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Abstract: Imaging of scenes using light or other wave phenomena is subject to the diffraction limit.
The spatial profile of a wave propagating between a scene and the imaging system is distorted by
diffraction resulting in a loss of resolution that is proportional with traveled distance. We show here
that it is possible to reconstruct sparse scenes from the temporal profile of the wave-front using only
one spatial pixel or a spatial average. The temporal profile of the wave is not affected by diffraction
yielding an imaging method that can in theory achieve wavelength scale resolution independent of
distance from the scene.
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1. Introduction

1.1. Previous Attempts to Beat the Diffraction Limit of Resolution

The diffraction limit naturally limits the spatial resolution of an image acquired by a conventional
imaging system with a finite aperture. A wave traveling from the scene to the imaging system is
subject to diffraction. The wave reaching the aperture of the imaging system has been degraded by
diffraction. It can no longer be used to reconstruct an image of the object at the optimal resolution.
Any spatial wavefront is subject to this diffraction, which causes a well-known linear drop in resolution
with distance. The resulting linear dependence of resolution on imaging distance is known as the
Rayleigh criterion.

Over the last several years, many works in different fields have been done to beat the diffraction
limit. Astronomical imaging is an area where super-resolution methods are extensively studied.
Most of the super-resolution methods used in astronomy combine image capturing techniques with
image post-processing. In early years, co-addition methods, capturing successively multiple pictures
within a short exposure time and applying shift-and-add algorithm [1] or linear reconstruction
scheme [2] to combine the images, were actively used. Different regularization-based optimization
methods were developed: Orieux et al. [3] successfully applied quadratic-regularized optimization to
the “Spectral and Photometric Imaging Receiver” data. Rust et al. [4] demonstrated the high-resolution
fluorescence microscopy method (STORM) that utilizes high-accuracy localization of photoswitchable
fluorophores. The method operates past the diffraction limit. Jarret et al. [5] proposed a method using
a deconvolution technique, maximum correlation method, combined with a re-sampling kernel to
super-resolve “Wide-field Infrared Survey Explorer” data.

Several image post-processing methods exist in digital imaging applications in order to
construct high-resolution images from low-resolution images. Nonuniform interpolation approach [6],
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frequency domain approach [7], regularized optimizations (deterministic [8–11] and stochastic [12–15]),
iterative back-projection [16], adaptive filtering approach [17] are widely used super-resolution imaging
methods. These super-resolution methods provide high-resolution image outputs, mitigating the
effects of diffraction. However, all of the methods still suffer from the fundamental limit: the resolution
of super-resolved images still depends on the distance and aperture of the imaging system. The further
the region of interest, the lower the image resolutions.

It is well known that a scattering medium around an object can be used to couple evanescent
waves into the far-field. This means that images of the embedded object with resolutions similar to
the wavelength can be captured from large distances [18]. In existing approaches, this requires prior
characterization of the scattering medium from the location of the object, which makes the method
unsuitable for many practical applications. Here, we show that scattering can be leveraged in sparse
scenes to determine the geometry of the entire scattering scene (object and medium) without prior
information based on just a single pixel time response of the scene.

1.2. Our Contribution

In this work, we propose a novel super-resolution imaging approach that reconstructs scenes
from internally scattered light while using their time response. This temporal signal is not subject to
diffraction. We show that the resolution of our method is independent of distance and aperture size,
and we can reconstruct the scene up to Euclidean congruence. We demonstrate the capabilities of the
novel approach while using simulated and experimental data.

2. Time Encoded Remote Apertures (TERA)

2.1. Fundamentals of Imaging

In this section, we overview the fundamental process of obtaining an image from an object and
define terms to avoid confusion. Consider two objects emitting or reflecting light p1, p1 and an imaging
system C with an aperture size D placed at a distance d from for the object (Figure 1a). To infer
positions of object points pi, i = 1, 2 within the scene, the imaging system redirects all rays from points
pi, i = 1, 2, such that they constructively interfere on exactly one point in the focal plane. In other
words, the imaging system evaluates the length of a light ray, as encoded in its phase. In this case,
the resolution r of the imaging system is determined by the Rayleigh’s diffraction limit:

r =
1.22λd

D
(1)

where λ is the wavelength of the emitted light and determines how accurately the imaging system
can determine the length of each ray, d is a distance between focal plane of the imaging system
and the object, and D is the diameter of the aperture of the imaging system. Figure 1a shows an
example of a diffraction pattern (Airy disk) with two targets (pi, i = 1, 2) resulting from a circular
aperture. Another way of imaging is to measure the time of flight of intensity fluctuation. We call
these intensity fluctuations as second-order coherence. One can use a short-pulsed laser to illuminate
the object and lens-less time-of-flight detector to observe back-scattered light and reconstruct an image.
The resolution of such an image is described by the Rayleigh criterion, except that the wavelength λ is
replaced by the time resolution τ of the time-of-flight detector. We call it a transient Rayleigh criterion.
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Figure 1. Comparison between conventional and Time Encoded Remote Apertures (TERA)
imaging system. (a) Conventional imaging system. To infer the position of an object within the
focal plane, an imaging system needs to determine the length difference between two rays. The figure
shows a fundamental relation between distance, resolution, and aperture. The resolution of the system
is determined by the Rayleigh’s criterion. (b) TERA imaging system. A pulsed laser illuminates the
scene, and the SPAD detects the light reflected back from the scene. The collected time response
contains information about the distance between the two targets. The resolution of the system is
determined by the time resolution of the SPAD.

2.2. Tera Imaging Overview

Consider a situation when one can detect not only direct (first bounce) back-scattered lights, but
also the lights that bounced between the objects(second bounce). Such a signal can be obtained by
illuminating the scene with a short-pulsed laser and detecting the returning light with a single
time-of-flight detector. The temporal signal of these multi-bounce lights directly encodes the
information about the distance between two object points in the scene. Figure 1b shows the simplified
example of how the information about the scene is encoded in the temporal signal. Suppose the scene
contains two small point objects p1 and p2 with a negligibly small diameter δ. The distances from
p1 and p2 to the imaging system C are d1 and d2 correspondingly. The distance between objects p1

and p2 is d3. The scene is being illuminated by a pulsed laser, and a time-of-flight detector measures
the returning light from the scene. The time-resolved measurement or time response of the scene is
illustrated on the left side of Figure 1b. The first impulse is due to the light directly reflected from object
p1, and it appears at t1 = 2d1

c , where c is the speed of light. Similarly, the second impulse appearing at
t2 = 2d2

c , corresponds to the light reflected from the object p2. The last impulse at t3 is due to the light
traveled following two paths: (C → p1 → p2 → C) and (C → p2 → p1 → C). Clearly, these two paths
have the same travel distances and, thus, in the time response, they both appear at t3 = d1 + d2 + d3

c .
By using these three values, t1, t2, t3, one can find d1, d2, and d3. In other words, one can completely
reconstruct relative positions of objects p1 and p2 up to Euclidean congruence.

Now, we fix the distance d3 and keep increasing the distances d1 and d2. Naturally, at some
point, the distance d3 will be below the Rayleigh diffraction limit for the conventional imaging system,
i.e., one can not visually separate two points (p1 and p2). However, for the proposed imaging system,
the increase of the distances d1 and d2 only results in the time shift of the entire signal. The difference
between three time tags, t1, t2, t3, is conserved. Therefore, one can still recover the scene(d1, d2 and
d3) up to Euclidean congruence. We note that we can find exact relative distance (d3) between the
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objects and distances (d1, d2) from the imaging system. However, the orientation (rotation) of the
point-cloud remains ambiguous. Because we are using single-pixel detector, one can rotate the entire
point-cloud along the depth direction or translate the entire point-cloud along the perpendicular
direction to the depth and record the same time response. We call it reconstructing point-cloud up to
Euclidean congruence.

Naturally, the arising question is whether it is possible to reconstruct the scene when the number
of objects is larger. Is the reconstruction unique, i.e., is it possible that two or more configurations
generate the same time response? Below, we show that the reconstruction of a point-cloud with n
objects is possible under some assumptions.

In this section, we use the results of Gkioulekas et al. [19], which shows that, when the measured
time-response of the scene contains a sufficiently rich set of first and second bounces, we can reconstruct
the point-cloud up to Euclidean congruence. Here, we follow the same notation as [19].

Now, consider a scenario where the scene consist of multiple point objects (Figure 2a).
Let p1, ..., pn ∈ R3 be n point objects in the scene and p0 ∈ R3 be a position of our imaging system
(a laser and a detector are co-located). See Figure 2b. A graph S = (p1, ..., pn) is a scene configuration
and K = (p0, p1, ..., pn) is a total configuration. The scene is illuminated with a pulsed laser and the
detector observes returning signal from the scene. We define light path αk = [p0, p1, ..., pz, p0](z ∈ N)
as a finite sequence of points where light has traveled. z is some integer. Note that any sequence α

starts from p0 and ends at p0, since our light source and detectors are co-located. First bounce, ping,
is a light path αk = [p0, pi, p0] for i = 1, ..., n. Second bounce, loop, is a light path αk = [p0, pi, pj, p0]

for i 6= j. Let vk be a length of αk. Subsequently, our measurement contains ensemble β = [v1, v2, ..., vk],
where vk are returned first or second bounce.

Figure 2. (a) Illustration of the imaging system (a pulsed laser and time-of-flight camera) and the
point-cloud scene. (b) We consider the imaging system as part of the point cloud. p0 is the location
of the imaging system. p1, p2, ..., pn are point objects in the scene. (c) Dashed green lines are pings,
and solid red lines are loop paths. If the measurement ensemble β contains four pings and six loops
then we say that the sub-graph is contained in the measurement ensemble. (d) If “x” are known points
and the measurement ensemble β contains one ping and three loops, then we say that the measurement
allows for trilateration.
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Next, let K5 be a sub-graph of K that has 5 vertices, including p0. If the measurement ensemble
β contains all pings and triangles of K5 that starts and ends at p0, and then we say that K5 is
contained within β. See Figure 2c. In this example, the measurement ensemble β contains four pings
(α = [p0, pi, p0] for i = 1, ..., 4) and six loops (α = [p0, pi, pj, p0] for i, j ∈ (1, 2, 3, 4) and i 6= j). Next,
if the measurement ensemble β contains a ping (α = [p0, p4, p0]) and three loops (α = [p0, pi, p4, p0] for
i = 1, ..., 3), then we say that β allows for trilateration. See Figure 2d.

Finally, we can apply the theorem from Gkioulekas et al. [19], which says that if K = (p0, p1, ..., pn)

is unknown configuration and β is the measurement ensemble of K that allows for trilateration,
then one can find trilateration based process to reconstruct K up to Euclidean congruence. Readers can
find detailed mathematical proof of the statement in [19]. Note that there exists a generic (or trivial)
point configuration K for which unique reconstruction is not possible. However, these special
configurations occur very rarely [19].

3. Reconstruction Algorithm

In this section, we design a trilateration based reconstruction algorithm for our imaging system.
There exist algorithms (TRIBOND [20] and LIGA [21]) that reconstruct a point-cloud given list of
unassigned edge measurements. TRIBOND is a deterministic algorithm that addresses the unassigned
distance geometry problem (uDGP). It has been successfully applied to reconstruct the structure
of molecules and nanoparticles while using edge distance lists extracted from X-ray or neutron
diffraction data. However, we can not apply the TRIBOND algorithm directly to our data, because it
contains not only the first bounce, but also the second bounce. Moreover, these bounces are unlabeled.
It requires modification. Gkioulekas et al. [19] showed that it is possible to reconstruct point-cloud
using unlabeled edge measurements. Here, we modify the TRIBOND algorithm [20] with method
described in [19] to process data that were acquired by our imaging system. The modified TRIBOND
algorithm (see Algorithm 1) consists of two parts: core finding and adding a vertex.

3.1. Core Finding

The first step of the buildup algorithm is to find the core. The core of the embedding point-cloud
is an over-constrained set of five points, including the source, see Figure 2c. The core can be broken
down into three pieces: the base triangle and two tetrahedra. The base triangle (Figure 2c (p0, p1, p3))
is constructed using two first (Figure 2c dashed green line) and one second (Figure 2a solid red line)
bounce. Each tetrahedra (Figure 2a (p0, p1, p2, p3) and (p0, p1, p4, p3)) uses one first and two second
bounces. Because the bounces are not labeled, one has to exhaustively search over all possible first
and second bounce pairs to build the base triangle and tetrahedra. Finally, we loop through all of the
remaining bounces to find one second bounce in order to test and check whether it fits into bridge
bond (p2, p4) between two vertices of the tetrahedra. If a correct second bounce is found and the
bridge bond is satisfied. We found a core structure and can move to “adding a vertex”. If the bridge
bond is not satisfied, then we restart “core finding” and choose another base triangle and tetrahedra
by exhaustive search. This process is repeated until the core structure is found.

3.2. Adding a Vertex

After core is found, next step is to iteratively add a vertex to the core. First, we choose a random
tetrahedron from the current structure. The next step is to search over all possible combinations of four
distances from the remaining distance pool. Three distances will form one first and two second bounce
distances. The remaining distance is used to test the bridge bond for the chosen rigid substructure.
For instance, in Figure 2d (p0, p1, p2, p3) is chosen as a rigid substructure and p4 is added point
while using one first bounce [p0, p4, p0] and two second bounces ([p0, p1, p4, p0] and [p0, p2, p4, p0]).
The second bounce [p0, p3, p4] is used for the bridge bond check.
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Algorithm 1: Modified TRIBOND
input : Distance list β

output : Reconstructed point-cloud

CoreFinding()
while Core is not found do

Choose D=3 entries(random) from the distance list β, and test all possible two first and one
second bounce pairs to construct base triangle

if a base triangle is found then
Choose D=6 entries from the distance list β, and test all possible two first and four
second bounce pairs to construct two tetrahedra with the base triangle

if two tetrahedra are found then
choose D=1 entry from the distance list β, and do bridge bond test.
if bridge bond test is passed then

Core is found
end

end
end

end

AddVertex()
while Distance list β is not empty do

Choose(random) four points(tetrahedra) from the substructure including the origin point
Choose D=3 entries from the distance list β, and test all possible one first and two second

bounce pairs in order to construct tetrahedra with one side lying on the previously chosen
tetrahedra

if tetrahedra is found then
Choose D=1 entry from the distance list β, and apply bridge bond test.
if bridge bond test is satisfied then

Add tetrahedra to the existing substructure and remove used entries from β

end
end

end
return point-cloud;

4. Simulations

Here, we test the modified TRIBOND algorithm using simulated data. We generate simulated data
using a simplified version of the transient light transport renderer [22,23]. The renderer is successfully
used in many times of flight applications [24,25]. Similar to the previous chapter, we consider the
following scenario. Let p1, ..., pn ∈ R3 be n point objects in the scene and p0 ∈ R3 be a position of
the TERA imaging system. Let di be the distance from pi to p0 for i = 1, ..., n and dij be the distance
from pi to pj for all i 6= j. See Figure 3. In this simulation, we assume the exact distance list and
do not consider the noise. The simulated scene contains n = 10 point objects that are located far
away from the imaging system. The Figure 3 shows the simulated time response, which contains a
mixture of first and second bounce. The first and second bounces signals are also shown separately.
Locations of the peaks in the signal are marked with blue triangles. We transform these locations of
the peaks into a distance list and use it as an input to the modified TRIBOND algorithm. On the right
side of the Figure 3, the result of reconstruction is shown. The reconstruction matches the original
point-cloud configuration up to Euclidean congruence; in other words, all of the pair-wise distances
were recovered; however, the rotation and transpose of the point-cloud are remaining unknown.
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Figure 3. Time response and reconstruction (a) Total time response of a scene with 10 randomly
generated points. The time response includes the first and second bounces. The peak extraction
algorithm is applied to find peaks. The peaks are marked by blue triangles. (b) Second bounce
time response; (c) Reconstruction of the point-cloud. After applying a peak extraction algorithm,
modified TRIBOND is used to reconstruct the point-cloud. The red dotted line corresponds to the
first bounce path connecting point in the scene and imaging system. The black line is the second
bounce path.

We conduct the following simulation in order to address more general scenarios and numerically
evaluate the algorithm. Our sensor’s dark count rate is 10 photons per second. The temporal
impulse response of the system is 80 ps. See Section 5 for more details on the experimental hardware.
Additionally, Poisson noise was added to the simulated data. We assume that, after pulsing, noise can
be avoided by using a fast gated SPAD detector, and we, therefore, do not add after pulsing noise in
the simulation. Laser power is assumed to be 10 W. We generate sets of simulated scenes with five to
twenty diffuse targets with varying sizes from 1 to 8 cm. Reconstructing all these scenes would not
be computationally feasible. In order to evaluate whether we have sufficient data to reconstruct the
scene, we note that, in order to reconstruct a vertex of a point cloud, it is sufficient to have one first
bounce and two second bounce signals from that vertex (see Section 3.2 and Gkioulekas et al. [19] for
details). By counting number peaks and comparing to ground truth pairwise distances, we evaluate
which vertexes of the scene remain recoverable given the correctly identified peaks. Figure 4 shows
the results of statistical analysis. A large number and large diameter sizes of objects may occlude some
possible light paths and can create overlapped peaks, which reduces the recoverability rate. However,
a high recoverability rate is achieved for a small number of points with small diameter sizes, since
most of the peaks are available. Note that an additional complication to the reconstruction is provided
by false peaks in the data. Section 5 discusses this issue.
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Figure 4. Statistical analysis of scene recoverability. The plot shows the probability of correctly imaging
all targets in a scene of spheres randomly placed in a volume of 10 cubic meters. The number of spheres
varies from five to 20 and the sphere diameter from 1 to 8 cm. The plot is generated from simulated
data using the realistic parameters of detector and photon noise and assuming a 10 W illumination
pulse from the laser.

5. Proof of Concept Experiments

In this section, we demonstrate the performance of the algorithm using experimental data.
The experimental setup is shown in Figure 5a. The imaging system contains an ultra-fast laser
(One Five Katana HP amplified diode laser) that emits laser pulses with 50 ps width and 10 MHz
repetition rate. An example of the laser illumination area is shown in Figure 5d. The laser has
1 W emission power at the wavelength of 532 nm. The scene is located around 4 m away from the
imaging system. The returning scattered light from the scene is collected by a SPAD (PMD series),
which has 20 micron diameter active-area. The SPAD has a photon detection efficiency of 49% at
wavelength 555 nm. The dark count rate(DCR) is 10 photons per second. After pulsing probability(AP)
is 0.1–3%. Dead time is 77 ns. The SPAD is coupled with a time-correlated single-photon counter
(PicoQuant HydraHarp). The total effective temporal impulse response of our imaging system is 80 ps.
Exposure time for each scene capture was set to 2 min. Note that we do not use any lenses in front of
the SPAD.

Figure 5b,c,e,f show examples of experimental scenes. The scene is located approximately 4 m
away from the imaging system. Circular patches and stars have a size of 4 × 4 cm, and the plane is
8 × 8 cm. First, we test the method using two circular patches. We place to patches 15 cm apart from
each other and move them apart up to 35 cm with 1 cm spacing (21 different positions). Note that
one patch is stationary, while another is moving. See Figure 6. The first column shows the actual
scene picture. The second column is a reference simulated picture of the scene using a camera with
an aperture size of 20 microns. The ground truth scene has been captured while using a regular
camera, and the image was convolved with a blur kernel that corresponds to 20 micron sensor at the
corresponding depth. The third column is a reconstruction of the scene using acquired data. Finally,
the fourth column shows the actual data. In the reconstruction, one can see that the two patches
clearly are separated. Figure 7 shows a plot of ground truth (green) and reconstructed (blue) distances.
The RMS error between ground truth and reconstructed distances is 0.03 cm. Next, we test the method
using different targets (star, plane, circular patch). Note that the circular patch and plane are white and
they have diffuse surfaces, whereas stars are brown and made of wood. See Figure 8a,b. One can notice
that the shape of the star and plane’s peak are slightly different from the circular patches, but still,
three peaks exist in the data. Stars have sharper and more pronounced peaks, whereas planes have
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wide peaks. Lastly, in Figure 8c, the reconstruction of three circular patches is shown. In the data, there
are three first bounces and three second bounces peaks.

As was mentioned in the simulation section, in some cases, it is possible for objects to block some
light paths, which results in missing peaks in the collected time response. Peaks may also be too weak
to detect and be missing for that reason. We can reconstruct vertexes that have at least one first and
two second bounce distance peaks preserved in the data (Section 3.2). The objects can also have low
reflectance or be not well-orientated, which may lead to lower peak intensity. However, as long as the
peak is detected, the actual intensity is not relevant. If needed, one can increase exposure time or laser
power to get a better signal. Additionally, peaks can also overlap with each other. One possible way
to address overlapped peaks is to add a post processing step, where all of the discovered nodes are
randomly tested for a potential double peak and added to the distance list for further reconstruction.
It is an interesting approach and it is subject for further study.

In addition to missing peaks, the collected data may contain incorrect peaks due to background
noise from ambient light, dark count rate, after pulsing. Incorrect peaks may also be what we call
orphaned peaks that are true peaks from a patch for which not enough peaks are available to reconstruct
the patch. A wrong peak can create an invalid vertex in the point-cloud if it satisfies the vertex adding
condition (Section 3.2). The algorithm would find an incorrect core and most likely only be able to
account for a very small fraction of the detected peaks in a small network. Hence, it can lead to an
incorrect reconstruction. In this case, the re-initialization of the algorithm that happens routinely as
part of the described algorithm can help. Because all distances used for core build-up and vertex
adding parts are randomized, there is a probability that the wrong peak will not be used in the core
and would be left over after all of the correct nodes and edges have been identified. A small number
of false peaks thus would not prevent a correct reconstruction. A better way to deal with incorrectly
detected peaks is an interesting subject for further research.

Figure 5. Imaging system and examples of the scene (a,d) The imaging system with co-located ultrafast
pulsed laser and SPAD. We placed a diffuser in front of the laser to scatter the laser light into the scene.
Note there is no lens before SPAD. On the right, the scene with illumination is shown. (b,c,e,f) Examples
of the test scenes. All of the targets have a dimension approximately 4 × 4 cm, except the plane, which
has dimensions 8 × 8 cm.
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Figure 6. Resolution test using 2 targets (a) Circular patches with diameter 3 cm are placed at distance
15 cm from each other. First column shows ground truth image. Simulated image of the scene
captured by an imaging system with 20-micron aperture size. Third column shows reconstructed
image. Last column is acquired data. In the time response, we can see clearly three peaks. Two first
and one second bounce. (b) Circular patches with diameter 3 cm are placed at distance 23 cm from
each other. (c) Circular patches with diameter 3 cm are placed at distance 35 cm from each other.

Our SPAD’s dark count rate is 10 photons per second. Coupled with 1 W laser, this dark count rate
is negligible in our experiments. After pulsing probability is around 0.1–3% and can also be ignored in
our experiments. One way to reduce after pulsing noise is to use fast time-gated SPADs. Gated mode
allows a SPAD to be sensitive only during a short gate window of hundreds of picoseconds. The gating
window can be moved in time. By progressively moving the active window through the scene in time,
one can largely eliminate after pulsing.
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Figure 7. Ground truth distance vs reconstructed distance. Circular patches with diameter 3 cm
are placed at distance 15 cm from each other and are moved apart from each other up to 35 cm.
The green line is ground truth distance and blue line is reconstructed distance. The RMS error of total
21 sample is 0.03 cm.

Figure 8. Experiments with different targets. (a) Two star targets of size 4 × 4 cm are placed at distance
30 cm from each other. Stars are made of wood and surface color is brown. (b) Circular patch and a
plane are placed at distance 30 cm from each other. (c) Three circular white patches with 4 cm diameter
are placed in the scene. In the time response, we can find six peaks: three first and three s bounces.
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6. Conclusions

In this paper, we present a novel imaging method that does not depend on the fundamental
diffraction limit. The method makes use of hardware and algorithm to break the resolution limit under
certain conditions of the scene (point-cloud assumption of the scene). In conventional imaging systems,
the fundamental diffraction limit is governed by the size of the aperture, wave-length, and distance to
the target. With fixed wave-length and distance, our proposed method does not depend on the size of
the aperture, but instead, depends on the time resolution of the imaging system. The method is robust
to change in surface materials. Currently, the main limitation is that the method is only applicable
to the point-cloud scenes. Such sparse scenes commonly occur in aerial or space imaging scenarios.
The paper gives base theory and introduces a method to use multiply scattered light (second bounce).
As a next step, we are exploring possibilities of using multiply scattered light for continuous surfaces.
As well as using machine learning to do the classification of objects below resolution limit while using
multiply scattered light.
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