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Abstract: Predicting pillar stability in underground mines is a critical problem because the instability
of the pillar can cause large-scale collapse hazards. To predict the pillar stability for underground coal
and stone mines, two new models (random tree and C4.5 decision tree algorithms) are proposed in
this paper. Pillar stability depends on the parameters: width of the pillar (W), height of the pillar (H),
W/H ratio, uniaxial compressive strength of the rock (σucs), and pillar stress (σp). These parameters
are taken as input variables, while underground mines pillar stability as output. Various performance
indices, i.e., accuracy, precision, recall, F-measure, Matthews correlation coefficient (MCC) were used
to evaluate the performance of the models. The performance evaluation of the established models
showed that both models were able to predict pillar stability with reasonable accuracy. Results of
the random tree and C4.5 decision tree were also compared with available models of support vector
machine (SVM) and fishery discriminant analysis (FDA). The results show that the proposed random
tree provides a reliable and feasible method of evaluating the pillar stability for underground mines.
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1. Introduction

Pillars are essential structural units of most underground mines, used to ensure safety
and economically maximize the extraction of the ore body. Coates [1] defined the pillars as “the in-situ
rock between two or more underground openings”. Their primary purpose is to provide safe access to
the working area and to support the weight of overburden material between adjacent underground
openings temporarily or permanently, and drilling room of ceilings during excavation and mining [2–7].
Instable pillars may significantly increase workers’ safety hazards and sudden roof collapse [8].
Additionally, with the increase in mining depth, the failure of the pillar becomes more frequent
and critical owing to increased ground stresses. The determination of pillar stability is, therefore,
important for attaining efficient and safe mining.

Several researchers have developed numerous methods for understanding and predicting pillar
failures in thee past several decades. Pillar stability is generally evaluated using a factor of safety
(FoS), which is the ratio between the pillar strength and the load imposed on the pillar structure.
Theoretically, when the FoS ratio is greater than 1, the pillar is considered stable. However, studies
suggest that pillar with FoS above this threshold may still fail due to non-regular geometries, uncertain
material properties, and differences in mining operations [7,9].
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In literature, numerical simulation methods are mostly used to predict the pillar stability that allows
for consideration of material properties and complex boundary conditions. Shnorhokian et al. [10]
used FLAC3D with mining sequence scenarios to predict pillar stability. Griffiths et al. [11] integrated
the random field theory coupled with an elasto-plastic finite element method (FEM) for predicting
pillar stability. In their study, Jaiswal et al. [12] used three-dimensional FEM analysis to investigate
the stress-strain behavior of coal pillars. Li et al. [13] developed the Finite-Discrete Element Method
(FDEM) to examine the failure modes and mechanical behavior of pillars. Mortazavi et al. [14] used
the fast Lagrangian analysis of continua (FLAC) to investigate the pillar failure mechanism of pillar
and non-linear rock behavior. Owing to the anisotropic nature of rock mass and complicated non-linear
characteristics, it is difficult to accurately evaluate the model inputs and constitutive equations in
the numerical simulation techniques [11].

With the increasing availability of pillar stability cases, machine learning (ML) algorithms
have been successfully applied for pillar stability assessment with greater accuracy compared to
most available methods. Tawadrous and Katsabanis [15] in their study, utilized artificial neural
networks (ANN) to explore the stability characteristics of the surface crown pillars. Ding et al. [16]
examine the applicability of the stochastic gradient boosting (SGB) model for predicting pillar
stability. Study results demonstrated that the proposed model outperformed random forest (RF),
multilayer neural perceptron (MPNN) and support vector machine (SVM). Wattimena [9] presented
the multinomial logistic regression (MLR) for predicting the pillar’s stability. Ghasemi et al. [17] used
SVM and J48 algorithms to develop pillar stability plots. Both models acquired acceptable prediction
performance. Zhou et al. [18] used SVM and fishery discriminant analysis (FDA) for determining
the pillar stability of underground mines. Zhou et al. [19] compared six different supervised machine
learning algorithms for pillar stability analysis. Study results showed that SVM and RF performed much
better. While most of the implemented ML techniques have been implemented successfully to predict
the stability of the pillar, they also have some shortcomings. For example, the optimum model structure
(such as the number of hidden layers and model inputs, training algorithms, and transfer functions)
the a priori requirements when adopting the ANN approach. Typically, this is achieved through a trial
and error process. Another main drawback of the ANN model is the black-box nature of the prediction
process. Further, the relationship between input and output variables is given in terms of a matrix of
weight and biases that cannot be accessed and easily undertood by the user [20]. Recently, decision
trees i.e., random trees (RT) and C4.5 decision trees (DT) have been effectively applied in various
domains and applications such as in the assessment of soil liquefaction potential [21,22], landslide
susceptibility [23], classification of power quality problem [24] and surface settlement prediction owing
to tunneling [25], however, their application in rock mechanics and mining are limited.

The main purpose of this study is to predict the pillar stability of underground coal and stone
mines. To achieve this objective, RT and C4.5 DT algorithms are implemented to develop two models
for pillar stability prediction. A critical review of existing literature suggests that despite the successful
implementation of these techniques in various domains, their implementation in the analysis of
rock mechanic mining is scarcely explored. Unlike other soft computing methods, RT and C4.5 DT
algorithms can provide an easy-to-use, comprehensible tree structure.

The remainder of this paper is organized as follows: Section 2 briefly provides the description of
datasets used for pillars stability for underground mines. Section 3 presents the methodology used
to predict pillars stability for underground mine; an overview of the random tree and C4.5 decision
tree techniques. Section 4 presents the development of the prediction models. Detailed results of
the proposed models are discussed by performance criteria and comparisons with similar previous
models are presented in Section 5, followed by conclusions and recommendations in Section 6.

2. Description of Database

This study utilized the illar stability database previously collected by Jaiswal and Shrivastva [26],
Mohan et al. [27] and Esterhuizen et al. [28] to determine and compare the performance of the proposed
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random tree and C4.5 decision tree models. The data recently referenced by Zhou et al. [18] comprised
of a total of 46 pillar cases from USA underground stone mines and Indian coal mines which are
shown in Table 1. The database contains pillar width (W), pillar height (H), the pillar W/H ratio,
pillar stress (σp), and uniaxial compressive strength of the rock (σucs). The range of values associated
with each input variable is shown in Table 2. It has been widely accepted, among the researchers such
as Goodman [29], that the input factors selected by Zhou et al. [18] is a complete and suitable set to
predict the pillar stability. The same factors have been widely used as significant factors by other
researchers (e.g., Liang et al. [30]). Table 2 provides the descriptive statistics of each input parameter.
The distribution of pillar case histories database is stable (14 cases) and failed (32 cases) according
to the failure process and the instability mechanism of pillars. Figure 1 shows three common failure
mechanisms for a naturally fractured pillar [31]. These include: (a) failure with the lateral kinematic
release of pre-formed blocks because of rising vertical load and lack of confinement, (b) failure resulting
from the buildup of inclined shear fractures that transect the pillar, and is prevailing in pillar with
relatively low W/H ratio, and (c) failure along with transgressive fractures where the fracture inclination
angle with the principal loading axis of the pillar exceeds the angle of friction. In all of these mechanisms,
a pillar’s mechanical response is directly related to the geological structures of the ground and those
effects are most notable for the slender pillars. Although, wider pillars are more likely to collapse
by a combination of brittle and shearing processes. Geological discontinuities in rock strata are of
fundamental importance for analyzing the strength, permeability, and deformability. Characterization
of the discontinuity in geometry (i.e., spatial connectivity, persistence length, and aperture, etc.)
is the first step towards better understanding of rock masses overall behavior [32]. It is generally agreed
that discontinuities in rock profile significanrly affect their strength properties. Due to misjudgment of
the effect of discontinuities on rock strength, several examples may be quoted from the relevant rock
failure literature. Jessu and Spearing [33] reported that discontinuities have a substantial influence
with an increase in pillar inclination even at larger W/H ratios. Shang et al. [34] attempted to address
the problems of the tensile strength of incipient rock discontinuities and quantified this parameter
based on laboratory test results. These indicators are considered the main parameters for quantitatively
discovering the activities in the context of the pillar, but data collection is the main challenge faced for
their applicability. Hence, the five parameters are considered in the current study.

Table 1. Summary of pillar stability data Reprinted with permission from Ref. [18]. Copyright© 2011
The Nonferrous Metals Society of China, Elsevier Ltd.

S. No. Mine Country W (m) H (m) W/H σucs (MPa) σp (MPa) Pillar Stability

1 Nega Jamehari (Amritnagar) India 3.6 4.5 0.8 45 5.01 Failed
2 * Nega Jamehari (Amritnagar) India 3.6 6 0.6 45 4.68 Failed
3 Begonia (Begonia) India 3.9 3 1.3 26 5.8 Failed
4 Bushar (Amlai) India 4.5 5.4 0.83 25 3.61 Failed
5 Sendra Bansjora (X) India 4.65 8.1 0.57 24 2.77 Failed
6 W. Chirimiri (Main) India 5.4 3.75 1.44 45 8.12 Failed
7 Johilla top (Birsingpur) India 7.5 3.6 2.08 38 10.45 Failed
8 Lower Kajora (Pure Kajora) India 5.4 3.6 1.5 33 6.02 Failed

9 * Lower Kajora (Pure Kajora India 4.95 3.6 1.38 33 7.43 Failed
10 Jambad bottom (Shankarpur) India 4.5 4.8 0.94 47 4.2 Failed
11 Begunia (Ramnagar) India 2.85 1.8 1.58 26 7.76 Failed
12 Begunia (Ramnagar) India 3 1.8 1.67 26 6.17 Failed
13 Kankanee (XIII) India 19.8 6.6 3 27 5.88 Failed
14 Kankanee (XIV) India 18.6 8.4 2.2 27 5.83 Failed
15 Ross (Bellampalli) India 5.4 3 1.8 48 4.01 Stable
16 Nega (Nimcha) India 9.9 6 1.7 50 3.09 Stable
17 Salarjung (Morganpit) India 8.1 3 2.7 46 14.08 Stable
18 Ramnagar (Ramnagar) India 9.9 2.7 3.7 28 5.2 Stable

19 * Lower Kajora (Lachhipur) India 7.2 5.1 1.4 33 2.25 Stable
20 N. Salanpur (X), India 9 5.1 1.8 21 2.08 Stable

21 * Jambad top (Bankola) India 10.1 4.8 2.1 35 3.09 Stable
22 Jambad top (Bankola)) India 6.3 3 2.1 35 5.2 Stable
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Table 1. Cont.

S. No. Mine Country W (m) H (m) W/H σucs (MPa) σp (MPa) Pillar Stability

23 G-I (Suraka cchar) India 16 3.5 4.6 29 4.14 Stable
24 Lower Kajora (Lachhipur) India 18.3 5.1 3.6 33 1.4 Stable
25 E. Angarapatra (XII) India 6 2.1 2.9 19 3 Stable
26 Kathara (Kargali Incline) India 9.3 3.6 2.6 40 2.34 Stable
27 Jamadoba 6 and 7 Pits (XVI) India 5.8 2 2.9 29 7.59 Stable
28 Singharan (Topsi) India 7 1.8 3.9 41 5.15 Stable
29 Stone mines USA 10.7 18.3 0.58 215 9 Failed
30 Stone mines USA 10.7 18.3 0.58 215 9.4 Failed
31 Stone mines USA 10.7 18.3 0.58 215 10.3 Failed
32 Stone mines USA 15.2 27.4 0.56 153 12.6 Failed

33 * Stone mines USA 10.7 18.3 0.58 215 12.8 Failed
34 Stone mines USA 12.2 27.4 0.44 150 17.2 Failed
35 Stone mines USA 8.50 15.80 0.54 150 17.2 Failed
36 Stone mines USA 12.2 27.4 0.44 150 17.3 Failed
37 Stone mines USA 7.9 9.8 0.81 160 19 Failed
38 Stone mines USA 12.8 7.3 1.73 160 17.4 Failed
39 Stone mines USA 12.5 15.2 0.82 160 17.8 Failed
40 Stone mines USA 6.1 12.2 0.49 160 19 Failed

41 * Stone mines USA 6.7 12.2 0.54 160 20 Failed
42 Stone mines USA 3.7 8.5 0.43 215 24.1 Failed
43 Stone mines USA 8.2 9.1 0.9 160 25 Failed
44 Stone mines USA 5.5 7.3 0.75 160 27 Failed
45 Stone mines USA 12.2 15.8 0.77 165 8.4 Failed
46 Stone mines USA 12.2 15.8 0.77 165 7.6 Failed

Note: The cases with a ‘*’ sign represent the testing dataset.

Table 2. Descriptive statistics of the pillar stability data.

Statistical Parameters W (m) H (m) W/H σucs (MPa) σp (MPa)

Minimum 2.85 1.8 0.43 19 1.4
Maximum 19.8 27.4 4.6 215 27

Mean 8.68 8.70 1.52 88.74 9.51
Standard deviation 4.28 7.17 1.07 71.20 6.83
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random tree and C4.5 DT are the most frequently used algorithms for classification [24]. They 
represent decision trees that use strategies to divide and conquer in form of induction learning. The 

Figure 1. Schematic for typical failure mechanism of a naturally fractured pillar (after Nordlund et al. [31]):
(a) disintegration of rock blocks; (b) formation of inclined shear fractures transecting the pillar;
and (c) transgressive fractures.

For implementing the random tree and C4.5 DT in this research study, a total of 40 datasets were
considered for the training dataset, and the other six datasets were considered as the testing datasets.
The testing and training datasets are the same as used by Zhou et al. [18].

3. Methodology

There are several data mining and machine learning (ML) algorithms available, among which random
tree and C4.5 DT are the most frequently used algorithms for classification [24]. They represent decision
trees that use strategies to divide and conquer in form of induction learning. The tree representation in
these models helps to classify patterns in datasets, which are organized hierarchically in a collection of
inter-connected nodes. The internal nodes evaluate each input attribute/feature in relation to a decision
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constant, thereby deciding what will be the next descending node. The nodes that are considered to be
leaves are aimed to identify the instances that reach them as per the corresponding label [35].

3.1. Random Tree

Random trees were initially proposed by Leo Breiman and Adele Cutler. The algorithm can
address both regression and classification tasks [36,37]. It is a decision tree, developed through a
stochastic cycle. It makes use of a bagging concept to create a random dataset to construct a decision
tree. Using the best split of all attributes, every node is split in the standard tree. In a random tree
model, each node is split using the best at that node from the sub-set of randomly selected attributes.
It also provides an option to estimate the class probabilities. A typical random tree structure is shown
in Figure 2.
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3.2. C4.5 Decision Tree

Commercial version 4.5 (C4.5), was proposed by Quinlan [38], is a widely known machine
learning algorithm that is primarily used to develop decision trees. The method uses an entropy-based
measure as the selection criteria that yield a good classification accuracy in minimal time. It is is an
extension of the ID3 algorithm that also operates the divide-and-conquer policy [38]. The method’s
main improvements include the pruning methodology and excellent processing of numeric attributes,
missing values and noisy data. The C4.5 algorithm usually consists of two processes; preparation
of thee decision tree, and making the rules (structure and design). Then measuring the entropy,
and calculating the highest attribute for information gain.

The entropy formula is shown below, where S is entropy, and p in the output is a class proportion.

Entropy(S) =
∑n

i=1 − pi × log2 pi (1)

In addition, the attribute with the highest gain value is used as the root attribute. Gain (S, A) is
presented in Equation (2) where, S is a case set; A is a case attribute; |Si| is a number of cases to i and |S|

is number of cases in the set.

Gain (S, A) = Entropy(S)
∑n

i=1
|Si|

|S|
× Entropy(S) (2)

C4.5 algorithm develops a DT using the recursive-splitting and top-down and technique. The tree
structure of C4.5 consists of a root node, internal nodes, and leaf-nodes. The root node encompasses all
the input data. An internal node usually has two or more branches and is accompanied by a decision
function. While the leaf node denotes the output of given input parameters. J48 is an open-source
Java implementation of the C4.5 DT algorithm on the WEKA data- mining platform. The simple tree
structure of C4.5 DT is as shown in Figure 3. Table 3 outlines the key differences between the two data
mining algorithms adopted for the current study.
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Table 3. Differences between a random tree and a C4.5 decision tree.

Properties Random Tree (RT) C4.5 Decision Tree (DT)

Attributes available at each decision node Random subset All
Attributes selected at each decision node Best among a random subset Highest information gain among all

Trees count One One
Samples of data used for the training All All

Classification final result Based on the leaf node reached Based on the leaf node reached

4. Development of Prediction Models

In this paper, the C4.5 decision tree and random tree algorithms were used to develop models
for predicting underground mine pillar stability. The input variables were the width of the pillar
(W), height of the pillar (H), W/H ratio, the pillar stress (σp), and uniaxial compressive strength of
the rock (σucs). Pillar stability (PS) (dependent variable) was the sole output variable. The train-and-test
approach, which is one of the most widely used techniques for establishing the predictive performance
of ML algorithms for a given database, was used to develop the models. In this research study,
the dataset used by Zhou et al. [18] was used as the training and testing datase for the proposed models.
The working procedure for pillar stability prediction using the proposed models is shown in Figure 4.
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To develop the proposed models, C4.5 DT and random tree algorithms are implemented based on
training data on the Waikato Environment for Knowledge Analysis (WEKA) tool. The training dataset
in ARFF form (attribute relation file format) was loaded in WEKA to train the adopted models which
are subsequently tested by using a testing dataset based on the given training dataset. The optimal
value of the C4.5 DT model parameters, including the confidence factor and the minimum number of
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instances per leaf, were calculated by the trial-and-error method to achieve the highest classification
accuracy. The C4.5 DT algorithm’s optimal value for confidence factor was 0.25 and that of the minimum
instances per leaf was found to be 2. Figures 5 and 6 represent the random tree and C4.5 DT models
based on the training dataset. As shown in the figure, the size of the random tree is 11 including a root
node, 4 internal nodes, and 6 leaves, while the size of the C4.5 DT was 5 including a root-node, 1 internal
node, and 3 leaves. The leaf node shows the stable and the failed class of underground mines. The value
in the parentheses with each leaf node denotes the number of cases at that leaf. It is evident that for
leaves, few instances are misclassified, which are clearly specified after a slash (see Figures 5 and 6).
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pillar stability.

The performance of the trained pillar stability models was estimated using a number of statistical
classification evaluation criteria such as counts of true-positive (TP), true-negative (TN), false-positive
(FP), and false-negative (FN). These counts together form the confusion matrix shown in Table 4.

Table 4. Confusion matrix for the binary class problem.

Predicted Class

Failed Stable

Actual class
Failed TP FN
Stable FP TN
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Consider that the failure of the underground mine pillar is actually positive then TP and TN
represent the number of failed and stable instances that were predicted correctly. FN and FP occur when
the outputs are incorrectly predicted as negative and positive, respectively. From the confusion matrix
outcomes, the following classification evaluation metrics were used for comparing the prediction
performance of the models [39–41]:

ACC =
TN + TP

TN + FP + FN + TP
(3)

Precision =
TN

FN + TN
or

TP
TP + FP

(4)

Recall =
TN

TN + FP
or

TP
TP + FN

(5)

F−measure =
1

Precision
+

1
Recall

(6)

MCC =
TN × TP− FP× FN√

(FN + TP)(FP + TN)(FP + TP)(FN + TN)
(7)

Accuracy (ACC) is the sum of TP and TN that shows the percentage of correctly classified instances
among all of the data. This metric assesses the overall prediction effectiveness of the model. ACC may
be deceptive, owing to the imbalanced dataset since it may produce a high value when the failed
pillar samples in the majority class are favorably predicted. Therefore, in this study, other evaluation
metrics including precision, recall, F-measure, and MCC were used to further assess the model’s
performance. Precision is referred to as positive predicted value; recall is referred to as the true positive
rate; F-measure represents a broad index that measures the performance of both recall and precision
that ranged from 0 (worst value) to 1 (best value). MCC [41] represents the extent of correlation
between observed and predicted classes of failed and stable cases. It is one of the standard metrics used
by statisticians that takes values from −1 to 1. An MCC value of “−1” shows complete disagreement
(strong negative association), “1” indicate the complete agreement (strong positive association), and “0”
represent that the prediction was not related with the ground truth (very weak or no correlation
between dependent and independent variable).

5. Results and Discussion

Several performance measures based on a confusion matrix were made using training and testing
datasets for underground mines in order to quantify the performance measures of the proposed
models. The performance results of the random tree and C4.5 DT were obtained and compared with
FDA and SVM models available in the literature based on the same training and testing datasets.
The confusion matrix of each model was then determined, which is shown in Table 5. Table 5 also
shows the pillar stability prediction results from a couple of previous studies.

Table 5. Confusion matrices results for training and testing datasets.

Dataset

Model

RT C4.5 DT FDA [18] SVM [18]

True
Predicted

Failed Stable Failed Stable Failed Stable Failed Stable

Training Failed 28 0 27 1 28 0 28 0
Stable 0 12 0 12 2 10 0 12

Testing Failed 4 0 4 0 4 0 4 0
Stable 0 2 1 1 1 1 0 2
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The values along the main diagonal show the number of correctly predicted cases. It may be
noted from the results of Table 5 that most of the cases were accurately classified using the random tree
and C4.5 DT. Based on Table 6, the overall accuracy, recall, precision, F-measure were calculated using
Equations (3)–(7), which are given in Table 6. All models have good performance in training and testing
the pillar stability of underground mines datasets, according to the result obtained. Furthermore,
the overall accuracy, recall, precision, F-measure and MCC for stable and failed classes of the random
tree and SVM models on training and testing datasets were found at par. Furthermore, a major
drawback of SVM is the black-box nature of the model and the fact that correlation between input
and output variables of the system are given in terms of a matrix of weight and biases which make it very
challenging for users to access and understand the prediction process [19]. Decision tree algorithms
i.e., random tree and C4.5, are quite transparent, and model and internal parameters need not be
configured either. The SVM model is a black-box model that can show the input data and the results of
the subsequent classification. However, because of its own characteristics, the black-box model cannot
demonstrate the internal data mining mechanism, so the useful information relating to pillar stability
is difficult to obtain for system operators [35,42]. Random tree and C4.5 DT are white-box models that
are more intuitive and interpretable than ones with the black-box model i.e., the SVM model. Due to
tree-like structures, the proposed models can not only obtain accurate classification results, but can also
show the internal mechanism for classification results. Although, C4.5 DT and FDA possessed the same
accuracy, MCC, precision, recall and F-measure for failed and stable pillars on the testing dataset,
the training performances were different. Comparing their values of MCC, recall, precision, F-measure
for failed and stable pillars, the C4.5 DT performed better than FDA in the training dataset. Therefore,
based on their training and testing performances and bearing in mind the black-box nature of the SVM
model, the random tree model is relatively better SVM and RBF models available in literature due to
their easier application and of a clear graphical outcome. Although the proposed method produces
desirable results for predictions, certain shortcomings should be discussed in the future.

Table 6. Comparison of results of the developed random tree and C4.5 decision tree with available
fishery discriminant analysis (FDA) and support vector machine (SVM) models.

Model Dataset ACC (%) MCC
Failed Stable

Precision Recall F-Measure Precision Recall F-Measure

RT
Training 100 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Testing 100 1.000 1.000 1.000 1.000 1.000 1.000 1.000

C4.5 DT
Training 97.500 0.943 1.000 0.964 0.982 0.923 1.000 0.960
Testing 83.333 0.632 0.800 1.000 0.889 1.000 0.500 0.667

FDA
[18]

Training 95.000 0.882 0.933 1.000 0.966 1.000 0.833 0.909
Testing 83.333 0.632 0.800 1.000 0.889 1.000 0.500 0.667

SVM
[18]

Training 100 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Testing 100 1.000 1.000 1.000 1.000 1.000 1.000 1.000

The dataset is relatively unbalanced and small. Generally, if the dataset is limited it will affect
model generalization and reliability. While random tree and C4.5 algorithms perform well with limited
data sets, the performance of predictions on a larger dataset could be better. However, the developed
models can always be updated to yield better results, as new data becomes available. Moreover,
the dataset is unbalanced, owing to the fact that there are more failed cases than stable cases. Therefore,
the establishment of a larger and more balanced pillar stability database is important. Other variables
could also affect the prediction results. Numerous factors influence the stability of the pillar, such as
external environments and the inherent characteristics of the pillar. While the five factors used in
the current study, to some extent, may characterize the fundamental conditions for pillar stability, few
other factors like underground water, joints, and blasting disturbance may also influence pillar stability.
Analyzing the influence of these factors on the results of predictions is important.
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6. Conclusions and Recommendations for Future Work

In this paper, a random tree and C4.5 DT models were applied to predict underground mines’
pillar stability. The models were trained and tested using the pillar stability database of underground
mines collected from the USA and India. The developed models predict the pillar stability using
the most important input variables such as pillar width (W), pillar height (H), pillar W/H ratio, uniaxial
compressive strength, and average pillar stress. The main findings of this study are as follows:

1. Unlike most soft computing techniques, the developed models are very simple to use and do
not require exhaustive training. The proposed models present an explicit relationship between
explanatory (input) and target (output) variables. Study results reveal that relationships obtained
are compatible with engineering judgments and intuitions.

2. The classification accuracy of the random tree and C4.5 DT is 100% and 95.65%, respectively
during the training and testing phases, which indicates that both models are efficient and reliable
for practical applications.

3. Compared to the SVM model, the developed random tree model shows at par results
and the random tree model application is easier due to a simple graphical outcome,
while the information gained by the SVM algorithm during the training phase is implicitly processed
that make it very difficult to explain well the overall structure of the network. So, it may be argued
that the SVM model has little insight into the fundamental mechanism of the current problem.

4. The comparison of the developed models’ performances showed that the random tree model
achieved more reliable predictions than the C4.5 DT model.

5. It is evident that the proposed models are open to further development in the future and that
the acquisition of more data will improve the capacity for prediction.

For future research, it is recommended to work with a larger and more balanced pillar stability
database to further evaluate the reliability of these models for the prediction of pillar stability.
These models can also be refined by considering additional parameters pertaining to ground type
and structural geology.
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