period provides
a guarantee for the stability of the public grid.
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Figure 25 shows the parking periods of EVs. In order to compare the two algorithms, all the
information about EVs in case one and case two are the same.
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The theoretical optimal start operating time and latest start operating time of EVs are shown
in Table 4, which can be calculated by the EV charging station based on Tarrive, Tdepart, SOCEV_in,
SOCEV_ f inal_lim, charging modes, and discharge power.
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Table 4. Theoretical optimal start operating time and latest start operating time of EVs.

OrdinalEV 1st 2nd 3rd 4th 5th 6th 7th 8th

tEV_best_st(100s) 36.69 20.00 108.00 233.15 213.00 331.00 360.01 360.01
tEV_latest_st(100s) 36.70 72.83 199.56 237.28 213.00 371.33 404.71 399.61

OrdinalEV 9th 10th 11th 12th 13th 14th 15th 16th

tEV_best_st(100s) 360.01 408.56 382.00 442.40 428.00 462.00 471.00 497.42
tEV_latest_st(100s) 446.88 408.56 421.99 442.41 430.33 600.04 471.00 497.43

The power evolutions under SPVA are shown in Figure 26. Compared with Figure 13, the 4th and
the10th EVs are farther away from the “peak” periods of the public grid, while the 12th EV directly
avoids the “peak” periods of the public grid, thereby preventing the public grid from overloading,
meanwhile reducing charging costs, which proves the effectiveness and superiority of SPVA. Figure 27
shows the socEV evolutions under SPVA.
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The operating time of EVs connected to charger 1 is shown in Figure 28. Compared with Figure 15,
due to SPVA, the 12th EV did not choose to be charged immediately after arrival but waited for the
optimal start operating time, which saved the user’s charging costs and avoided adding peak loads to
the public grid.
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The operating time of EVs connected to charger 2 is shown in Figure 29. Compared with Figure 16,
due to SPVA, the 4th EV did not choose to be charged immediately after arrival but waited for the
optimal start operating time.
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The operating time of EVs connected to charger 3 is shown in Figure 30, and the 8th and the 16th
EVs have the same operation results as Figure 17.
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Figure 30. Operating time of EVs connected to charger 3 under SPVA.

The operating time of EVs connected to charger 4 is shown in Figure 31. The operating time of EVs
connected to charger 5 is shown in Figure 32 and the 9th EV has the same operation result as Figure 18.
Compared with Figure 19, due to SPVA, the 10th EV did not choose to be charged immediately after
arrival but waited for the optimal start operating time.
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4.4. Comparison and Analysis of the Two Simulation Cases

The simulation results of ICDA and SPVA are shown in Table 5, where Dcp represents the
completion degree of EVs, calculated by Equation (5):

Dcp =

∣∣∣∣∣∣ socEV_ f inal − SOCEV_in

SOCEV_EV_infinal_lim
||

∣∣∣∣∣∣ (5)

Table 5. Simulation results of ICDA and SPVA.

OrdinalEV 1st 2nd 3rd 4th 5th 6th 7th 8th

Type (1) DCH CH DCH CH CH CH DCH DCH
Dcp(1) 0% 100% 100% 100% 81.65% 100% 100% 100%

Type (2) DCH CH DCH CH CH CH DCH DCH
Dcp(2) 0% 100% 100% 100% 81.65% 100% 100% 100%

OrdinalEV 9th 10th 11th 12th 13th 14th 15th 16th

Type (1) DCH CH CH CH DCH DCH CH CH
Dcp(1) 100% 100% 0% 100% 100% 0% 38.33% 0%

Type (2) DCH CH CH CH DCH DCH CH CH
Dcp(2) 100% 100% 0% 100% 100% 0% 38.33% 0%

The parameter socEV_ f inal represents the socEV when EVs leave the charging station. Dcp(1) and
Dcp(2) are the completion degree of EVs under ICDA and SPVA, respectively.

Under the two algorithms, the completion degree of EVs is the same under ICDA and SPVA,
as shown in Tables 5 and 6.
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Table 6. Results comparison of ICDA and SPVA.

Algorithms ICDA SPVA

EV number 16 16
Number o f f inishing CH or DCH 11 11

Energy cost o f public grid power (c€) −280.4216 −294.1568

There are 11 EVs with a completion degree of 100%, while the 1st, 11th, 14th, and 16th EV have a
completion degree of 0%, among which, the 11th EV directly left after arriving at the charging station
because the charging station could not meet the user need. The 5th EV has a completion degree of
81.65%, and the 15th EV with a completion degree of 38.33%.

The comparison between the two algorithms highlights that the energy cost of public grid under
ICDA is higher than that under SPVA. Thus, the power management strategy can run well under
SPVA, ease the pressure on the public grid at the “peak” periods, and reduce the energy cost of the
public grid.

5. Conclusions

This paper presents a power management strategy with integrated V2G to reduce the peak
pressure of the public grid while meeting the needs of users. In the strategy, PV sources, battery storage,
and the public grid are used to charge EVs in sequence; at the “peak” periods of the public grid,
PV sources and EVs are discharged to the public grid one after another to play the role of V2G.
The SPVA is proposed to judge the optimal charging/discharging start time of EVs, through its arrival
time, departure time, SOCEV_in, and SOCEV_ f inal_lim, to achieve peak shaving and valley filling while
reducing the cost of the public grid. In addition, in order to better maintain the stability of the
public grid, the “peak” periods and “valley” periods of the public grid correspond to different power
limits. Simulation results show that the charging station, based on a DC microgrid, can operate well
considering the EV charging/discharging behaviors; the proposed SPVA is highly effective in reducing
the cost of the public grid by calculating the optimal start operating time of EVs, while ensuring the
stability of the public grid. The limitation of SPVA is that it does not consider the operating cost of the
EV charging station. In the future, we can take into account the power prediction and load prediction
through global optimization to minimize the operating cost of the EV charging station.

With the popularity of EVs, there will be certain rules for EVs arriving at the charging station
every day, thus, the EV prediction system will be designed which can predict the current situation of
EVs based on the EV data of the past few days. In addition, PV data can be predicted based on the
weather forecast. With these two predictions, EV charging stations will have predictions about the
usage of the public grid and batteries, which can better control the system and improve the stability of
the system, laying a solid foundation for the production of fully intelligent EV charging stations in
the future.
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Abbreviations

DC Direct Current
EV Electric Vehicle
EVs Electric Vehicles
ICDA Immediate Charge/Discharge Algorithm
G2V Grid-to-Vehicle
PV Photovoltaic
SPVA Searching Peak and Valley Algorithm
STC Standard Test Conditions
V2G Vehicle-to-Grid
Nomenclature
cPV The coefficient of PV power
cEV The coefficient of the energy that EVs can release
cPV The coefficient of PV power
CERF The capacity of the storage (Ah)
Dcp The completion degree of EVs
Dcp(1) The completion degree of EVs under ICDA
Dcp(2) The completion degree of EVs under SPVA
Edischarge The maximum energy that EVs can discharge (kW)
Echgrge The maximum energy that EVs can be charged (kW)
IS_MAX The storage current limitation (A)
JEV_ERF The battery energy of EV (kWh)
k Distribution coefficient
OrdinalEV The ordinal number of EVs
pinject_G The power injected into the public grid (kW)
PPV_STC The estimated PV power under standard test conditions (kW)
pPV PV power (kW)
pEVs Total power of EVs (kW)
pEV_total The power that EVs can output (kW)
PFAST_MAX Maximal charging power demanded by fast mode (kW)
PAVER_MAX Maximal charging power demanded by average mode (kW)
PSLOW_MAX Maximal charging power demanded by slow mode (kW)
PDIS The constant discharge power (kW)
socEV State of charge
SOCMIN The soc lower limit
SOCMAX The soc upper limit
SOCEV_in Initial state of charge
SOCEV_ f inal_lim The state of charge limit at the time of departure
tEV_charger_1 Parking periods of EVs connected to charger 1(s)
tEV_operate The start operating time of EVs (s)
tEV_arrive The arrival time of EVs (s)
tEV_depart The departure time of EVs (s)
tEV_best_st The optimal start operating time (s)
tEV_latest_st The estimated latest operating time (s)
Tarrive The time each EV arrives at the charging station (s)
Tdepart The time each EV leaves the charging station (s)
vC_REF The rated voltage of DC bus (V)
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