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Abstract: In this work, an incremental clustering approach to obtain compact hierarchical models of
an environment is developed and evaluated. This process is performed using an omnidirectional
vision sensor as the only source of information. The method is structured in two loop closure
levels. First, the Node Level Loop Closure process selects the candidate nodes with which the new
image can close the loop. Second, the Image Level Loop Closure process detects the most similar
image and the node with which the current image closed the loop. The algorithm is based on
an incremental clustering framework and leads to a topological model where the images of each
zone tend to be clustered in different nodes. In addition, the method evaluates when two nodes
are similar and they can be merged in a unique node or when a group of connected images are
different enough to the others and they should constitute a new node. To perform the process,
omnidirectional images are described with global appearance techniques in order to obtain robust
descriptors. The use of such technique in mapping and localization algorithms is less extended
than local features description, so this work also evaluates the efficiency in clustering and mapping
techniques. The proposed framework is tested with three different public datasets, captured by
an omnidirectional vision system mounted on a robot while it traversed three different buildings.
This framework is able to build the model incrementally, while the robot explores an unknown
environment. Some relevant parameters of the algorithm adapt their value as the robot captures new
visual information to fully exploit the features’ space, and the model is updated and/or modified
as a consequence. The experimental section shows the robustness and efficiency of the method,
comparing it with a batch spectral clustering algorithm.

Keywords: mapping; incremental clustering; mobile robots; global-appearance descriptors;
omnidirectional images; computer vision

1. Introduction

Presently, the use of visual information in mobile robotics is widely expanded. Independent of
the final task it was designed for, an autonomous mobile robot must solve continuously two crucial
problems: it has to build a model of the environment (mapping) and to estimate the position of the
robot within this model (localization). Both critical problems should be solved with an acceptable
accuracy and computational cost.

Mapping was facilitated by the continuous progress of mobile robots’ abilities in perception
and computation, which enable them to improve their operability in large and heterogeneous zones
without the necessity of introducing changes into the environment structure. Two main frameworks
were used in order to carry out the mapping task: the metric maps [1]; and the topological maps [2].
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Regarding the topological maps, some related works propose arranging the information hierarchically,
into several layers with different levels of granularity [3,4].

Hierarchical maps constitute a convenient framework to arrange the information. Notwithstanding,
visual mapping remains an important research field in robotics due to the problems that the algorithms
may have in heterogeneous and challenging environments. An important alternative to build hierarchical
maps is by using some clustering techniques, such as spectral clustering [5]. Some researchers used spectral
clustering methods along with visual information to build topological maps [6–9]. Spectral clustering
proved to be useful because it can cluster robustly highly dimensional information compared to other
well-known methods [10,11].

Even though spectral clustering was used to build maps in mobile robotics with good results [11],
the problems of using the standard spectral method in incremental mapping are threefold. Firstly,
most spectral clustering methods require the number of final nodes to be indicated previously. Secondly,
computing similarities among entities can be hard in terms of computational cost. This is especially
noticeable when the data set becomes large. Finally, as a consequence of the previous problem, it is not
possible to perform spectral clustering on-line when the dataset is constantly growing (i.e., The robot is
continuously moving and capturing new images which must be included in the model).

Presently, incremental mapping is a key ability because it would enable mobile robots to gradually
build or update a model as they explore the initially unknown environment and capture new
information. For this purpose, incremental clustering methods can be useful [12].

In this work, we propose a framework based on incremental clustering with the objective of
creating a topological hierarchical map incrementally, using only visual information. Each group of
similar images will be included in a cluster with a representative descriptor associated to it. To avoid
the necessity of setting the number of clusters beforehand, our proposal defines a set of adaptive
thresholds. Depending on them, the algorithm behaves more or less restrictively and therefore creates
a higher or lower number of clusters as it progresses. In addition, the method proposed in this paper
is able to perform on-line, updating the model every time the robot captures a new image.

When using computer vision to build a model of the environment, it is important to verify the
performance of the method when the visual appearance of the environment changes substantially.
In real-operating conditions the robot has to cope with different events: different lighting conditions
during the operation, scenes partially occluded by people or other mobile robots and changes in the
scene due, for example to the furniture position. For that reason experiments were carried out in a real
environment during working hours.

The remainder of the paper is structured as follows. In the following section, related works
on visual information and incremental and hierarchical mapping are outlined. In Section 3, global
appearance descriptors are defined. The mapping method is presented in Section 4. In Section 5,
relevant information about the datasets, tools and acquisition equipment used in the experiments
is presented. In Section 6, the results of the experiments are shown. Finally, conclusions and future
research lines are presented in Section 7. An extra section named ‘Supplementary Materials’ includes
some tables of symbols, which summarize all the variables and parameters used to describe the
proposed method.

2. Related Works

2.1. Image Description

As explained in the introduction, mobile robots have to solve the mapping and localization problems
during their autonomous navigation. To deal with these tasks the robot has to capture relevant information
about its movement and the environment, and a variety of tools can be found in the literature to obtain
that information and to process it. Encoders permit calculating the odometry of the robot and they
are one of the main sensors used in mobile robotics, but the information obtained from the encoders
should not be used as an absolute measure because of the error they accumulate. Taking that into
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account, in real implementations, odometry data are complemented by other sensors. For instance, it can
be complemented with sonars [13] or lasers [14]. In addition, mobile robots can work also with GPS,
which presents a good performance in outdoor applications but it has little ability to offer signal in indoor
or narrow outdoor zones. Complementing these sensors, visual sensors constitute currently the principal
area to investigate new approaches to robot navigation. Cameras offer a lot of information from the
environment with a relatively low cost, they can be used in outdoor and indoor environments and they
permit solving other high-level tasks such as human identification, face recognition [15] and obstacles
detection [16]. There are some examples of sensors combinations: For example Choi et al. [17] present
a system that combines sonar with visual information to perform SLAM (Simultaneous Localization
And Mapping) tasks. More information about these systems can be found in [18], where a review of
these techniques is done. The visual information can be captured with a variety of devices; from a single
camera [19], stereo cameras [20] or omnidirectional cameras [21,22].

Solving navigation tasks using only visual information is a challenging problem. Images contain
much information and relevant data should be extracted from them in order to ease the mapping
and localization tasks. The use of local descriptors was the classical approach for obtaining relevant
information from the images and the method consists of extracting outstanding landmarks or regions
and describing them using algorithms such as SIFT (Scale-Invariant Feature Transform) [23], SURF
(Speeded-Up Robust Features) [24] or BRIEF (Binary Robust Independent Elementary Features) [25].
This is a mature alternative and many researchers make use of it in mapping and localization.
For example, Angeli et al. [26] proposed using these descriptors to perform topological localization.
Valgren and Lilienthal [7] did that work in outdoor areas. Murillo et al. [27] present a comparative study
for the localization task using local-appearance descriptors in indoor environments. A comparative
evaluation of this kind of local appearance methods was made by Gil et al. [28]. They evaluated the
repeatability, the invariance against small changes and distinctiveness of the descriptors under different
perceptual conditions. They proved that the behaviour of local appearance descriptors can deteriorate
when unexpected conditions appear. Taking it into account that the information not only changes
while the robot is moving and the perspective varies, but also due to changing lighting conditions,
occlusions by furniture or people and noise during the acquisition, it is necessary to calculate more
robust and invariant descriptors. In this sense, global-appearance descriptors constitute a powerful
alternative, which consists of describing each image as a whole, without detecting any landmark or
local feature. This method creates a more intuitive representation of the environment, simplifies the
navigation process and permits building topological maps of the environment. Since each image
is described with a unique vector, localization can be carried out with simple algorithms, based on
the pairwise comparison of vectors. Additionally, calculating global-appearance descriptors from
omnidirectional images constitutes a powerful approach due to the wide field of view of such images,
leading to robust and rotationally invariant descriptors, such as those presented in the next paragraph.

Diverse global appearance methods were studied in recent years. One of these methods is
based on the Histogram of Oriented Gradients (HOG). Using this descriptor, diverse problems were
solved. For instance Dalal and Triggs [29] explain how to use it to detect pedestrians in a real
situation, Paya et al. [30,31] use HOG to solve the localization problems and to create hierarchical
maps. Gist is another description method, proposed by Oliva and Torralba in [32] and it was used
in works such as [33] where it is described as a biologically inspired vision localization system and
the descriptor is tested in different outdoor environments. It was also used by Zhou et al. [34]
to solve the localization through matching the robot’s current view with the best key-frame in
the database. In addition, some other works define other global appearance description methods
such as the Discrete Fourier Transform [35], the alternative used by Paya et al. [30] to perform map
creation tasks, or Radon Transform [36], used in [37] to find the nearest neighbour in a dense map
previously created. Román et al. [38] develop a comparison among these global appearance descriptors
performing a mobile robot localization in a real environment under changing lighting conditions [38].
In addition, more recently, deep learning techniques are studied with the idea of creating new global



Appl. Sci. 2020, 10, 6480 4 of 28

appearance descriptors. For example, Xu et al. [39] and Leyva et al. [40] proposed holistic descriptors
based on a CNN (Convolutional Neural Network) to obtain the most probable robot position and
Cebollada et al. [11] carry out a comparison of analytic global-appearance descriptors and CNN-based
descriptors in localization tasks.

2.2. Mapping and Clustering Methods

Another important research topic in mobile robotics is map creation. In the related literature,
two main different frameworks were proposed in order to obtain maps in mobile robotics. First,
metric maps, which represent the environment with geometric accuracy. Second, topological maps,
which describe the environment as a graph containing a set of locations with the related links among
them, with no metric information. Regarding these options, some authors proposed storing information
in the map hierarchically, into a set of layers that contain information from the environment with
different levels of granularity. Such arrangement permits solving localization efficiently, in two phases.
First, a rough, but fast localization is carried out using the high-level layers; second, a fine localization
is performed in a smaller area using the low-level layers. Therefore hierarchical maps constitute
an efficient alternative to build maps with autonomous mobile robots [41–43].

Focusing on hierarchical mapping, Balaska et al. [44] develop an unsupervised semantic mapping
and propose a localization method. SURF points are used to carry out the clustering and the map
is corrected by means of odometry. Korrapati and Mezouar [45] perform clustering and propose
image loop closure with the objective of building hierarchical maps. They work with omnidirectional
images and local features. Kostavelis et al. [4] propose an augmented navigation graph, an extreme
hierarchical map that consist of 4 layers. On the lowest layer, metric information is stored, so it is
easier for the robot to navigate and perform localization tasks. As the level of the layer increases so
the abstraction level does, in such a way that the highest-level layer is a graph with a conceptual
representation of detected places. Clusters on that layer are connected with an indicator that represents
probability of success to make a transition to the adjacent cluster.

Additionally, loop closure detection constitutes a crucial step when designing a method to create
accurate maps, as shown in [46]. In this work, when a new closure is detected, the new image is stored
as a combination of the previous images instead of as a new image. In [47], loop closure detection
is performed in two phases using the information of a partially built map: In the first phase, global
descriptors are used to find loop closure candidates. In the second one, the loop is closed by choosing
the best result among the candidates, using local features. As far as loop closure detection is concerned,
the difference of our proposal consists of performing this detection taking advantage of the hierarchical
structure of the map.

Finally, as stated in the introduction, we propose building hierarchical maps incrementally.
Some authors addressed previously this problem by means of incremental clustering. In [12], a method
to build topological maps incrementally is proposed, using the SIFT descriptor, and the number of
clusters continuously increases while the robot is navigating. The result is a well-separated clustered
route, but the number of clusters tends to be relatively high.

According to [12], incremental clustering constitutes a good choice when the application meets
the following criteria. First of all, when the data cannot be easily represented in an n-dimensional
space, but it is possible to calculate similarity measures among individuals. Additionally, if the
data computation has a high cost and approximate results may be accepted, incremental clustering
is faster, allowing us to perform on-line tasks. Finally, if the number of clusters is unknown,
incremental clustering methods set the necessary number of clusters depending on different thresholds.
These conditions are met in our work since a similarity measure between global-appearance descriptors
can be calculated, the method employed does not need to calculate an affinity matrix, easing online
operation and the most suitable number of clusters is not known beforehand. Our proposal makes
use of omnidirectional images and global-appearance descriptors. Specifically, we used HOG and
gist descriptors.
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3. Review of Global Appearance Descriptors

In this section, some alternatives to extract global information from panoramic images are
summarized. They are known as global-appearance descriptors and they try to keep relevant data
with low memory requirements. The visual sensor used in the experiments takes omnidirectional
images, for that reason the first step is to transform them into panoramic ones. The starting point is
a panoramic image i(x,y) ∈ RNx×Ny and after using any of the global appearance methods the result is
a descriptor ~d ∈ Rt×1 where t is the size of the descriptor, as detailed in the next subsections.

Firstly it is necessary to divide the panoramic image in a set of cells. Depending on the shape
and number of cells, a different descriptor is obtained. In this work descriptors were built in
two different ways. The classic method, described in [48], divides the image in uniformly distributed
and non-overlapped horizontal cells. The main idea is that by using panoramic images the descriptor
will be invariant to pure rotations of the robot in the ground plane. That is possible due to the fact
that the information in the each row is the same and the only change is a horizontal shift in each row.
This option was tested in some navigation tasks such as pure visual localization [38], hierarchical
localization [3] or topological maps compression [9]. The second method used in this paper consists of
defining a set of vertical cells with some overlapping between consecutive cells. To obtain a matching
method invariant to the robot orientation, two steps are needed. The descriptor is built by putting
together information from the vertical cells, so, the algorithm that compares two descriptors needs, first,
to calculate the difference of orientation between both descriptors and shift one of them, by removing
its first columns and appending them at the end of the vector. To achieve enough resolution in this
step, the descriptor is built with overlapping between consecutive cells. Once the relative orientation is
the same, both descriptors can be compared in a straightforward way. Using this additional step that
normalizes the orientation, this method also becomes invariant to robot orientation. A comparison
between these two methods to build global-appearance descriptors is introduced in [49]. Figure 1 shows
how the cells are defined in each of the two methods.

Throughout the paper, the descriptors calculated with horizontal cells are named position
descriptors, whereas the descriptors calculated with vertical cells are named orientation descriptors.
The objective of using both approaches to build descriptors is twofold. On the one hand, information
obtained by descriptors based on pure robot position and by descriptors that are influenced on its
orientation are taken into account. On the other hand, this idea could help reduce perceptual aliasing,
(i.e., different locations may generate similar visual descriptors). Combining information obtained by
horizontal and vertical cells can provide more reliable results as far as image matching is concerned.

These techniques are invariant against changes in the orientation of the robot if it moves in the
floor plane and panoramic images are used. To capture them the mobile robot is equipped with
an omnidirectional vision system. This system consists of a camera and a hyperbolic mirror mounted
in front of the lens. The system is mounted vertically on the mobile robot, as done in several previous
works such as [50–53]. The omnidirectional camera captures images with a field of view of 360◦ around
the robot so they offer complete information from the surroundings of the robot from every capture
point. Finally, the omnidirectional images might be transformed into panoramic images. The complete
experimental setup is presented in Section 5.

Once the methods to divide the image were explained, different approaches to efficiently and
robustly describe each region are presented. The Histogram of Oriented Gradient and a descriptor
based on gist are the methods used to describe the cells in this work. Table S1 presents the most
relevant parameters used in the description process and Table S2 summarizes the parameters that
impact the size of the final descriptor.
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Horizontal Cells Descriptor

Vertical Cells Descriptor

a)

b)

Figure 1. Approaches to build a global-appearance descriptor from a panoramic image: (a) with
horizontal and (b) with overlapped vertical cells.

3.1. Histogram of Oriented Gradient

The Histogram of Oriented Gradient (HOG) was initially used in computer vision to solve object
detection tasks. HOG was described by Dalal and Triggs [29], who used it to detect people. This method
was later improved in detection and computational cost in the version described in [54]. Afterwards,
it was updated by Hofmeister et al. [55], who used a weighted histogram of oriented gradients in
small and controlled environments to solve localization from low resolution images. The same authors
present a comparison of HOG with other techniques in localization tasks of small robots in reduced
environments in [56]. Originally, HOG was built to describe local parts of the scene but it can be
redefined to work as a global-appearance descriptor, as in [3], where HOG and other global-appearance
descriptors are used to perform hierarchical localization in topological models.

Essentially, it consists of calculating the gradient of the image, obtaining the module and
orientation of each pixel. If Dx and Dy represent the derivatives of the image with respect to the
x and y axes, respectively, it is possible to calculate the magnitude and orientation of the gradient as:

|G| =
√

D2
x + D2

y (1)

θ = arctan
Dx

Dy
(2)

Afterwards, using a set of cells that covers the whole image it is possible to build the global
descriptor using the information of the gradient orientation. To this end, the data is collected in bins,
weighting each bin with the module of the gradient of each pixel. Each cell has its own associated
histogram and at the end the vector is built concatenating all the histograms. To build the descriptor,
the number of bins and cells must be defined. Specifications are shown in Section 6.1.

Classically, this method divided the image into horizontal cells. Authors such as
Cebollada et al. [11] or Román et al. [38] used this classical HOG technique to perform localization with
a mobile robot. In the present work, as stated before, we will consider both horizontal (with positional
intent) and overlapped vertical cells (with orientational intent), as explained at the beginning of the
section (Figure 1) . HOG using only horizontal cells is comprehensively described in [48] whereas the
second alternative is presented in [49]. Figure 2 shows the method used to build the HOG descriptor,
using horizontal cells.
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Figure 2. Process to build the HOG descriptor using horizontal cells.

First, regarding the position descriptor, horizontal cells (with the same width as the image) are
used, as shown in Figure 1a. Second, in order to obtain the orientation descriptor, vertical cells (with the
same height as the image) are used (Figure 1b). Vertical cells are overlapped and separated a distance
of distho pixels. By shifting the descriptor a rotation of the robot can be simulated.

Once the HOG description is performed, the whole image is reduced to a vector whose size will
depend on the number of cells and bins as Figure 1. First, the position descriptor, bhp is the number
of bins per histogram and khp is the number of cells in which the image was divided. The descriptor
size is ~dp ∈ Rbhp ·khp×1. Second, in the case of the vertical cells descriptor, the cells are overlapped.
This descriptor introduces a new parameter distho which refers to distance between consecutive cells.
kho is the number of cells, and it is calculated by Ny/distho, where Ny is the number of columns of the
panoramic image. bho is still referring to the number of bins per histogram. At the end, HOG with
vertical cells reduces a panoramic image into a vector whose size is ~do ∈ Rbho ·kho×1. The parameters
of the descriptors are summarized in Tables S1 and S2, and the values used in the experiments are
specified in Section 6.1.

3.2. Descriptor Based on Gist

The descriptor based on gist was initially introduced in [57] and extended in [58]. This descriptor
was further developed in studies such as [33] where it was tested in outdoor environments
and as a result, the authors obtain a descriptor whose computational cost is relatively reduced.
Some other applications can be found in [59], where a navigation system based on gist is tested;
in [60], where gist is calculated in panoramic images and is used to solve localization in urban
zones; in [61], where a descriptor based on gist is calculated and dimensionally reduced by
using Principal Components Analysis and subsequently used to solve loop closure problems.
Finally, Cebollada et al. [11] use such methods to create clustering methods and to perform Visual
Place Recognition.

The version of the descriptor used in the present work is built from intensity information, obtained
after applying some Gabor filters with different orientations to the image in several resolution levels.
To reduce the volume of data each filtered image is divided in a set of cells, and the average intensity
of each cell is calculated. As in HOG, classical methods divided the image using horizontal cells [11],
whereas new alternatives also tried to use this descriptor using vertical ones [49]. Definitions used
in this paper are presented in Table S2 and comprehensively described in [48,49]. Figure 3 shows the
process to build the gist descriptor using horizontal cells.

Following that, once the image is filtered with the different masks and scales, the algorithm
divides each resulting image into horizontal cells (position descriptor) or into overlapped vertical cells
(orientation descriptor), as seen in Figure 1, and the average intensity inside each cell is calculated.
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Figure 3. Process to build the gist descriptor using horizontal cells.

In the horizontal-cells descriptor, mgp indicates the number of orientations of Gabor filters,
kgp designates the number of cells in which the image was split and rgp indicates the number of
different resolution levels used. With these parameters the image can be reduced to a position
descriptor whose size is ~dp ∈ Rrgp ·mgp ·kgp×1. When the cells are vertical, distgo indicates the distance
between the beginning of consecutive cells. This parameter is related to the number of vertical cells kgo

since kgo = Ny/distgo, where Ny is the number of columns of the panoramic image. mgo is the number
of orientations of Gabor filters and rgo indicates the number of different resolution levels used in
orientation descriptor. The orientation descriptor using gist is a vector whose size is ~do ∈ Rrgo ·mgo ·kgo×1.
The parameters of the descriptors are summarized in Tables S1 and S2, and the values used in the
experiments are specified in Section 6.1.

4. Hierarchical Incremental Maps

This section presents the method that we propose to create topological maps incrementally.
The starting point is a set of images captured from the same area of the environment, and a node
composed of these images. The aim of the process is to build a hierarchical and incremental map,
where visually similar zones are detected, compacted and represented as a node. It will be carried
out by clustering images with similar features. Broadly speaking, the hierarchical map is built in such
a way that when a group of new images do not belong to a previously visited node, a new node is
created with them. The hierarchical incremental map is updated and extended every time the robot
captures a new image or group of images. A summary of all the parameters needed to follow the
process is included in Table S3 and some tunable parameters that can modify and improve the mapping
results are shown in Table S4.

When a newly acquired image Iq arrives, firstly, a Node Level Loop Closure is performed with
the nodes NC = {N1, N2..., NC} currently contained in the map. N∗ will represent the set of candidate
nodes, so if the node Ni leads to the loop closure, Ni is elected as candidate node and it becomes part of
N∗. After retrieving the set of candidate nodes to which the image Iq may belong, secondly, an Image
Level Loop Closure is performed with the images that belong to its nodes IN∗ .

To carry out these two processes, the position and orientation descriptors are obtained from image
Iq. Descriptors should be able to retrieve properly both the candidate nodes and the image that better
matches Iq among the images contained in the candidate nodes. At this point, position and orientation
descriptors will be only compared with the reference images contained in the nodes which were
selected after Node Level Loop Closure IN∗ = {∪Ni∈N∗ INi }, where INi is the set of images belonging to
the node Ni and N∗ is the set of nodes selected in the Node Level Loop Closure process. If the Image
Level Loop Closure process is successful, a unique image is retrieved as match. If the retrieved image
Ii fulfills the Prominence Condition (Section 4.3) and the Centroid Condition Section (4.4), Iq is added
to the corresponding node.
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Additionally, it is possible that no node is selected in the Node Level Loop Closure process and N∗

becomes an empty set (N∗ = ∅). When several consecutive images produce this result (N∗ = ∅) in
the Node Level Loop Closure process, a new cluster is created, expanding the hierarchical incremental
map. Figure 4 shows a schematic overview of the hierarchical mapping method. The next subsections
describe in detail these processes.

𝐼𝐼𝑞𝑞

Set of 
candidate 
nodes N*

Image 𝐼𝐼𝑖𝑖
Node 𝑁𝑁𝑖𝑖

Yes

No 𝐼𝐼𝑞𝑞 is not
included in 𝑁𝑁𝑖𝑖

No
𝐼𝐼𝑞𝑞 is not

included in 𝑁𝑁𝑖𝑖

Yes
𝐼𝐼𝑞𝑞 is included in 𝑁𝑁𝑖𝑖

𝑁𝑁𝑖𝑖 , µ𝑁𝑁𝑖𝑖, Σ𝑑𝑑
𝑁𝑁𝑖𝑖are updated

𝐼𝐼𝑞𝑞

Image Level
Loop Closure

Node Level
Loop Closure

Prominence
Condition

Centroid
Condition

𝑁𝑁1
𝑁𝑁2

𝑁𝑁3

𝑁𝑁1
𝑁𝑁2

𝑁𝑁3

Figure 4. Graphical summary of the proposed method to create hierarchical maps incrementally.

4.1. Node Level Loop Closure

The similarities between each reference node and a new image Iq are evaluated using this method.
Nodes are clusters that represent compact zones of the environment, and they contain images with
similar features. Each image is described using one of the global appearance descriptors presented in
Section 3. Each node Nl is represented through the mean descriptor ~µNl and the covariance matrix ∑Nl

d
computed from the descriptors of the images contained in the node.

Similarities between a node and an image are evaluated using the Mahalanobis distance [62].
If ~dq is the descriptor of the image Iq, the distance ∆Nl

~dq
between the descriptor ~dq and the node Nl can

be calculated as:
∆Nl
~dq

= (~dq −~µNl )T(∑ Nl
d )−1(~dq −~µNl ) (3)

where i = 1,2,...,C and C is the current number of clusters.
To decide which are the candidate nodes for the closure, the Mahalanobis distance has to satisfy the

condition of similarity presented in Equation (4), where µ
Nl
ns and σ

Nl
ns are the mean and the standard

deviation of a Gaussian distribution. When every node is built, 80% of the images are used to model
the node, creating with them the mean descriptor ~µNl and the covariance matrix ∑ Nl

d . The other 20%
of images are used to build a Gaussian distribution, where µ

Nl
ns and σ

Nl
ns represent mean and standard

deviation of the distances between each of these 20% of images to the mean descriptor of the node.
Also in Equation (4), x is a parameter that must be tuned, and whose value must depend on the number
of clusters. The lower x, the more restrictive the condition to create a new node. Values of x used in
this work vs. number of clusters can be seen in Figure 5. As shown in this figure, x is less restrictive for
a low number of clusters, but it is necessary to limit it from a specific number of clusters. This limit
is established depending a parameter (Ω) which has to be tuned (Table S4). x remains constant at
{1.7, 1.85, 2, 2.15, 2.3} when C ≥ 9, C ≥ 8, C ≥ 7, C ≥ 6 or C ≥ 5 respectively .∣∣∣∣∆Nl

~dq
− µ

Nl
ns

∣∣∣∣ ≤ ∣∣∣xσ
Nl
ns

∣∣∣ (4)
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Figure 5. Values of x in the node level loop closure condition versus number of clusters in Equation (4).

At the end of the Node Level Loop Closure, all the nodes that satisfy Equation (4) are considered
candidate nodes and introduced in the set N∗. After that, the Image Level Loop Closure is activated to
try to retrieve the specific image from these nodes that closes the loop. In some occasions, the Node
Level Loop Closure may not find any candidate node that closes the loop. In that case, it outputs an
empty set of nodes, and it is considered that the new image does not close the loop with any of the
existing nodes so far.

4.2. Image Level Loop Closure. Position and Orientation Descriptors

This algorithm activates if the Node Level Loop Closure is successful and outputs a non-empty set
N∗ of candidate nodes. In this case, it is necessary to determine which specific image or images close
the loop, being the most similar to Iq. Given the set of candidate nodes N∗, all their corresponding
images IN∗ are evaluated to find the image Ii which is the most similar image to Iq. The problem
is solved using two different similarity metrics, described in Section 3. These similarity metrics are
computed between the descriptor of the image Iq and every of the descriptors of the IN∗ candidate
images. Using both metrics, the comparison combines position and orientation information.

First, position information is obtained comparing the position descriptor of the image Iq with the
position descriptors of the images IN∗ using Euclidean distance. Second, the orientation information
is used. In this case the method estimates the relative shift between each candidate image Ii and Iq.
Then the panoramic image Ii and its associated descriptor are shifted, in such a way that after this shift,
both images have the same relative orientation. Then the distance between the orientation descriptors
is calculated using Euclidean distance (Equation (5)), where ~dq is the descriptor obtained from the new
image Iq and ~dk is the descriptor of each of the images Ik contained in the candidate nodes N∗ after
running the Node Level Loop Closure process.

disteucl
~dk
~dq

=

√√√√ t

∑
j=1

((~dq(j)− ~dk(j))2 (5)

This process is repeated for all the images Ik contained in the set of candidate nodes N∗. After that,
the method calculates the inverse of these distance measures, so the images with small distances
(images that are more similar) will have higher similarity measure. Then, the result is normalized in
such a way that the sum of the similarities is equal to 1. Next, the position and orientation similarity
measures are multiplied to obtain the final similarity measure that combines both kinds of information.
The image Ii with the associated higher result is then retrieved by the Image Level Loop Closure (and its
node as the most similar node to Iq. It is possible to see an example of these measures in Figure 6,
where Figure 6a shows the similarity measures between the image Iq and the images in the candidate
nodes when using position descriptors; Figure 6b shows the same similarity comparison but using
orientation descriptors and Figure 6c shows the final similarity measures obtained by multiplying
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position and orientation measures. These results (final similarity measure) are the data used to retrieve
both the image and the node that close the loop with Iq. Only the images Ik that belong to the candidate
nodes N∗ have a value in these figures, the other images are considered to have null measure.

sim
~dk
~dq

=
1

disteucl
~dk
~dq

(6)

i = argmax
k

(sim
~dk
~dq
) (7)

A							B						C		D		E		C		F															H																				I							J							D				I						B													A

(a) Similarity between position descriptor of Iq and
position descriptors of the images in the candidate nodes.

A							B						C			D		E		C		F														H																					I							J							D			I							B										A

(b) Similarity between orientation descriptor of Iq and
orientation descriptors of the images in the candidate nodes.

A							B						C			D		E		C		F														H																					I							J							D			I							B										A

(c) Final similarity between descriptor of Iq and descriptors of the
images in the candidate nodes.

Figure 6. Node Level Loop Closure process example. The node labels are arranged along the top of
each subfigure. In this example, the Node Level Loop Closure process has previous retrieved nodes C,
I and J.

If no node is selected as candidate node (N∗ = ∅) the Image Level Loop Closure process cannot
be run. Therefore, the image Iq is not assigned to any node, and it remains unclassified, waiting for
information from the next images (those which are subsequently captured by the robot). When a set
of consecutive images are left unclassified, a new node has to be created with them and the node



Appl. Sci. 2020, 10, 6480 12 of 28

representatives are recalculated (the node representative is the mean descriptor of the images contained
in the node).

4.3. Prominence Condition

As explained in Section 4.1, the Node Level Loop Closure process selects N∗ possible nodes.
Among them, the Image Level Loop Closure process finds the most similar image (Ii) which closes
the loop. The node to which Ii belongs, is the finally selected node. Prior to selecting this node Ni,
the image detected as the most similar to Ii should meet a prominence condition.

The prominence measures how much the peak of the similarity curve (Figure 6c) stands out due
to its intrinsic height and its location relative to other peaks. This condition is taken into account
because not only a high peak should occur to close the loop, but also that peak should be very distinct
compared to its neighbours. The image selected from the Image Level Loop Closure should fulfil the
condition presented in Equation (8). In this equation, PIi is the prominence value of the candidate
image, µ(PIk∗ ) is the mean prominence of the candidate images contained in N∗. γ is a threshold,
which is empirically tuned from the experiments as γ = 5.

PIi ≥ γ ∗ µ(PIk∗ ) (8)

4.4. Centroid Condition

As detailed in the previous subsections, the node Level Loop Closure selects first N∗ candidate
nodes. Among them, the Image Level Loop Closure finds the most similar image which closes the
loop and helps select the final node. In order for a selected node to be accepted as the final node,
it must fulfil the condition of Equation (9) below. This condition evaluates how the position of the node
representative shifts when the new candidate image is added to the selected node. In the condition,
the distance between the node representative before (µNi ) and node representative after adding the

descriptor of the new image (µNi∪{~dq}) has to be lower or equal to the maximum influence on the node
representative effected by the images already contained in the node.∣∣∣~µNi −~µNi∪{~dq}

∣∣∣ ≤ max
j

(
∣∣∣~µNi−{~dj} −~µNi

∣∣∣) (9)

where ~dj denote all descriptors of the images contained in the node Ni.
The process presented in Sections 4.1–4.4 is summarized in the pseudocode Algorithm 1.

Starting from the current set of clusters in the map NC = {N1, N2..., NC}, their associated data (Nl ,~µNl

and ∑ Nl
d for l = 1, 2, ..., C) and the descriptors of each previous image ~dk, it is possible to determine if

a new image Iq, whose descriptor is ~dq, has to be assigned to any previous node or not.
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Algorithm 1 Pseudocode for Node and Image Level Loop Closure, applying Prominence and
Centroid Conditions.

1: NodeLevelLoopClosure (~dq)
2: NC = {N1, N2..., NC} initial set of clusters
3: ~µNl , ∑ Nl

d mean descriptor and covariance matrix of cluster Nl
4: for l=1 to number of clusters C do
5: ∆Nl

~dq
= (~dq −~µNl )T(∑ Nl

d )−1(~dq −~µNl ) (Equation (3))

6: if
∣∣∣∣∆Nl

~dq
− µ

Nl
ns

∣∣∣∣ ≤ ∣∣∣xσ
Nl
ns

∣∣∣ then (Equation (4))

7: N∗ ← Nl ;
8: end if
9: end for

10: end NodeLevelLoopClosure
11: ImageLevelLoopClosure (~dq, ~dk, N∗)
12: for k= 1 to images in N∗ do

13: disteucl
~dk
~dq

=
√

∑t
j=1 ((

~dq(j)− ~dk(j))2 (Equation (5));

14: find the most similar image Ii using Equation (7);
15: if Ii meets PIi ≥ γ ∗ µ(PIk∗ ) then (Equation (8), Prominence Condition)

16: if Ii meets
∣∣∣~µNi −~µNi∪{~dq}

∣∣∣ ≤ maxj(
∣∣∣~µNi−{~dj} −~µNi

∣∣∣) then (Equation (9) Centroid
Condition)

17: Ii and its node Ni close the loop;
18: Iq is included in Ni;

19: Ni, µNi and ∑Ni
d are updated;

20: else
21: Ii does not meet Equation (9);
22: Iq is not included in Ni;
23: end if
24: else
25: Ii does not meet Equation (8);
26: Iq is not included in Ni;
27: end if
28: end for
29: if N∗ = ∅ then
30: Iq is not assigned to any node;
31: The existing nodes are not updated and Iq will be evaluated in subsequent steps;
32: end if
33: end ImageLevelLoopClosure

4.5. New Node Creation

The methods presented so far detect the node to which the new image Iq belongs. However,
as explained before, the new image may not be assigned to any previous node. That may occur either
because the new image is quite different to the existing node representatives or because it does not
fulfill either the prominence condition (Section 4.3) or the centroid condition (Section 4.4).

Once a considerable number of images consecutively captured are considered not to belong to
any cluster, a new cluster Nq is created. The new cluster is modelled with its mean descriptor ~µNq

and covariance matrix ∑
Nq
d . In order to obtain a new cluster which is significantly different to the

ones already existing in the map, the average distance between the representative of the new node
and the representative of the other nodes (using Euclidean distance) has to be higher or equal to the
average distance among the representatives that already exist. If the new cluster does not fulfill this
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condition, this new cluster Nq cannot be elected in further Node Level Loop Closure processes. In this
way, new images continue to be evaluated without considering this cluster but if they are still not
assigned to any node but they are similar enough to the cluster Nq, they are included to that cluster
until the distances from the representative of Nq to other representatives is higher or equal to the
average distance among the representatives of the other clusters in the map. This condition tries to
guarantee that clusters are different enough among them and that they do not spread excessively along
the space of features.

4.6. Node Merging

According to the previous processes, the number of clusters constantly increases. Therefore the
resulting number of clusters is sometimes higher than necessary and images that represent adjacent
and/or visually similar zones may be included in a unique cluster. The proposed method has the
possibility to decrease the number of clusters by merging similar nodes when necessary. That is
possible because the method detects when two clusters are similar and the map would be more
consistent if they are merged. A new condition is introduced and a newly created node Nq has to
exceed a specific dissimilarity threshold to the other clusters. If an existing cluster and a new one are
similar, they are merged in a unique cluster. To solve this problem the Mahalanobis distance is used as
in Node Level Loop Closure process. Equation (10) shows this condition in the node merging process

∆No
Nq

= (~µNq −~µNo )T(∑ No
d )−1(~µNq −~µNo ) (10)

where l = 1,2,. . . ,C and C is the number of clusters before creating Nq. To detect if the node Nq should
merge with another node Nl , ∆No

Nq
is evaluated. This distance has to satisfy the condition of similarity

presented in Equation (11), where µNo
ns and σNo

ns are the mean and the standard deviation of the Gaussian
distribution calculated with the data of node No, calculated as detailed in Section 4.1. y is a parameter
which has to be empirically tuned (Table S4). The higher it is, the less restrictive the condition is, so the
algorithm is more prone to merge similar clusters. Experiments show that this threshold should take
a value between 1 and 2. If y = 1 the condition is very restrictive so less mergers are done and more
clusters will be in the final map, but when y = 2 the condition is less restrictive, so more mergers are
done and less clusters will be at the end. Experiments to test the values of y are carried out in Section 6.∣∣∣∆No

Nq
− µNo

ns

∣∣∣ ≤ ∣∣∣yσNo
ns

∣∣∣ (11)

5. Image Sets for Experiments

The proposed algorithms are tested with several sets of images captured under real operating
conditions. The datasets used are the INNOVA dataset [22] captured by ourselves and the COLD
database [53], a third party publicly available dataset which provides robot trajectories in some
buildings of the Freiburg and Saarbrücken universities. These three trajectories provide a good choice
to perform hierarchical incremental mapping because they represent real environments that experience
the typical phenomena that can occur during real operation such as noise, occlusions of the images,
changing lighting conditions, movement of people or even some objects or pieces of furniture etc.
For that reason these sets of images constitute a challenging scenario to test the robustness of the
incremental mapping algorithms.

The different image sequences are recorded by a mobile robot, which is equipped with
an omnidirectional camera. The catadioptric vision system is made using a hyperbolic mirror mounted
in front of the camera on a portable bracket. The program receives the omnidirectional images and it
transforms them into panoramic ones and starts the mapping process, updating the map every time
that a new image Iq arrives according to Section 4. Additionally, the robot is equipped with wheel
encoders and a laser range scan, which are used to obtain the ground truth, for comparative purposes.
However, the proposed method does not use these data and it carries out the incremental mapping
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with pure visual information. Figure 7 shows the robot and the camera used to capture the INNOVA
dataset. Complete information about the equipment used to capture the COLD dataset can be found
in reference [53]. Figure 8 shows some sample images from all the datasets.

Figure 7. Mobile robot and its vision system in INNOVA dataset [22].

(a) Image from INNOVA

(b) Image from Saarbrücken

(c) Image from Freiburg

Figure 8. Panoramic images from each of the datasets.

Table 1 shows some specifications about the 3 trajectories and the number of images taken in each
trajectory. Each route contains some loops so they permit testing the Node Level and Image Level
Loop Closure processes. Finally, we consider essential to say that these environments are a challenging
choice because across the route many walls are made of glass and there are lots of windows so the
outdoor weather and lighting conditions could have a negative impact upon the mapping task.
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Table 1. Distance covered [m] and number of images used for each of the datasets.

Trajectory Number Distance
Dataset of Images Covered

Route 1 INNOVA 1450 176.26 m
Route 2 Saarbrücken 1021 56.64 m
Route 3 Freiburg 2778 102.68 m

6. Experiments

In this section, the methods proposed for hierarchical incremental map creation are tested using
the image sets introduced in the previous section. Firstly some images are taken to create the first
cluster in a supervised method. Once the first cluster is created, the process can start in order to create
new clusters, incrementally updating the map every time a new image Iq arrives.

6.1. Parameters to Describe the Images

As explained in Section 3, using global-appearance descriptors, each panoramic image is reduced
to a vector ~d ∈ Rl×1 whose size depends on the parameters used in this description process.
These parameters are outlined in Table S2. In this work, we use bhp = khp = 16 with the HOG
position descriptor. In this case, the position vector size is ~dh ∈ R256×1. For the orientation descriptor
bho = 16, kho = 256 and distho = 2, so the panoramic image is reduced to a vector whose size is
~dv ∈ R4096×1. In the case of gist, the parameters were kept constant in mgp = kgp = 16 and rgp = 2 for
the position descriptor. Using these parameters the descriptor size is ~dp ∈ R512×1. In the case of the
gist orientation descriptor, it is calculated with mgo = 16, kgo = 256, distgo = 2 and rgo = 1 and each
image is transformed to a vector ~do ∈ R4096×1.

6.2. Parameters to Perform the Loop Closure Processes

When a new image arrives, the first step is to know if it belongs to an existing cluster. As detailed
in Section 4, to perform the Node Level Loop Closure, the Mahalanobis distance is used, (Equation (3)).
After that, it is possible to detect if the image descriptor ~dq may belong to a specific node Ni, storing all
the candidate solutions in the set N∗.

Once the candidate nodes are selected, their images are compared with ~dq using Euclidean distance,
Equation (5), where dNk are all the candidate descriptors from the Node Level Loop Closure. The Image
Level Loop Closure detects the most similar image among them, named Ii. After detecting Ii, the image
has to fulfill the Prominence and Centroid Conditions (Sections 4.3 and 4.4). Furthermore, the process
evaluates if two nodes are similar enough to be merged (Section 4.6).

As described in Section 4, these equations depend on different parameters that have an influence
on the results. Equation (4) depends on x. It establishes how restrictive the process is to close the loop
in the node level. The lower x is, the easier to close the loop. x must depend on the number of clusters
(C) and it is tuned as x = 3.05− 0.15 ∗C; with limits depending on Ω, Figure 5 shows graphically these
values. Another parameter is y, which is used in Equation (11) and it influences the node merging; the
lower y, the easier to merge similar nodes. Finally, the parameter γ appears in Equation (8). Once Ii
is retrieved, this equation evaluates the prominence of the result to ensure that the retrieved image
has a peak on the similarity curve higher enough compared to its the neighbours. The higher γ is,
the more prominent the peak must be. During the experiments γ is constant, γ = 5. These parameters
are summarized in Table S4.

6.3. Evaluation

The relative performance of a clustering framework can be evaluated by means of the silhouette.
Silhouette evaluates the compactness of each cluster, i.e., the degree of similarity between each
descriptor and the other descriptors of the same cluster, comparing it with the descriptors that belong
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to the other clusters. The average silhouette (S) of all the entities (images descriptors) is calculated with
Equation (12). The higher S is, the more similar each descriptor is to the descriptors in its own cluster
and the more different to the descriptors in the other clusters. The maximum value of the silhouette is 1,
indicating that the resulting clusters contain well-separated images; the descriptors in each cluster are
very similar among them and different to descriptors in the other clusters. By contrast, the minimum
value is −1, which means that the resulting clusters do not separate correctly the information. In this
work, the silhouette is used to evaluate the compactness of the clusters. Therefore, instead of using the
similarity in the feature space, world coordinates are used.

S =
∑C

i=1 si

C
(12)

In Equation (12), C is number of clusters and si the average silhouette of the descriptors contained
in the cluster i. The silhouette of each descriptor ~dj is calculated using Equation (13) .

sj =
bj − aj

max(aj, bj)
(13)

where aj is the average distance between the capture point of ~dj and the capture points of the other
descriptors in the same cluster and bj is the average distance between the capture point of ~dj and the
capture points of the other descriptors in the different clusters. The information about the capture
points is known because the ground truth of the data set is available, so this information is used to
quantify the performance of the mapping algorithm. Notwithstanding, it is worth highlighting that
the mapping task is carried out with pure visual information.

In addition, the number of clusters obtained after the process will also be shown in order to
evaluate how the parameters have an influence upon this number.

6.4. Results

6.4.1. Influence of the Parameters on the Performance of the Algorithm

Figure 9 shows the results obtained with the HOG descriptor, and Figure 10 with gist for
(a) INNOVA, (b) Saarbrücken and (c) Freiburg datasets. In both figures, the first row shows the
number of clusters obtained once all the images of each trajectory were processed by the proposed
algorithm. The second row presents the average silhouette of the descriptors. These figures show the
influence of the parameters y and Ω, which are introduced in Table S4.

First, considering parameter y, as expected, the higher y is the fewer clusters will be in the final
map. The effect of this parameter is less significant when gist is used, as shown Figure 10. Second,
Ω limits x, the parameter used in Equation (4). If this value is low, more nodes can be selected on the
Node Level Loop closure so it can be more difficult to obtain a high number of consecutive images
without being in a cluster so the effect of creating new nodes decreases. However, if this value is too
high it may lead to some images in a row not being assigned to any node when no new cluster should
be created in the Node Level Loop Closure process. As Figures 9 and 10 show, when HOG is used,
the parameter y has more influence on the number of clusters than Ω does, yet with the gist descriptor,
the latter has greater influence.

The second row of each subfigure in Figures 9 and 10 shows the average silhouette after the mapping
process. In general, medium values of Ω offer a higher silhouette but the effect of y is more variable.
To better study the results, Table 2 shows the maximum values of silhouette and the number of clusters
obtained with the different datasets. It also shows the values of the parameters that lead to that maximum
silhouette. It shows how values of Ω around 1.85 offer the best results although when using gist descriptor
good silhouettes can be also obtained with higher Ω values. Meanwhile, the results are not substantially
dependent on y. As it is possible to observe, better results are obtained using the HOG descriptor.
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This behaviour was observed among different experiments and situations, which makes us conclude that
HOG is a more suitable option to describe the images with the objective of creating a map incrementally.
In addition, the silhouette obtained with the Freiburg dataset is substantially lower than the silhouette
obtained with the two other datasets. The reason can be twofold. On the one hand, the route contains
a large number of images, and it has some spaces which are visually similar, which challenges the
mapping algorithm. On the other hand, the Freiburg environment contains several glass walls, and large
and numerous windows, which produce saturations in the images and mixing between the information
of adjacent rooms. These phenomena also have a negative impact upon the performance of the method.
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Figure 9. Results obtained with the HOG descriptor for different values of y and Ω for the datasets
(a) INNOVA, (b) Saarbrücken and (c) Freiburg. The first row of each subfigure shows the final number
of clusters (colour mapped) and the second one the average silhouette (colour mapped) after the
proposed incremental hierarchical mapping process.
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Figure 10. Results obtained with the gist descriptor for different values of y and Ω for the datasets
(a) INNOVA, (b) Saarbrücken and (c) Freiburg. The first row of each subfigure shows the final number
of clusters (colour mapped) and the second one the average silhouette (colour mapped) after the
proposed incremental hierarchical mapping process.

Table 2. Maximum silhouette obtained per configuration, showing also the number of clusters and the
configuration of the parameters.

HOG

Dataset Silhouette Number of Clusters Parameters Values

Route 1 INNOVA 0.3973 6 y = 2.25, Ω = 1.7
Route 2 Saarbrücken 0.2756 16 y = 1.25, Ω = 1.85
Route 3 Freiburg −0.1526 30 y = 0.75, Ω = 1.7
Gist

Dataset Silhouette Number of Clusters Parameters Values

Route 1 INNOVA 0.2556 6 y = 1.5, Ω = 2.15
Route 2 Saarbrücken 0.1262 19 y = 1.5, Ω = 1.85
Route 3 Freiburg −0.1449 34 y = 1.5, Ω = 2.3
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6.4.2. Batch Spectral Clustering Results

For comparative purposes, we consider a batch spectral clustering algorithm [11] as benchmark.
It is worth highlighting that this batch spectral clustering algorithm has complete information about
all the descriptors from the beginning of the process, and can calculate all the mutual similitudes
to perform the clustering process. Therefore, it constitutes a powerful benchmark to compare the
relative performance of our proposal. To use this batch technique, the number of clusters has to be
set initially and all the images must be available, for this reason it is not a good option to create maps
incrementally, as the robot explores new areas. Figures 11 and 12 show the results after using a batch
spectral clustering method and either HOG or gist descriptors respectively. These figures represent
average silhouette versus number of clusters.

Figure 11. Average silhouette after batch spectral clustering process using HOG versus number of clusters.
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Figure 12. Average silhouette after batch spectral clustering process using gist versus number of clusters.

Figure 11 shows the average silhouette when the HOG descriptor is used. This figure shows
that the average silhouette decreases when the number of clusters continuously increases. The results
obtained with the INNOVA dataset show that the silhouette is between 0.1 and 0.3; in particular
if we observe the result with 6 clusters (which lead to the maximum silhouette with the proposed
method) silhouette is 0.13 while with the proposed method is 0.3973. In the case of the Saarbrücken
dataset, while the silhouette obtained with batch spectral clustering is between 0.1 and 0.3, the results
with proposed incremental method are between −0.4 and 0.3. Observing the result with 16 clusters
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(which led to the best silhouette with the proposed method) we note this is about 0.15 as opposed to
0.2756 with the proposed algorithm. Finally, regarding the Freiburg dataset, while the results using
batch spectral clustering are between 0.1 and 0.25, results using the incremental method are among
−0.5 and −0.15. The maximum value of silhouette of the proposed method is equal to −0.1526 with
30 clusters, while the batch clustering method provides a silhouette of 0.13 with the same number
of clusters.

Additionally, Figure 12 show the silhouette when the gist descriptor is used. In this case, the results
are less similar to the results obtained with the proposed method. Again, the higher the number of
clusters is, the lower the silhouette values are. The best silhouette obtained with gist and the INNOVA
dataset is 0.2556 with 6 nodes, the batch clustering method leads to a silhouette equal to 0.38 with
the same number of nodes. With the Saarbrücken dataset, silhouette results with a high number of
clusters are around 0.25 and 0.4 with the batch method and 0.1262 (19 clusters) with the proposed
method. Finally, the results output by the batch clustering method on Freiburg show a silhouette
between 0.1 and 0.25 but using the proposed incremental clustering process the maximum silhouette is
−0.1449, obtained with 34 clusters. With 34 clusters the silhouette obtained with batch clustering is
0.15. The results of this comparative evaluation between the proposed method and the benchmark
algorithm are summarized in Table 3. This table includes the maximum silhouette obtained with the
proposed method, and the silhouette obtained with the batch spectral clustering with the same number
of clusters. It is necessary to highlight the fact that the proposed method provides better results with
HOG in the Innova and Saarbrücken datasets. It is especially relevant, considering that the proposed
method permits building the map as the robot explores the environment (i.e., it works with incomplete
visual information) but the batch clustering needs to have all the images captured before running
the algorithm. The results with the Freiburg dataset are less conclusive, due to the features of this
dataset, commented previously. HOG stands out again as an efficient image description method with
incremental mapping purposes.

Table 3. Comparison between the maximum silhouette obtained with the proposed method and the
silhouette obtained with a batch spectral clustering with the same number of clusters.

HOG
Dataset Number of Clusters Proposed Method Batch Spectral Clustering

Route 1 INNOVA 6 0.3973 0.13
Route 2 Saarbrücken 16 0.2756 0.15
Route 3 Freiburg 30 −0.1526 0.13
Gist
Dataset Number of Clusters Proposed Method Batch Spectral Clustering

Route 1 INNOVA 6 0.2556 0.38
Route 2 Saarbrücken 19 0.1262 0.25
Route 3 Freiburg 34 −0.1449 0.15

6.4.3. Bird’s Eye View of the Capture Points

Figures 13–15 show a bird’s eye view of the capture points of the three datasets in different points
of the proposed incremental clustering process. These capture points are shown with different shapes
and colors, depending on the cluster they belong to. Figures 13j, 14g and 15j show the result after
completing all the proposed incremental mapping method, and the subfigures show how the clusters
are being created while the map is updated. Observing the pairs of subfigures: Figure 13c,d,f,g or
Figure 15e,f it is possible to see how node merging (Section 4.6) works. Initially, there are several
clusters and after including some new images and creating new clusters or making a specific cluster
larger, it is possible to obtain similar clusters, so the merging process is launched and it results in
a lower number of clusters. Finally, Figure 14b,e shows how transition between rooms resulted in
an increased number of clusters. After 399 images, the process has detected 7 clusters but from moment
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Figure 14e to the end of the process the robot has moved across a long corridor and only changes the
room once, for that reason only 2 clusters are created on that process. Others characteristics such as
loop closure can be observed in the figures.

(a) 240 images and 3 clusters. (b) 286 images and 5 clusters. (c) 344 images and 5 clusters.

(d) 417 images and 4 clusters. (e) 537 images and 8 clusters. (f) 640 images and 10 clusters.

(g) 818 images and 11 clusters. (h) 926 images and 12 clusters. (i) 985 images and 6 clusters.

(j) 1450 images and 6 clusters.

Figure 13. Maps obtained during the process using HOG y = 2.25, Ω = 1.7 with INNOVA dataset.
The subfigures show different steps of the process. In the end, the process detects 6 nodes and the final
average silhouette is 0.3973. The pairs of c,d,f,g show how the node merging process works.
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(a) 268 images and 3 clusters. (b) 399 images and 7 clusters. (c) 477 images and 9 clusters.

(d) 629 images and 13 clusters. (e) 785 images and 14 clusters. (f) 886 images and 16 clusters.

(g) 1021images and 16 clusters.

Figure 14. Maps obtained during the process using HOG y = 1.25, Ω = 1.85 with the Saarbrücken
dataset. The subfigures show different steps of the process. In the end, the process detects 16 nodes
and the final average silhouette is 0.2756.
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(a) 322 images and 3 clusters. (b) 587 images and 9 clusters. (c) 929 images and 13 clusters.

(d) 1118 images and 15 clusters. (e) 1581 images and 22 clusters. (f) 1714 images and 19 clusters.

(g) 1957 images and 21 clusters. (h) 2102 images and 24 clusters. (i) 2347 images and 28 clusters.

(j) 2778 images and 30 clusters.

Figure 15. Maps obtained during the process using HOG y = 0.75, Ω = 1.7 with the Freiburg route.
The subfigures show different steps of the process. In the end, the process detects 30 nodes and the
final average silhouette is −0.1526. The pair of e,f shows how the node merging process works.

7. Conclusions

This work presented a method to create hierarchical topological maps incrementally, updating the
map every time a new image arrives. The framework is based on the development of an incremental
clustering algorithm, presented throughout the paper. The experiments were made in real indoor
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environments where the robot navigates under real operation conditions, including illumination
variations and changes introduced by human activity. The robot is equipped with an omnidirectional
vision system, and the only information used to build the hierarchical map are the images captured
by this system. To describe the images two different global-appearance methods were considered:
HOG and gist. The experimental section showed the performance of the proposed algorithm and the
effect of the most relevant parameters on the final result. Also, a comparative evaluation with a batch
spectral clustering algorithm is performed.

The relative accuracy of the method is studied by means of the average silhouette, calculated
considering as entities the capture points of every image (ground truth). First, HOG proved to output
better results, such that the average silhouette obtained with the proposed incremental method is
similar to the silhouette output by the batch spectral clustering method despite the fact that the
proposed algorithm only has partial information at each step. In fact, if the parameters are tuned
properly if can offer better results than the batch spectral clustering. The results show that in the case
of HOG, it is especially important tuning correctly the parameter y, as it has a strong influence on the
final number of clusters. Also, the performance of the proposed algorithm degrades when the dataset
contains an excessively high number of images, presents complex features (i.e., numerous windows or
glass walls) or is prone to visual aliasing.

The results might be considered successful since our incremental algorithm starts with a reduced
number of images and updates the map (clusters) every time a new image arrives whereas the
batch clustering algorithm has complete information on all the descriptors from the beginning of the
process, and can calculate all the mutual similitudes to perform the clustering process. Additionally,
gist proved to perform less robustly and the silhouettes obtained with batch spectral clustering are
relatively higher. Therefore, the proposed incremental method along with omnidirectional images and
the HOG descriptor constitutes the most suitable option to perform incremental mapping.

This work opens the door to new research works on incremental hierarchical map creation using
global-appearance description methods in mobile robotics. Once we have tested the robustness and
efficiency of the methods in real environments including human activity and presence of changes in
the position of some objects, the next step is to improve the algorithm and adapt it to be used in large
and outdoor environments. In this sense, we will focus in particular on the problem of abrupt changes
of the lighting conditions and changes across seasons, as it is one of the issues that may have a more
negative impact upon the visual mapping algorithms.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/10/18/6480/
s1, Table S1: General parameters of the global appearance descriptors, Table S2: Parameters that impact the size
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Parameters that need to be tuned, Figure S1. Time of the process [s] using HOG descriptor depending on the
number of images that it contains and γ parameter, Figure S2. Time of the process [s] using gist descriptor
depending on the number of images that it contains and γ parameter.
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