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Abstract: The friction and stiffness properties of the terrain are very important pieces of information
for mobile robots in motion control, dynamics parameter adjustment, trajectory planning, etc.
Inferring the friction and stiffness properties in advance can improve the safety, adaptability and
reliability, and reduce the energy consumption of the robot. This paper proposes a vision-based
two-stage framework for pre-estimating physical properties of the terrain. We established a field
terrain image dataset with weak annotations. A semantic segmentation network that can segment
terrains at the pixel level was designed. Given that the same terrain also has different physical
properties, we designed two kinds of image features, and we use a decision-making model to realize
the mapping from terrain to physical properties. We trained and tested the network comprehensively,
and experimented with the complete framework for estimating physical properties. The experimental
results show that our framework has good performance.
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1. Introduction

The physical properties of the terrain, including friction properties and stiffness properties,
are very important information for autonomous mobile robots. For example, legged robots can use
more favorable leg stiffness control to adapt to different terrain after obtaining the terrain stiffness
information [1,2]. They can achieve better body balance to walk safely on the terrain with the friction
information [3–5]. Wheeled robots can thus avoid excessive wheel slip and sinking. This will save
energy, improve safety and reduce odometer error for wheeled robots [6,7]. Overly strong vibrations
will seriously affect the accuracy of the robot’s camera, lidar, IMU and other sensors [8]. Tracked
robots can take measures to effectively reduce the vibrations caused by the contact between the track
and the hard terrain after obtaining the stiffness information [9]. Physical properties combined with
three-dimensional information can help build a better model of the surroundings, which can be used
to generate cost maps and guide mobile robots in motion planning [10,11]. Without understanding
the terrain’s physical properties, any application based on the principle of terramechanics can not be
reliably applied.

Considering the importance of physical properties of the terrain to mobile robots, researchers
are committed to estimating terrain physical properties through various methods. Ding et al. [12]
established a foot-terrain interaction model and estimated terrain physical parameters through foot–soil
interaction experiments. Tsaprounis et al. [13] designed a new friction model including the exponential
decay part, and the Coulomb and viscous friction to estimate the friction coefficient. Mohamed
Fnadi et al. [14] proposed a new nonlinear observer designed to estimate the contact cornering
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stiffnesses in real-time. In the above research, only after the robot contacted the terrain could the
physical properties of the terrain be obtained.

However, in many robot tasks, such as motion planning, gait adjustment, dynamic model
parameter control and so on, the physical properties of untraveled terrain need to be pre-estimated.
That is to say, the methods to obtain the physical properties of terrain through the contact between
robot and terrain lag behind the task requirements.

Therefore, we should consider an algorithm that can estimate the physical properties of the
terrain in advance. The performance of human beings in such tasks gives us some inspiration.
Humans can pre-infer some tactile properties (including friction properties, stiffness properties,
temperature properties, dry and wet properties, etc.) of the material to some extent simply through
visual observation before touching it [15–17]. This reveals that vision is an effective way to acquire the
physical properties of objects.

To our excitement, computer vision has grown rapidly with the vigorous development of GPU
computing. Some GPU packages, such as Nvidia Jetson TX1 [18], are ideal for onboard processing.
Algorithms based on deep learning have achieved excellent results in many fields of vision because of
its powerful feature extraction ability [19–21].

Moreover, visual algorithms based on deep learning always needs a large number of data.
Scholars have established many image datasets, such as CityScapes [22], Microsoft COCO [23] and
so on [24,25], which involve many application fields. However, no image dataset is specifically
used to help mobile robots infer the physical properties of terrain. Therefore, this paper establishes
a new dataset to deal with such tasks. Perhaps the most similar dataset to ours is COCO-Stuff [26].
Although COCO-Stuff contains many different terrains, there were several reasons to build our new
dataset. Firstly, the final purpose of our study was to estimate the friction and stiffness for different
terrains, so the terrain was what we were concerned with. However, almost every image in COCO-Stuff
contains too many things (i.e., salient objects)—trains, cars, people, etc.—whose friction and stiffness
are not what we want to study. Secondly, the existence of irrelevant things is not conducive to the
network learning the essential features of the terrain. That is why Schilling et al. [27] clipped the
images and focused their attention on the lower image regions. Thirdly, compared with COCO-Stuff,
our dataset has more specifications for camera height and field of view, so it is more suitable for most
field mobile robots.

Inference tasks of computer vision can be divided into image classification, object recognition,
semantic segmentation and instance segmentation from coarse to fine [28]. It is worth mentioning
that getting the boundary between different terrains in the task of perceiving the physical properties
is very important for mobile robots. Boundary information can provide an accurate workspace
for the mobile robot in motion planning, so it is helpful for the robot to choose the optimal path
and achieve the optimal state. For example, clear boundaries can help the legged robot accurately
select the discrete footholds which are most conducive to its performance. Therefore, this paper
considers the problem from the perspective of semantic segmentation. Researchers have designed
many excellent networks for semantic segmentation, including FCN [29], SegNet [30], DeepLabv3 [31],
ResNet [32], etc. These networks replace the full connection layers which cause spatial information
loss with the transposed convolution layers to upsample the feature map, so as to predict at the pixel
level. However, current networks are aimed at segmenting targets with specific shapes and specific
topologies, such as cars, pedestrians, cups and cats. There is no network designed to segment different
terrains, which is one of the motivations for our research.

Additionally, the way of inferring physical properties in this paper draws on the characteristics
of human perception. Therefore, the internal mechanism of biology should be considered.
Some scholars study the internal mechanism of human perception of the tactile properties through
vision. Adelson’s research points out that the optical and mechanical properties of material
appearance are important clues for humans to perceive the tactile characteristics through vision [33].
Komatsu’s research found that an important stage in perceiving material properties is the inverse
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extraction of image information, which is interpreted as the process of inferring optical properties and
surface mesostructure based on retinal images in the visual system [34]. The study also shows that the
information retrieved from these inverse extractions is analyzed in the advanced visual stage, and then
the brain makes reasonable inferences using this information. These studies enhance the feasibility of
using computer vision to perceive the physical properties of the terrain. Their way of studying the
problem from a biological perspective has inspired us to extract the features of digital images and
establish the reasoning mechanism in a bionic way.

This paper proposes a vision-based two-stage framework to estimate the physical properties
(including friction properties and stiffness properties) of the terrain. We expended much effort building
a field terrain image dataset(FITI). In our framework’s first stage, to take advantage of deep CNNs by
extracting deep features of images; we designed a semantic segmentation network named TerrainNet
to segment different terrains at the pixel level. In the second stage, from the perspective of bionics, we
take the corresponding digital image features and use the decision-making mechanism to realize the
mapping from terrain type to friction property and stiffness property. The experimental results show
that our framework has good performance.

This article is organized as follows. We introduce the details of our dataset and the vision-based
two-stage framework in Section 2. In Section 3, the comprehensive experiments are described; they
were done to verify the proposed framework. In Section 4, we summarize the whole article and give
the conclusion.

2. Proposed Method

We surveyed several places to determine the typical terrains that need to be photographed
and established an image dataset accordingly. The dataset is weakly annotated, which means it
is only annotated according to terrain type, rather than having more complex and explicit strong
annotations according to physical properties. We introduce the process of the vision-based two-stage
framework which is used to estimate the physical properties. In the first stage, a ResNet-based
semantic segmentation network named TerrainNet is designed to infer different terrains of the
image densely. In the second stage, from the perspective of bionics, we design, extract and analyze
image features, and finally realize the mapping from terrain types to physical properties using
a decision-making mechanism.

2.1. FITI Dataset

There are many types of terrain in the wild environment, including land, rock, water, etc.
Therefore, we need to determine the typical terrain types to build the dataset. We randomly selected
8 common field sites from the coast of Songhua River, several parks and several hills in northern China.
After choosing an area of about one hectare in each location (the ratio calculation method used in this
paper does not need accurate area), we calculated the ratio of the area of each type of terrain to the
total area of 8 sites. Finally, we determined the typical terrain types by sorting the ratios. The details
are as follows.

During the investigation, a remote-control drone was used to take pictures at a constant height
over an area of about one hectare at each site. We gridded the images captured and counted the number
of grid elements of different terrains. Then, we aggregated the number of grids for each terrain in all
photographs of all survey sites accordingly and calculated the ratios compared to the total number of
grids respectively. The statistical results are shown in Figure 1. It was found that although there are
many types of terrain in the wild environment, the typical terrain types (ignoring types that account
for less than 5%) are grassland, land, rock, ice, water and asphalt road. Therefore, we built the image
dataset with the above 6 types of terrain as the main types. Additionally, the method of determining
typical types in this paper can get more accurate statistics with the same labor and time costs.
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Figure 1. General statistics on the proportions of different terrains in 8 sites.

It is worth noting that the terrain types in this paper are super categories [26]. The super category
contains several subcategories, such as land, which contains muddy land, leaf-covered land, etc.,
as shown in Figures 2 and 3. Therefore, we may call the subcategory of a super category different
states of the same terrain type. The Section 2.3 will show more details of different states of terrain and
how to deal with the terrain and different states in the process of physical property inference.
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(a) RGB images and semantic ground truths in FITI (including training set and test set)
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(b) Correspondence between terrain, label color and semantic ID
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(c) RGB images and physical property ground truths in test set

Figure 2. Cont.
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(d) Correspondence between grayscale and physical property level

Figure 2. The first and third rows of (a) are RGB images, and the second and fourth rows are their
corresponding ground truths. Ground truths are weakly labeled, that is, they are only labeled according
to the terrain types. (b) The corresponding relationship between the terrains and the annotation colors.
(c) The physical property ground truths of the test set. (d) The correspondence between grayscale and
physical property level. The values of friction coefficient and stiffness corresponding to the friction
levels and stiffness levels are presented in Section 2.3.

dry asphalt road

rock

land

ordinary land loose land muddy landdeciduous or hay-covered land clean ice dirty ice

ice

wet asphalt road

asphalt road

rounded rock flat rock rock with rough surface 

Figure 3. The same terrain may have different states.

Then, we collected RGB images according to certain specifications to build the dataset. It is
necessary to pay attention to the camera shooting perspective when collecting the RGB images since
the mobile robot has its own special perspective determined by the position of its camera and the
posture of its body. In principle, the direction of the camera’s optical axis is acceptable as long as it is
not perpendicular to the ground.

Visual perception elements of most field mobile robots such as LS3 [35], BigDog [36] and some
wheeled robots [37,38] are located between 0.4 and 1.5 m from the horizontal plane when robots
maintain upright postures. Considering that the terrain may be uneven or inclined, and the robot is
undulating while walking, we extend the above range with a scale factor of 1.2. That is, when collecting
RGB images, it is appropriate to control the vertical distance between the lens center of the camera and
the ground between 0.33 and 1.80 m. In addition, we intended to control the angle between the optical
axis of the camera and the horizontal plane so that the visual field coverage was within 20 m because
the texture of the terrain at a long distance is not clear in the image.

In order to better capture the textural information of different types of terrain, it is necessary to
ensure that the collected images have high resolution. In our dataset, the resolution of raw RGB images
is above 2048 × 1024. Meanwhile, we collected images in different seasons and weather conditions.

We used LabelMe [39] to weakly annotate raw RGB images, which means we just annotated
images according to the terrain types, instead of friction properties and stiffness properties. The latter
labeling strategy is more complex and labor-consuming. From the training point of view, the latter is
more suitable for end-to-end training, but it has serious drawbacks.

For example, unlike some deterministic properties such as classification, size and so on, the friction
property of an individual material cannot be determined because friction is produced by the interaction
of two materials. Thus, if we want to label the friction properties of the image, we must determine the
material that the robot is in contact with in the terrain, such as iron, plastic or rubber. We even need to
determine the shape of the sole or the pattern of the wheel. However, labeling in this way would greatly
reduce the versatility of the dataset; that is, once we change the material or shape of the sole of a robot,
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we would need to relabel the whole dataset. In other words, the dataset with strong annotations
is narrow in application and more difficult to modify. Moreover, compared to weak annotations,
strong annotations make it more difficult to add other physical properties, such as damping, bearing
properties and shearing properties, because the entire dataset has to be relabeled. From the perspective
of supervision, the high cost of strong annotations also led us to consider a way to reduce supervision.
The weak-annotation method in this paper makes the dataset more versatile in the field of mobile
robots, although it greatly increases the difficulty of the algorithm. Furthermore, in later parts, we will
show that our framework is easy to adjust for different robots or other attribute inferences.

Although we did not build a training set labeled with physical properties to train our model,
we had to build the test set with physical property labels to quantitatively evaluate the accuracy of our
inferential results. Under the assumption that the sole material of the robot is rubber, the test set is
labeled densely according to physical property and stiffness property. That is to say, the training set is
composed of RGB images and semantic ground truths, while the test set is composed of RGB images,
semantic ground truths, stiffness property ground truths and friction property ground truths. We used
the Likert scale to get the discrete representations of physical properties of different terrains and their
different states, and calibrate the corresponding friction coefficient and stiffness values. The process is
consistent with the process of building labels for the dataset used to train the decision mechanism in
Section 2.3. To avoid redundancy, we put the details in the Section 2.3.

In general, we built a field terrain image dataset named FITI that can be used by most mobile
robots to sense the physical properties of the terrain in the wild. FITI consists of 3370 high-resolution
images. We labeled 7 super categories including land, grassland, rock, asphalt road, water, ice
and background. The RGB image and semantic ground truth in the dataset are shown in Figure 2a.
We show the correspondence between terrain, label color and semantic ID in Figure 2b. To evaluate
the algorithm quantitatively, a test set with semantic and physical properties as labels was established
under the assumption that the sole of the robot was rubber. The physical property ground truth of the
test set and the correspondence between grayscale and the physical property level are presented in
Figure 2c,d. We balanced the number of images for each type to reduce data bias. Moreover, based on
some experience [26,40], we divided the training set and testing set according to the ratio of 4:1.

2.2. First Stage: From RGB Image to the Terrain Type

Compared with other image datasets used for semantic segmentation tasks, FITI brings special
difficulties to the network. The main reason is that different types of terrain do not have their specific
shapes and topologies, unlike many typical segmented objects. Therefore, the neural network we
designed had to have a strong ability to learn the texture features of different terrains, which also
explains why our dataset requires images to be high-resolution. Moreover, the coexistence and relative
positions of different terrains in the same field of vision also have certain constraints.

We chose ResNet-101 as our baseline network due to its superior performance in semantic
segmentation. ResNet-101 builds a network of 101 convolutional layers by stacking residual blocks.
Its network structure can be divided into two parts according to its functions. The first part is used
for downsampling, which occupies the vast majority of the hidden layers, so it has strong feature
extraction capabilities. The second part is used for upsampling, which restores the feature map to the
same size as the input image through a transposed convolutional layer.

Although ResNet-101 shows good segmentation of objects with specific shapes or specific
topologies, such as cars, pedestrians, cups and so on, it cannot be directly used to segment different
terrains which have no specific shapes or specific topologies.

First of all, texture features are key information for the network to infer the type of terrain.
ResNet is worthy of further improvement to adapt to texture learning in the terrain segmentation
tasks of this paper. FITI is built for mobile robots, so the distances between terrain in the field of
vision and the camera are different; that is, some terrain is close to the camera, and some terrain is far
away from the camera. In this case, the features of the distant terrain may be less than 7 × 7 pixels.
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However, ResNet uses a filter with a size of 7 × 7 in the first convolutional layer and this operation
will cause the rich information in the input high-resolution image to be truncated at the beginning of
the network, as can be seen from Equation (1).

(n′H×n′W)=(

⌊
nH+2p− f

s
+1
⌋
×
⌊

nW+2p− f
s

+1
⌋
) (1)

where nH , nW , n′H and n′W are the height and width of the feature map before and after convolution;
f is the size of the convolution kernel; p is the padding number; s is the stride; and b.c is the floor
function. Thus, it cannot guarantee that subsequent layers can effectively learn the details of the image.
What is more, repeated downsampling operations such as convolution and pooling can cause the
initial image resolution to decrease significantly, which results in loss of texture details. However, there
is no corresponding remedy in ResNet.

Moreover, ResNet does not make good use of the global contextual information of the image,
nor does it have sufficient ability to parse the scene in the entire field of view. Therefore, it cannot
effectively learn the coexistence and relative positions of different types of terrain. As shown in
Figure 4, without a global context clue, an overexposed rock may be mistakenly identified as ice due to
the similarity in appearance. These disadvantages need to be addressed.

Rock

Ice

without context clue

the two terrains have an extremely similar appearance

without context clue

Figure 4. In the local image, without context clues, an overexposed rock and ice have are extremely
similar in appearance.

In this paper, we replace the first layer of ResNet with our designed parallel feature extraction
structure, so that as much information as possible in the initial high-resolution image enters the
network instead of being truncated from the beginning. As shown in Figure 5, there are three parallel
operations in our structure, which are convolution, maximum pooling and average pooling, instead of
just one convolutional layer. The convolution operation learns the low-level features by updating the
convolution kernels. Average pooling and maximum pooling are used to obtain the common features
and the most significant features of the corresponding region, respectively. The information obtained
by the three parallel pipelines is more abundant than the original single pipeline.

Differently from the filter parameters in the first layer of ResNet, we use a smaller filter size
which is 3 and a larger number of filters which is 68 in the downsampling operation. As shown in
Equation (1), we obtain three sets of feature maps with larger height and width and more channels after
the parallel operation. Finally, we concatenate them in the channel direction to fuse features and output
this large feature map to the second layer of the network. Our parallel feature extraction structure is
used to improve the network’s ability to absorb rich information from the initial high-resolution image
and provide the possibility for subsequent layers of effectively learning the details of the terrain image.
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Input image

 n=68 f=3 p=1 s=2
 Convolution

 Maximum Pooling
f=2 p=0 s=2

Average Pooling
f=2 p=0 s=2

Concatenation

 Parallel feature extraction  Feature fusion 

Figure 5. Parallel feature extraction structure.

Besides, we add long skip connections between blocks of ResNet to enhance the network’s ability
to learn fine texture features. With the repeated downsampling of the feature map layer by layer,
tiny spatial details and fine structures are gradually lost in the deep layers. Therefore, we should
pay attention to the important role of low-level fine details retained in the shallow layer. At the same
time, considering that skip connection can enhance feature propagation in deep networks, we use skip
connections to propagate fine features in shallow layers into deep layers. The specific modification
of ResNet is shown in Figure 6. We divide the 33 basic residual blocks in the original ResNet into
4 groups according to conv2_x, conv3_x, conv4_x and conv5_x and rename them block 1, block 2,
block 3 and block 4. We use long skip connections to pass the feature maps output from block 1 to each
block behind it as input, and perform the same operation on other blocks. As a result, the subsequent
layers, especially the deep layers inside and behind block 4, can obtain the fine features in the shallow
layers by receiving the feature maps from the shallow blocks.
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Figure 6. Long skip connections between blocks (red curves).

To enable the network to obtain more contextual information, we insert a pyramid pooling module.
Contextual information refers to the information regarding the surrounding environment—a certain
type of terrain in an image, including the coexistence of this type and other types in the same image,
spatial location relationship, etc. The network with context prior has a strong ability to parse scenes.
Sometimes scene information is the key to distinguishing targets with similar appearances. As shown
in Figure 7, the images of two kinds of terrain have similar appearances in a small area. If the network
only infers the terrain type based on local small area, it will inevitably have poor accuracy. However, if
the network can take into account the contextual information of the area to be inferred, it will make
a more reasonable inference based on the local and global information. The example shows the
superiority of using contextual information for inference.
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Figure 7. The images at the top show that ice and rock have similar appearances in the local image due
to the influence of illumination or other factors. The images at the bottom show that a large perception
area has more contextual information. As can be seen from the figure, contextual information is very
beneficial for distinguishing types correctly. The red lines indicate the position of the small area in the
large area.

We insert the pyramid pooling module behind the downsampling part of the network. As shown
in Figure 8, in the pooling operation of each layer in the pyramid, the filter sizes are 64, 32, 16 and 8,
respectively. As shown in Equation (2),

ni =

⌊
ni−1+2p− f

s
+1
⌋

ji = ji−1×s

ri = ri−1+( f−1)× ji−1

starti = starti−1+(
f−1

2
−p)× ji−1

(2)

where j is the distance between two adjacent features, start is the center coordinate of the upper
left feature and r is the receptive field size. The larger the filter size, the larger the receptive field,
which means that the network tends to perceive the global area and more contextual information.
Filters of different sizes make the network extract the information of areas of different sizes.
Moreover, the pyramid fuses feature maps from different pooling operations. It aggregates contextual
information from different regions, thereby giving the networks a comprehensive perception of local
and global information.

Input

 feature map

 Average Pooling Transposed Convolution

Feature 

fusion

Output

 feature map

f=64, p=0, s=64

f=32, p=0, s=32

f=16, p=0, s=16

f=8, p=0, s=8

f=64, p=0, s=64

f=32, p=0, s=32

f=16, p=0, s=16

f=8, p=0, s=8

nC

nw

nH

Figure 8. Pyramid pooling module.
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Figure 9 shows the complete network architecture called TerrainNet. We use TerrainNet to realize
the inference from RGB image to terrain type.
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Figure 9. Complete structure of TerrainNet.

Additionally, we use the Adam [41] optimization algorithm to update the parameters, as shown
in Equation (3).

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g2
t

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

θt : = θt−1 − α
m̂t√

v̂t + ε

(3)

where gt is the gradient, θt is the parameter to update, mt is the biased first moment estimate, vt

is the biased second raw moment estimate, m̂t is the bias-corrected first moment estimate, v̂t is the
bias-corrected second raw moment estimate, α is the learning rate, β1, β2∈ [0, 1] are the exponential
decay rates for the moment estimates and ε is used to prevent the denominator from being zero.
The details of the network’s hyperparameter settings will be presented in section “Experiment”.

2.3. Second Stage: From the Terrain Type to Physical Properties

The friction and stiffness properties of the same terrain are also related to its state, such as
the surface flatness, compactness, whether the surface has a covering, etc. That means the same
type of terrain has different physical properties in different states, as shown in Figure 3, so we need
to explore the mapping from terrain types to physical properties. Related biological studies show
that optical characteristics and surface structure characteristics are important reference factors for
humans to perceive the physical properties of materials through vision. Therefore, we designed two
corresponding digital image features to imitate those two characteristics.

The optical characteristics of an image are a complex set of many attributes, such as brightness,
transparency, color and so on. We inferred the type of terrain in the previous section. Consequently,
with this strong prior, it was not necessary to design corresponding feature representations for all
attributes in optical characteristics. We chose brightness to represent the optical characteristics and
designed a method to extract the brightness of the image.

The gray value of each pixel in the image can represent the brightness of it, which ranges from
0 to 255. In addition, Gaussian blur can approximately mimic certain perceptual characteristics of
the human eyes; that is, the brightness evaluation of a point is affected by the brightness around the
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point. Therefore, as shown in Equation (4), the gray-scale image corresponding to the RGB image of
the terrain is Gaussian blurred, so as to extract the brightness features of the image.

L = I ∗ F (4)

where L is a Gaussian blurred image, I is the gray image, F is the Gaussian kernel and * represents
convolution.

It should be noted that in order to improve the robustness of brightness features to the changes of
ambient illumination, we perform histogram equalization on the image before extracting the brightness
features, as shown in Figure 10.

(a) Bright illumination (b) Gray histogram (c) Grayscale image after
histogram equalization

(d) Dark illumination (e) Gray histogram (f) Grayscale image after
histogram equalization

Figure 10. Histogram equalization reduces the sensitivity to the changes of the overall environment
illumination. The illumination of (d) is much darker than that of (a), but histogram equalization greatly
reduces the illumination difference between the two images. (c,f) are the processed image. In (b,e),
the blue bars represent the original gray distribution, and the orange bars represent the processed
gray distribution.

The surface structure characteristic refers to the changes in depth, direction and arrangement of
the material surface. Significant changes in the pixel values of material images usually reflect important
events and changes in material properties, generally including discontinuities in depth, discontinuities
in surface orientation and changes in physical properties. Therefore, we can describe surface structure
characteristics by the variation of the pixel value. Moreover, the gradient of a pixel in an image is
the variation of the pixel value in its neighborhood. Thus, this paper uses the Sobel [42] operator to
calculate the image gradient to represent the surface structure characteristics.
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Sobel is a first-order gradient calculation operator, and its calculation formula is shown in
Equation (5).

Gx = I ∗

 −1 0 +1
−2 0 +2
−1 0 +1


Gy = I ∗

 +1 +2 +1
0 0 0
−1 −2 −1


G =

√
G2

x + G2
y

(5)

where Gx and Gy are gradients in X and Y directions respectively, and G is the gradient of the pixel.
To verify the effectiveness of the two feature extraction methods, we used them to extract the

corresponding features of the terrain image, and performed statistical analysis.
As shown in Figure 3, each terrain of land, rock, ice and asphalt road has different states.

Taking land as an example, we can see that it has four different states in the dataset, namely, ordinary
land, deciduous or hay-covered land, loose land and muddy land. It is these different states that lead
to different friction and stiffness properties of the same type of terrain. For the sake of description,
we name the land in different states land 1, land 2, land 3 and land 4 in order. We extracted the
brightness features of the land 1 images, and then gathered statistics. The details are as follows.

First, we selected 50 RGB images containing land 1 from the FITI dataset and cropped the
corresponding parts of land 1 into many image patches with a resolution of 100 × 100. Then, a large
number of image patches (ours is 300) were randomly selected to extract the brightness features,
and the same number of brightness patches were generated. After that, we calculated the average
brightness in each brightness patch. Finally, by fitting all the averages using Equation (6), we obtained
a normal distribution that can describe the optical characteristics of land 1. In addition, land 2, land 3
and land 4 were treated the same.

p =
1√
2πσ

e−
(v−µ)2

2σ2 (6)

where v is the average value, µ is the mean and σ2 the variance.
In the same way, we extracted the brightness features of ices, rocks and asphalt roads in different

states and gathered statistics. Of course, we treated the surface structure characteristics equally.
After the above steps, we got the Gaussian distributions of optical characteristics and surface

structure characteristics of land, ice, rock and asphalt road in different states. Their respective means µ
and variances σ2 are shown in Tables 1 and 2, and their respective curves are shown in Figure 11.

Table 1. Means and variances of optical characteristics.

Terrain in Different States µ σ

land 1 202.2 15.9
land 2 169.1 14.6
land 3 125.2 20.0
land 4 88.1 8.6
rock 1 228.6 10.5
rock 2 123.7 22.8
rock 3 154.3 21.9
ice 1 190.4 12.7
ice 2 161.2 22.8

asphalt road 1 158.4 17.8
asphalt road 2 113.3 5.5
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Table 2. Means and variances of surface structure characteristics.

Terrain in Different States µ σ

land 1 15.7 5.6
land 2 108.6 15.9
land 3 40.3 8.9
land 4 57.9 11.4
rock 1 19.0 4.8
rock 2 47.1 10.9
rock 3 79.8 22.6
ice 1 8.3 3.6
ice 2 33.1 7.9

asphalt road 1 61.8 9.3
asphalt road 2 84.1 12.2
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Figure 11. The Gaussian distributions of optical characteristics and surface structure characteristics of
land, rock, ice and asphalt road in different states.
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In the subgraphs of Figure 11, each curve represents the corresponding terrain in a certain
state. The position on the horizontal axis and shape of the curve reflect the distribution regularity
of the feature of the terrain in this state. We can see that the waves of different curves in the
same subgraph can be staggered significantly, which means terrain in different states has good
distinguishability. Therefore, it is reasonable to use the above feature extraction methods to extract the
optical characteristics and surface structure characteristics of the terrain image.

To reduce the impact of the instability of a single feature during inference, we established
a decision mechanism to achieve the mapping from terrain types to physical properties with both
feature extraction methods.

We obtained 3300 data points of optical characteristics and 3300 data points of surface structure
characteristics through the previous steps. To better quantify these two kinds of features, we used
k-means algorithm to cluster the data corresponding to each feature separately. Based on the prior
information of the Gaussian distribution, we set a more reasonable parameter k.

We can take the data of optical characteristics as an example to illustrate the setting of k. In the
Gaussian distribution, the probability of data distribution is 68.27% in the range of (µ− σ, µ+ σ),
and 95.45% in the range of (µ− 2σ, µ+ 2σ). Therefore, we can take µ− σ and µ+ σ of all optical
characteristics in Table 1 as the initial segmentation positions. Then better positions are selected as
the final segmentation positions of optical characteristics in the range of (µ− 2σ, µ− σ) and (µ+ σ,
µ+ 2σ). Accordingly, the optical characteristic value is divided into 11 segments in the range of 0
to 255 and we set k in k-means to 11. After clustering, the cluster number and the range of optical
characteristic values are shown in Table 3. Additionally, we can do the same for the surface structure
characteristics. The clustering results are shown in Table 4.

Table 3. Cluster number and the range of optical characteristic values.

Range of Value 0–
64.2

64.2–
90.0

90.0–
112.8

112.8–
128.3

128.3–
150.8

150.8–
176.4

176.4–
192.3

192.3–
208.2

208.2–
224.5

224.5–
246.9

246.9–
255

cluster number 1 2 3 4 5 6 7 8 9 10 11

Table 4. Cluster number and the range of surface structure characteristic values.

Range of Value 0–31.7 31.7–47.4 47.4–70.3 70.3–95.7 95.7–129.0 129.0–146.1 146.1–255

cluster number 1 2 3 4 5 6 7

To establish the mapping to physical properties, we describe the friction properties and stiffness
properties in a discrete manner. We employed a method similar to that of [6]. Ten masters of the
laboratory were asked to use the Likert scale to judge the level of friction and stiffness of each terrain
in different states of the dataset. We used numbers 1–6 for the friction level (i.e., 1 most slippery;
6 least slippery) and 1–5 for the stiffness level (i.e., 1 most deformable; 5 least deformable). Then we
measured the friction coefficient between terrains in each level and the robot foot (rubber material)
and calibrated the corresponding friction coefficient of each level. We obtained the stiffnesses of the
terrains [12,43] and calibrated them as well. The levels of friction and stiffness and the corresponding
physical values are shown in Tables 5 and 6. It should be noted that we assumed that the robot does
not walk in the water, so we set the friction level and stiffness level of the water to 0. A level of 0 means
the most dangerous and not suitable for walking. We also set the friction level and stiffness level of the
unknown background the same way.

Table 5. Friction coefficient and level.

Level 1 2 3 4 5

friction coefficient <0.1 0.1–0.25 0.25–0.5 0.5–0.7 0.7–0.8
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Table 6. Stiffness and level.

Level 1 2 3 4

stiffness (Nm−1) 5.7 × 104 1.6 × 105–3.4 × 105 1.7 × 106 2.3 × 107–3.4 × 109

Using semantic features, optical characteristics and surface structure characteristics as elements of
the input vectors, and corresponding friction levels and stiffness levels as output values, we establish
a dataset of mapping relationships from terrain types to physical properties. Table 7 shows some
examples of this dataset. We then feed these data to CART [44]. CART is a decision-making model,
which is the abbreviation of classification and regression tree. It selects the best feature and the best
cut point by calculating the Gini index shown in Equations (7) and (8) iteratively.

Gini(D) = 1−
J

∑
j=1

(
|Cj|
|D| )

2 (7)

where D is the training set; Cj is a subset of samples belonging to class j. Then Gini(D) is used to
calculate Gini(D1) and Gini(D2) in Equation (8):

Gini(D, A) =
|D1|
|D| Gini(D1)−

|D2|
|D| Gini(D2) (8)

where D1 and D2 are subsets of D divided by the value of feature A. Finally, we get two decision trees
for inferring friction properties and stiffness properties, respectively.

Table 7. Some examples of the dataset for mapping relationships from terrain types to physical properties.

Semantic ID Cluster Number (Optical) Cluster Number (Surface Structure) Friction Level Stiffness Level

0 — — 3 2
1 7,8,9,10,11 1 4 3
1 6,7,8,9 4,5,6,7 3 2
1 4,5,6 2,3 4 2
1 2,3 3,4 2 1
2 8,9,10,11 1,2 3 4
2 2,3,4,5 2,3 4 4
2 5,6,7,8 4,5,6 5 4
3 6,7,8,9 1 1 4
3 3,4,5,6,7,8 2,3 2 4
4 — — 0 0
5 6,7,8,9,10 2,3,4 5 4
5 3,4,5 4,5 3 4
6 — — 0 0

Through the above steps, the algorithm realizes the mapping from terrain type to physical properties.
Last but not least, we only need to modify the last two columns of Table 7 when faced with different

robot walking parts or adding inferences of other attributes (such as damping, bearing properties
and shearing properties). This is a simple operation, because we do not need to relabel the image
dataset. Modifying Table 7 is much easier than modifying the image dataset at the pixel level.
This shows that our framework is easier to adapt to different situations.

3. Experiment

To evaluate the effectiveness of the proposed method, we conducted comprehensive experiments.
We used the deep learning framework Pytorch to build TerrainNet in Ubuntu 18.04, and used the FITI
dataset to train and test the network on the dual Titan XP GPUs. We also analyzed the contributions
of network components to the final accuracy. Finally, we tested the complete vision-based two-stage
framework of estimating the physical properties of terrains in the field.
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3.1. TerrainNet Experiment

After building the TerrainNet based on Pytorch, we used FITI to train and test it on our
workstation. For a practical deep learning system, the devil is always in the details. We carefully set
the hyperparameters. Batch-size was set to 4 in the mini-batch gradient descent. β1 was set to 0.9,
β2 was set to 0.999 and ε was set to 10−8 in the Adam optimization algorithm. We trained a total of
200 epochs, and finally decided that 150 was the best epoch number. The weight decay parameter λ in
L2 regularization was set to 2 × 10−4. The initial learning rate was set to 5 × 10−4, the gamma value
was set to 0.5 and the learning rate decays once every 50 epochs. The input image had a resolution of
2048 × 1024. The configuration of the workstation was as follows: two NVIDIA TITAN Xp GPUs with
11G memory respectively; single Intel (R) Core (TM) i9-7940X CPU with 16G memory.

The performance of our network on the training and test sets is shown in Figure 12. It can be seen
from the figure that the mean of class-wise intersection over union (mIoU, Equation (9)) and loss value
gradually converge.

mIoU =
1

m + 1

m

∑
i=0

pii

∑m
j=0 pij + ∑m

j=0 pji − pii
(9)

where m + 1 is the total number of terrain types and pij is the number of pixels of class i inferred to
belong to class j. That is to say, pii represents the number of true positives, while pij and pji are the
false positives and false negatives respectively. The final mIoU accuracy of the network on the training
set was 66.52% and the accuracy on the test set was 62.94%.

Figure 12. Training and testing curves of TerrainNet. The black vertical dotted line indicates the
number of iterations corresponding to the best epoch number.

To better evaluate our network and analyze the contributions of network components in the
final accuracy, we carried out ablation experiments with several settings, including raw ResNet-101,
ResNet-101 with a parallel feature extraction structure (network 1), ResNet-101 with long skip
connections between blocks (network 2) and ResNet-101 with a pyramid pooling module (network 3).
Moreover, the hyperparameters of them are consistent with those of TerrainNet. The experimental
results are shown in Figure 13 and Table 8. Figure 13 shows the iterative curves of the networks on the
training set, and Table 8 shows the final mIoU of the networks on the training set and the test set.

It can be seen that the performances of network 1, network 2 and network 3 in both the training
set and test set improved compared with the raw ResNet. This shows the advantages of the parallel
feature extraction structure, long skip connections between blocks and the pyramid pooling module.
Moreover, the TerrainNet designed in this paper, which includes the above three structures, had
a greater performance improvement. mIoU of TerrainNet on the test set was 62.94%–10.68% higher
than ResNet’s.
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(a) TerrainNet and ResNet-101 (b) network 1 and ResNet-101

(c) network 2 and ResNet-101 (d) network 3 and ResNet-101

Figure 13. Iterative curves of the networks on the training set.

Table 8. Ablation experiments on FITI.

Network Structure mIoU (Train) mIoU (Test) Improvement (Test)

ResNet-101 (baseline) 58.89% 52.26% —
network 1 63.31% 59.08% +6.28%
network 2 64.11% 60.39% +8.13%
network 3 63.72% 59.27% +7.01%
TerrainNet 66.52% 62.94% +10.68%

To show the advantages of our TerrainNet more intuitively, we compare the semantic segmentation
effect of ResNet-101 with that of the TerrainNet in Figure 14. We can see from the figure that the
TerrainNet has better performance. For example, TerrainNet does not mistake the rock for ice in
the image of the fifth column. As can be seen in the second column, the segmentation of water by
our TerrainNet is more correct. In the first, third, fourth and sixth columns, due to the learning
of fine texture features of high-resolution images, TerrainNet can infer land, rock and asphalt road
more accurately.
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output

Figure 14. Comparison of semantic segmentation between ResNet-101 and TerrainNet. The second
row is the prediction output by ResNet-101, and the third row is the prediction output by TerrainNet.
The segmentation effect of the third row is better than that of the second row.

We calculated the IoU of each terrain to determine which terrain was the most difficult to identify.
The results are shown in Table 9. We can see that the IoUs of ice and water were relatively low. This
may have been due to the fact that both of them belonged to non-Lambert surfaces.

Table 9. IoU of each terrain.

Terrain Grassland Land Rock Ice Water Asphalt Road

IoU 79.10% 63.74% 65.24% 57.56% 53.38% 64.02%

We also compared TerrainNet with FCN, SegNet and DeepLabv3 on FITI, as shown in Table 10.
It can be seen that TerrainNet had the best accuracy on FITI. TerrainNet outperformed FCN and SegNet
by a clear margin. Although the mIoU of DeepLabv3 on the training set was slightly lower than
that of TerrainNet, the accuracy on the test set was far worse. This shows that TerrainNet is better at
segmenting terrains than these networks used to segmenting things.

Table 10. Comparative experiments with other networks on FITI.

Network mIoU (Train) mIoU (Test)

FCN 52.31% 49.64%
SegNet 50.32% 47.45%

DeepLabv3 63.84% 60.24%
TerrainNet 66.52% 62.94%

3.2. Vision-Based Two-Stage Framework Experiment

Combined with the decision trees established in the previous section, we tested the vision-based
two-stage framework proposed for estimating the terrain’s physical properties in the field.

As shown in Figure 15, we visualized the experimental results of the framework. The figure
shows the inferences in the test set. In the results of friction property inference, the brighter the color is,
the lower the friction level is, that is, the more slippery it is. In the same way, in the results of stiffness
property inference, the brighter the color is, the lower the stiffness level is. The values of friction
coefficient and stiffness corresponding to friction levels and stiffness levels are shown in Tables 5 and 6.
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Figure 15. The experimental results of the complete framework proposed in this paper. The first and
sixth rows are the input RGB images; the second and seventh rows are the inference results of friction
property; the third and eighth rows are the ground truths of friction property; the fourth and ninth
rows are the inference results of stiffness property; and the fifth and tenth rows are the ground truths
of stiffness property. For better visualization, we mapped the inferential results of physical properties
level to a more easily observed gray-scale image. The corresponding relationship between friction level
and grayscale is shown in the rightmost column, and so is the stiffness level.

It can be seen from the figure that the framework has good inference performance. The framework
can correctly infer the friction level of the dirty ice’s surface and the clean ice’s surface. The physical
properties of the land in different states can also be well inferred; for example, the pixel brightness of
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the stiffness inference results of deciduous or hay-covered land is higher than that of the ordinary land.
The friction levels of dry asphalt road and wet asphalt road can also be well distinguished. The regions
with different friction properties on the rock surface can also be well segmented.

We tested the accuracy of our vision-based two-stage framework quantitatively. The physical
properties of all images in the test set were estimated by our two-stage framework, and the ground
truths of physical properties were used to quantitatively evaluate the inference results. We used mIoU
and pixel accuracy (PA) as the metrics to evaluate the accuracy of our framework. The calculation of
PA is shown in Equation (10).

PA =
∑m

i=0 pii

∑m
i=0 ∑m

j=0 pij
(10)

where the symbols have the same meaning as in Equation (9).
The experimental results can be seen in Table 11. The mIoU of our framework was 60.18% in the

inference of friction property and 61.21% in the inference of stiffness property. The PA of our framework
was 75.85% in the inference of friction property and 76.63% in the inference of stiffness property.

Table 11. Accuracy of the vision-based two-stage framework.

Property PA mIoU

friction property 75.85% 60.18%
stiffness property 76.63% 61.21%

4. Conclusions

In many mobile robot tasks, inferring the friction and stiffness properties in advance is very
beneficial. In this article, we proposed a vision-based two-stage framework for the physical property
estimation of terrain. Considering the lack of a relevant dataset, an image dataset FITI for terrain
segmentation was established. In the first stage of the framework, we designed a corresponding
terrain segmentation network named TerrainNet to infer the types of different terrains of the image
densely. TerrainNet has three novel components. We carried out experiments and the results show
that the mIoU of the proposed network is 10.68% higher than that of the baseline ResNet-101, and has
advantages over FCN, SegNet and DeepLabv3. In the second stage, we realize the mapping from
the terrain type to physical properties. Our two-stage framework can infer the physical properties
of the same terrain in different states. Finally, a complete experiment proved the validity of the
vision-based two-stage framework. We evaluated our framework with quantitative metrics mIoU and
PA. The results show that our framework has high accuracy.

In future work, we will consider the combination of physical properties and three-dimensional
information, and realize the navigation of the mobile robot.
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