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Abstract: This paper develops a finite-time path following control scheme for an underactuated
marine surface vessel (MSV) with external disturbances, model parametric uncertainties,
position constraint and input saturation. Initially, based on the time-varying barrier Lyapunov
function (BLF), the finite-time line-of-sight (FT-LOS) guidance law is proposed to obtain the desired
yaw angle and simultaneously constrain the position error of the underactuated MSV. Furthermore,
the finite-time path following constraint controllers are designed to achieve tracking control in
finite time. Additionally, considering the model parametric uncertainties and external disturbances,
the finite-time disturbance observers are proposed to estimate the compound disturbance. For the
sake of avoiding the input saturation and satisfying the requirements of finite-time convergence,
the finite-time input saturation compensators were designed. The stability analysis shows that
the proposed finite-time path following control scheme can strictly guarantee the constraint
requirements of the position, and all error signals of the whole control system can converge into a
small neighborhood around zero in finite time. Finally, comparative simulation results show the
effectiveness and superiority of the proposed finite-time path following control scheme.

Keywords: underactuated marine surface vessel; path following; finite-time; position constraint;
input saturation; disturbance observer

1. Introduction

The marine surface vessel (MSV) mainly relies on the guidance system to perform the required
control scheme, such as path following, target tracking and path tracking, in which the influences
of wind, currents and waves on the ship, which are simply considered in [1–4]. The path following
control aims to control the ship to reach and track a predetermined parameterized curve at a certain
velocity without time constraints [5]. In the last few years, the control problem of path following for
the underactuated MSV has attracted extensive attention in the control field [6–8].

The guidance law is an important component of the path following problem, which aims to
compute the desired heading angle for the subsequent controller design by processing path information.
The classical guidance laws consist of the line-of-sight (LOS) guidance, constant bearing guidance,
and pure pursuit guidance [9]. Especially, because the LOS guidance law has simple and intuitive
characteristics, it has been widely used in the path following control of MSV. At an early stage,
the classical LOS guidance law for reducing the cross-track error was presented in [10]. However,
although the classical LOS guidance laws are simple and effective, they have limitations for the vessel,
subject to external disturbances. Then, the integral line-of-sight (ILOS) guidance law was developed
by introducing the integral actions into the LOS guidance law, which can eliminate the drifting
effect [11,12]. Due to the complexity of the environment and the requirement of the operation accuracy,
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it is necessary to not only consider the tracking performance of the desired path, but also to ensure that
the position errors of the ship during navigation does not have large jitter, otherwise it is not conducive
to the accurate path tracking of the ship. In addition, in order to navigate safely, the actuator saturation
of the underactuated MSV should be limited. Otherwise, the control performance of the system will
deteriorate and lead to the instability of the control system [13]. For the problem of position error
constraint and actuator saturation, in [14], a path-following controller based on the error-constrained
line-of-sight (EC-LOS) guidance law was presented for an MSV. An asymmetric time-varying barrier
Lyapunov function (BLF) and a smooth hyperbolic tangent function were proposed for a fully actuated
MSV to address the asymmetrical input and output constraint in [15]. In the case of actuator saturation
and external disturbance, a path following control scheme for a MSV with a prescribed performance
was presented in [16]. In [17], a control scheme was presented for the underactuated MSV, which
considers not only the position error constraint, input saturation, external disturbance and model
uncertainties, but also time-varying sideslip. However, the convergence time of the above literature is
asymptotically convergent, which implies that exact convergence cannot be guaranteed in finite time,
and the influence of the convergence time is not considered. In order to obtain a high-performance
solution, this paper proposes an FT-LOS guidance law, which can ensure that the position errors will
not exceed the error constraint, and converge into a small neighborhood around zero in finite time.

In addition to the requirements of the error constraints and input saturation, it is also important
to consider the effect of convergence time on system performance. The finite-time controller makes the
system errors converge in finite time, thereby obtaining faster convergence rate and better disturbance
rejection properties. The research on the finite-time control of the underactuated MSV focuses on
trajectory tracking control problem. In [18], a finite-time disturbance observer was presented to
reduce the environment disturbances, which has the advantages of fast convergence speed and strong
robustness. In order to precisely estimate completely external disturbances and unknown dynamics, a
finite-time tracking controller was presented for trajectory tracking in [19]. In addition, it improves the
robustness and tracking accuracy of the control system. A finite-time sliding mode controller for an
USV with model parametric uncertainties and external disturbances was presented in [20]. A path
following controller based on a finite-time observer was proposed in [21], which only considers the
large sideslip angle and external disturbances. However, the influence of position error constraints on
vessel path following control are not considered. In [22], a fuzzy finite-time controller was proposed for
the underactuated MSV, subject to external disturbances, parametric uncertainties, sideslip angle and
actuator saturation in finite-time, but the position error constraint was not considered in the controller
design. Therefore, considering the influence of position error constraint on path following controller,
an FT-LOS guidance law was designed by introducing time-varying BLF into the design process of
LOS guidance law.

Based on the above observations, this paper presents a finite-time path following control
scheme for the underactuated MSV under the conditions of position constraint, external disturbances,
model parameter uncertainties, and actuator saturation. The main contributions and superiority of
this paper are summarized as follows:

(1) A finite-time line-of-sight (FT-LOS) guidance law is designed by integrating a time-varying BLF
into the classical LOS guidance law design process. The proposed FT-LOS guidance law can
ensure that the position errors will not exceed the error constraints, and converge into a small
neighborhood around zero in finite time.

(2) The finite-time attitude constraint controller and the finite-time velocity constraint controller are
designed to achieve tracking control in finite time. A command filter is designed to eliminate the
complex calculation of the virtual control law.

(3) The finite-time disturbance observers are proposed to reduce the compound disturbance.
In addition the finite-time input saturation compensators are designed to avoid the actuator
saturation and satisfy the finite-time convergence requirement.
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(4) The stability analysis shows that the proposed finite-time path following control algorithm
can strictly guarantee the constraint requirement of the position, and all error signals of the
whole closed-loop control system can converge into a small neighborhood around zero in finite
time. Comparative simulation results illustrate the effectiveness and superiority of the proposed
finite-time control scheme.

The rest of this paper is arranged as follows. Section 2 presents the preliminaries and problem
formulation. The finite-time path following control algorithm is proposed in Section 3, consisting of the
FT-LOS guidance law design, the finite-time attitude constraint controller design, and the finite-time
velocity constraint controller design. Section 4 analyses the stability of the whole closed-loop control
system. Comparative simulation results are shown and analyzed in Section 5 to demonstrate the
effectiveness and superiority of the proposed finite-time path following control algorithm. Finally,
the conclusions are shown in Section 6.

2. Preliminaries and Problem Formulation

2.1. Preliminaries

Notation 1. In this paper, | · | stands for the absolute value of a scalar;
∧
(·) stands for the estimate of (·);

∼
(·) =

∧
(·)−(·) defines the estimation error.

Definition 1. ([23]) A barrier Lyapunov function is a scalar function V(x) defined with respect to the system
ẋ = f (x) on an open region D containing the origin. The V(x) is continuous, is positive definite, has continuous
first-order partial derivatives at every point of D, has the property V(x)→ ∞ as x approaches the boundary of
D, and satisfies V(x) ≤ b, ∀t ≥ 0 along the solution of ẋ = f (x) for x(0) ∈ D and some positive constant b.

Definition 2. ([24]) Consider the following system:

ẋ(t) = f (x(t)) (1)

where f : D → Rn is continuous on an open neighborhood D ⊆ Rn of the origin and f (0) = 0. The origin is
said to be a finite-time-stable equilibrium of (1) if there exists an open neighborhood N ⊆ D of the origin and a
function T : N\{0} → (0, ∞), called the settling-time function, such that the following statements hold:

(i) Finite-time convergence: For every x(0) ∈ N\{0}, x(t) is defined on [0, T(x)), x(t) ∈ N\{0} for all
t ∈ [0, T(x)), and lim

t→T(x)
x(t) = 0.

(ii) Lyapunov stability: For every open neighborhood Uε of 0 there exists an open subset Uδ of N containing 0
such that, for every x(0) ∈ Uδ\0, x(t) ∈ Uε for all t ∈ [0, T(x)).

The origin is said to be a globally finite-time-stable equilibrium if it is a finite-time-stable equilibrium with
D = N = Rn.

Lemma 1. ([25]) Suppose that there is a positive definite continuous Lyapunov function V(x, t) defined on
U1 ⊂ Rn of the origin, and

V̇(x, t) ≤ −c1Vα(x, t)− c2V(x, t), ∀x ∈ U1\{0} (2)

where c1 > 0, c2 > 0 and 0 < α < 1. Then the origin of system (1) is locally finite-time stable and the settling
time can be given by T ≤ ln(1+(c2/c1)V1−α(x0, t0))/(c2 − c2α).
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Lemma 2. ([26]) For any xi ∈ R, i = 1, 2, ..., n, and a real number 0 < p ≤ 1, then(
n

∑
i=1
|xi|
)p

≤
n

∑
i=1
|xi|p (3)

2.2. Model of Underactuated Marine Surface Vessel

The dynamics and kinematics equations for the underactuated MSV are defined by [9].
The kinematics model of the underactuated MSV can be written as follows:

ẋ = u cos(ψ)− v sin(ψ)
ẏ = u sin(ψ) + v cos(ψ)
ψ̇ = r

(4)

where [x, y, ψ]T represents the surge position, the sway position and the heading angle of the MSV in
the earth-fixed inertial frame; [u, v, r]T represents the surge velocity, the sway velocity, and the yaw
rate of the MSV in the body-fixed frame.

In order to simplify the dynamics model, it is necessary to make reasonable assumption as follows:

Assumption 1. [21]

(1). The heave, pitch and roll motions are neglected in path following on the horizontal plane.
(2). The vehicle is rigid body and its mass distribution is homogeneous, and the vehicle is port/starboard symmetric.
(3). The origin of body-fixed is located at the center of gravity of the vehicle.

The dynamics model of the underactuated MSV can be written as follows:

m11u̇ = m22vr− d11u︸ ︷︷ ︸
fu

+τwu + τu

m22v̇ = −m11ur− d22v︸ ︷︷ ︸
fv

+τwv

m33ṙ = (m11 −m22)uv− d33r︸ ︷︷ ︸
fr

+τwr + τr

(5)

where the positive constant terms m11, m22, m33 represent the vessel inertia including added mass. The positive
constant terms d11, d22, d33 represent the hydrodynamic damping, which can be obtained by using system
identification. Therefore, f j(j = u, v, r) have the model parametric uncertainties. τwj(j = u, v, r) are the
time-varying environment disturbances. The surge force τu and the yaw moment τr are the control inputs.
In practical engineering, because of the physical constraints of the vessel’s actuators, the control force and
moment can be expressed as follows:

τi =


τi max, if τic > τi max

τic, if τi min ≤ τic ≤ τi max

τi min, if τic < τi min

, i = u, r (6)

Assumption 2. The compound disturbances dj = τwj + f j(j = u, v, r) and their respective derivatives are
bounded, which satisfy the following inequalities:

∣∣dj
∣∣ ≤ d̄j,

∣∣ḋj
∣∣ ≤ Cdj

, where d̄j and Cdj
are positive constants.

2.3. Path Following Error Dynamic

In order to converge to the desired path, a general and effective guidance law for the path
following control problem is a look-ahead LOS guidance law. Figure 1 shows the geometrical
illustration of the LOS guidance law for the MSV.
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Figure 1. The geometrical illustration of LOS guidance for a MSV.

The desired path is defined as Xp(ϑ) =
[
xp(ϑ), yp(ϑ)

]T , where ϑ represents the path variable.
The path tangent angle is calculated by

ψp(ϑ) = arctan2(y′p(ϑ), x′p(ϑ)) (7)

where x′p =
∂xp
∂ϑ and y′p =

∂yp
∂ϑ . The along-track error xe and the cross-track error ye can be written

as follows: [
xe

ye

]
=

[
cos ψp sin ψp

− sin ψp cos ψp

] [
x− xp

y− yp

]
(8)

The differentiation of xe can be obtained:

ẋe =ẋ cos ψp + ẏ sin ψp − ẋp cos ψp − ẏp sin ψp

+ ψ̇p (−(x− xp) sin ψp + (y− yp) cos ψp)︸ ︷︷ ︸
cross-track error ye

(9)

Then, substituting (4) into (9) yields

ẋe = u cos(ψ− ψp)− v sin(ψ− ψp) + ψ̇pye − ϑ̇
√

x′p
2 + y′p

2

= U cos(ψ− ψp + β) + ψ̇pye − ϑ̇
√

x′p
2 + y′p

2
(10)

where U =
√

u2 + v2 denotes the speed of the vessel and β = arctan2(v, u) is the vessel’s sideslip angle.
Similarly, the differentiation of ye can be obtained:

ẏe =− ẋ sin ψp + ẏ cos ψp + ẋp sin ψp − ẏp cos ψp

− ψ̇p ((x− xp) cos ψp + (y− yp) sin ψp)︸ ︷︷ ︸
along-track error xe

(11)

and substituting (4) into (11) results in,

ẏe = u sin(ψ− ψp) + v cos(ψ− ψp)− ψ̇pxe

= U sin(ψ− ψp + β)− ψ̇pxe
(12)
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Finally, similar to [27], the derivatives of errors become{
ẋe = U cos(ψ− ψp + β) + ψ̇pye − ϑ̇

√
x′p

2 + y′p
2

ẏe = U sin(ψ− ψp + β)− ψ̇pxe
(13)

Considering the mathematical model of an underactuated MSV with the external disturbances,
model parametric uncertainties, position constraint and input saturation, the control objectives of
this paper are as follows: (1) Design the FT-LOS guidance law to ensure that the position error will
not exceed the error constraint, and converge into a small neighborhood around zero in finite time.
(2) The finite-time attitude constraint controller τr and the finite-time velocity constraint controller
τu are designed to make the underactuated MSV track the desired path at the desired speed in finite
time. In addition, it has faster convergence speed and better disturbance rejection performance. (3) All
error signals of the whole closed-loop control system can converge into a small neighborhood around
zero in finite time, and position errors meet the constraint requirements, that is to say, |xe| < kx(t),
|ye| < ky(t), where

{
kx(t), ky(t)

}
are differentiable time-varying error constrains.

To facilitate the controller design, we make the assumption as follows:

Assumption 3. The initial position errors satisfy the prescribed constraints |xe(t0)| < kx(t0),
|ye(t0)| < ky(t0).

3. Finite-Time Path Following Control Algorithm Design

In this section, the finite-time path following control scheme is proposed to realize the control
objectives. The finite-time path following control scheme for the underactuated MSV includes three
parts: (1) FT-LOS guidance law design; (2) the finite-time attitude constraint controller design;
(3) the finite-time velocity constraint controller design. The schematic diagram of the whole close-loop
control system is shown in Figure 2. The specific design process of the finite-time path following
control algorithm will be introduced in the following subsections.

Figure 2. The block diagram of path following control.

3.1. Ft-Los Guidance Law Design

The FT-LOS guidance law is proposed to obtain the update law and the desired heading angle.
The time-varying BLF will be integrated into the FT-LOS guidance to ensure the position error

constraints. Define the time-varying BLF as follows:

V1 =
1
2

log
k2

x(t)
k2

x(t)− x2
e
+

1
2

log
k2

y(t)
k2

y(t)− y2
e

=
1
2

log
1

1− ξ2
x
+

1
2

log
1

1− ξ2
y

(14)
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where ξx = xe
kx(t)

and ξy = ye
ky(t)

.
Taking the derivative of V1, we obtain

V̇1 =
ξx

1− ξ2
x

(
ẋe

kx(t)
− xe k̇x(t)

k2
x(t)

)
+

ξy

1− ξ2
y

(
ẏe

ky(t)
−

ye k̇y(t)
k2

y(t)

)
(15)

Substituting (13) into (15), we obtain

V̇1 =
xe

k2
x(t)− x2

e

(
U cos(ψ− ψp + β)− ϑ̇

√
x′p

2 + y′p
2 − xe k̇x(t)

kx(t)

)
− y2

e
k2

y(t)− y2
e

k̇y(t)
ky(t)

+
ye

k2
y(t)− y2

e
U sin(ψ− ψp + β)

+
xe

k2
x(t)− x2

e
ψ̇pye

(
1− k2

x(t)− x2
e

k2
y(t)− y2

e

) (16)

Taking the time derivative of ψp yields

ψ̇p = ϑ̇
y′′p x′p − x′′p y′p

x′p
2 + y′p

2 (17)

Invoking (17) into (16), we have

V̇1 =
xe

k2
x(t)− x2

e

(
U cos(ψ− ψp + β)− ϑ̇σ

)
− x2

e
k2

x(t)− x2
e

k̇x(t)
kx(t)

− y2
e

k2
y(t)− y2

e

k̇y(t)
ky(t)

+
ye

k2
y(t)− y2

e
U sin(ψ− ψp + β)

(18)

with σ =
√

x′p
2 + y′p

2 − ye
y′′p x′p−x′′p y′p

x′p
2+y′p

2

(
1− k2

x(t)−x2
e

k2
y(t)−y2

e

)
.

The update law and the desired heading angle are designed as

ϑ̇ =
U cos(ψ− ψp + β) + δx

σ
(19)

ψd = ψp − β− arctan(δy, ∆) (20)

δx =
k1

xe
log

k2
x(t)

k2
x(t)− x2

e
+

k2

xe
log

3
4

(
k2

x(t)
k2

x(t)− x2
e

)
− xe k̇x(t)

kx(t)
(21)

δy =
k3

ye
log

k2
y(t)

k2
y(t)− y2

e
+

k4

ye
log

3
4

(
k2

y(t)
k2

y(t)− y2
e

)
− ye

U
k̇y(t)
ky(t)

√
δ2

y + ∆2 (22)

where k1, k2, k3 and k4 are positive design parameters; 0 < ∆min ≤ ∆ ≤ ∆max denotes the
look-ahead distance; To avoid σ = 0, we can take σ = σ0sgn(σ) when |σ| < σ0, where σ0 is a
small positive parameter.
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Substituting (19)–(22) into (18) results in

V̇1 =− xe

k2
x(t)− x2

e
δx −

x2
e

k2
x(t)− x2

e

k̇x(t)
kx(t)

− y2
e

k2
y(t)− y2

e

k̇y(t)
ky(t)

− yeU
k2

y(t)− y2
e

δy√
δ2

y + ∆2
+

yeUφ1ψe

k2
y(t)− y2

e

=− k1

k2
x(t)− x2

e
log

k2
x(t)

k2
x(t)− x2

e
− k3U

(k2
y(t)− y2

e )
√

δ2
y + ∆2

log
k2

y(t)
k2

y(t)− y2
e

− k2

k2
x(t)− x2

e
log

3
4

(
k2

x(t)
k2

x(t)− x2
e

)
− k4U

(k2
y(t)− y2

e )
√

δ2
y + ∆2

log
3
4

(
k2

y(t)
k2

y(t)− y2
e

)

+
yeUφ1ψe

k2
y(t)− y2

e

(23)

where

φ1 =
(1− cosψe)

ψe

δy√
δ2

y + ∆2
+

sin ψe

ψe

∆√
δ2

y + ∆2
(24)

and ψe = ψ− ψd.

Remark 1. In (24), we have
∣∣∣ 1−cos ψe

ψe

∣∣∣ < 0.73,
∣∣∣ sin ψe

ψe

∣∣∣ ≤ 1,

∣∣∣∣∣ ∆√
δ2

y+∆2

∣∣∣∣∣ ≤ 1 and

∣∣∣∣∣ δy√
δ2

y+∆2

∣∣∣∣∣ ≤ 1. Therefore,

φ1 ≤ 1.73 is bounded.

3.2. The Finite-Time Attitude Constraint Controller Design

Step 1. (Kinematics controller). Define the yaw tracking error as follows:

ψe = ψ− ψd (25)

Define the Lyapunov function V2 as follows:

V2 =
1
2

ψ2
e (26)

Taking the time derivative of V2, we obtain

V̇2 = ψe (r− ψ̇d) (27)

Step 2. (Dynamics controller). Define the yaw angle rate error as follows:

re = r− αr (28)

where αr is the virtual control law.
Substituting (28) into (27) yields

V̇2 = ψe (re + αr − ψ̇d) (29)

In order to avoid the complicated calculation of the derivative of αr, the proposed command filter is
shown in Figure 3. Furthermore, an auxiliary system is presented to compensate for the estimation error.
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Figure 3. Configuration of the command filter.

A second-order command filter is expressed as follows:
ρ̇1 = ρ2

ρ̇2 = −2ξnωn

(
ρ2 +

ω2
n

2ξnωn
(ρ1 − αrc)

) (30)

where ξn and ωn are positive design parameters; αrc is the input signal of the second-order command
filter; ρ1 and ρ2 denote the estimations of αr and α̇r, respectively.

Define the estimation error as follow:

∆αr = αr − αrc (31)

Substituting (31) into (29) yields

V̇2 = ψe (re + αrc + ∆αr − ψ̇d) (32)

Therefore, design a nominal virtual yaw rate αrc for (32) as follows:

αrc = −kψψe − kψ1|ψe|
1
2 + ψ̇d + crζr −

c2
r

2
ψe −

yeUφ1

k2
y − y2

e
(33)

where kψ, kψ1 and cr denote the positive design constants. To compensate the estimation error ∆αr of
the virtual yaw rate, the auxiliary system is presented as follows:

ζ̇r =

{
0, |ζr| ≤ ζ∗r

−arζr − ar1|ζr|
1
2 + br∆αr −

(
1
2 b2

r ∆α2
r + ψe∆αr

)
ζ−1

r , |ζr| > ζ∗r
(34)

where ar > 1, ar1 > 0 and br > 0; ζ∗r is a positive parameter.
The Lyapunov function is defined as follows:

V3 = V2 +
1
2

ζ2
r (35)

Invoking (33) and (34), the time derivative of V3 is given by

V̇3 =V̇2 + ζr ζ̇r

=ψere − kψψ2
e − kψ1|ψe|

3
2 + crψeζr −

1
2

c2
r ψ2

e − arζ2
r − ar1 |ζr|

3
2

+ brζr∆αr −
1
2

b2
r ∆αr

2 − yeUφ1ψe

k2
y − y2

e

(36)

Based on the Young’s inequality, we can obtain

crψeζr ≤
1
2

c2
r ψ2

e +
1
2

ζ2
r (37)
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brζr∆αr ≤
1
2

b2
r ∆α2

r +
1
2

ζ2
r (38)

Substituting (37) and (38) into (36), we have

V̇3 ≤− kψψ2
e − kψ1|ψe|

3
2 − (ar − 1)ζ2

r − ar1 |ζr|
3
2

+ ψere −
yeUφ1ψe

k2
y − y2

e

(39)

Taking the time derivative of re along (5), we have

ṙe = ṙ− α̇r =
1

m33
(τr + dr)− α̇r (40)

The Lyapunov function is defined as follows:

V4 = V3 +
1
2

m33r2
e (41)

Taking the time derivative of V4 along (39) and (40), we have

V̇4 ≤− kψψ2
e − kψ1|ψe|

3
2 − (ar − 1)ζ2

r − ar1 |ζr|
3
2 + ψere

− yeUφ1ψe

k2
y − y2

e
+ re (τr + dr −m33α̇r)

(42)

Next, a finite-time disturbance observer is designed in order to estimate the compound
disturbance dr: 

˙̂r =
1

m33

[
τr − b1r̃− b2|r̃|γ1 sgn(r̃)− d̄r sgn(r̃)

]
d̂r = m33 ˙̂r− τr = −b1r̃− b2|r̃|γ1 sgn(r̃)− d̄r sgn(r̃)

(43)

where d̂r is the observation value of the disturbance, 0 < γ1 < 1, b1, b2 are positive design constants
and define the estimation error as r̃ = r̂− r. Then, taking the time derivative of r̃ results in

˙̃r =
1

m33

[
−b1r̃− b2|r̃|γ1 sgn(r̃)− d̄r sgn(r̃)− dr

]
(44)

Theorem 1. For the mathematical model of an underactuated MSV (4) and (5), considering the compound
disturbance dr, a finite-time disturbance observer is designed as (43), then the disturbance observation error d̃r

can converge to 0 in finite time.

Proof. Consider a Lyapunov function as follows:

Vdr =
1
2

r̃2 (45)

Taking the time derivative of Vdr results in

V̇dr = r̃
1

m33

[
−b1r̃− b2|r̃|γ1 sgn(r̃)− d̄r sgn(r̃)− dr

]
≤ −b1

1
m33

r̃2 − b2
1

m33
|r̃|γ1+1

= −2
b1

m33
Vdr − 2(γ1+1)/2 b2

m33
V(γ1+1)/2

dr

= −χ1Vdr − χ2V(γ1+1)/2
dr

(46)
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where χ1 = 2 b1
m33

and χ2 = 2(γ1+1)/2 b2
m33

. According to the Lemma 1, the estimation error r̃ converges

to 0 in finite time, and the convergence time is: T1 ≤
ln
(

1+ χ1
χ2

V
1−(γ1+1)/2
dr

)
χ1(1−(γ1+1)/2) .

The observation error of the compound disturbance dr is

d̃r = d̂r − dr = m33 ˙̂r− τr − (m33ṙ− τr)

= m33 ˙̃r
(47)

Because it is proven that the estimation error r̃ converges to zero in finite time, the disturbance
observation error d̃r can converge to 0 in finite time, that is d̃r = 0, ∀t ≥ T1. The Theorem 1 has
been proven.

To handle the actuator saturation (6), a finite-time attitude input saturation compensator is
designed as follows:

χ̇r = −kχr1 χr − kχr2 Sχr + ∆τr (48)

where χr is the output of the finite-time attitude input saturation compensator, kχr1 > 0, kχr2 > 0,
∆τr = τr − τrc. Sχr is designed as follows:

Sχr =


|χr|

1
2 sgn(χr), if |χr| ≥ εχr

3
2

ε
− 1

2
χr χr −

1
2

ε
− 3

2
χr χ2

r , else
(49)

The finite-time attitude tracking constraint controller can be designed as follows:

τrc = m33α̇r − krre − kr1|re|
1
2 − ψe − d̂r + kχr χr (50)

where kr, kr1 and kχr are positive parameters.
The Lyapunov function is defined as follows:

Vr = V4 +
1
2

χ2
r (51)

Taking the time derivative of Vr along (48)–(50), we have

V̇r ≤− kψψ2
e − kψ1|ψe|

3
2 − (ar − 1)ζ2

r − ar1 |ζr|
3
2

− yeUφ1ψe

k2
y − y2

e
− krr2

e − kr1|re|
3
2 − red̃r + kχr χrre

+ re∆τr − kχr1 χ2
r − kχr2 |χr|

3
2 + χr∆τr

(52)

According to the Theorem 1, for ∀t ≥ T1, the disturbance observation error d̃r = 0. Therefore,
for ∀t ≥ T1, there are

V̇r ≤− kψψ2
e − kψ1|ψe|

3
2 − (ar − 1)ζ2

r − ar1 |ζr|
3
2

− yeUφ1ψe

k2
y − y2

e
− krr2

e − kr1|re|
3
2 + kχr χrre

+ re∆τr − kχr1 χ2
r − kχr2 |χr|

3
2 + χr∆τr

(53)

Based on the Young’s inequality, we can obtain

reχr ≤
1
2

r2
e +

1
2

χ2
r (54)

re∆τr ≤
1
2

r2
e +

1
2

∆τ2
r (55)
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χr∆τr ≤
1
2

χ2
r +

1
2

∆τ2
r (56)

Substituting (54)–(56) into (53), we have

V̇r ≤− kψψ2
e − kψ1|ψe|

3
2 − (ar − 1)ζ2

r − ar1|ζr|
3
2

− yeUφ1ψe

k2
y − y2

e
−
(

kr −
kχr

2
− 1

2

)
r2

e − kr1|re|
3
2

−
(

kχr1 −
kχr

2
− 1

2

)
χ2

r − kχr2 |χr|
3
2 + ∆τ2

r

(57)

3.3. The Finite-Time Velocity Constraint Controller Design

Define the surge velocity tracking error as follows:

ue = u− ud (58)

where ud is the desired surge velocity.
Consider a Lyapunov function as follows:

V5 =
1
2

m11u2
e (59)

Taking the time derivative of V5 along (5) and (58), we have

V̇5 = ue(du + τu −m11u̇d) (60)

Next, a finite-time disturbance observer is designed to estimate the compound disturbance du:
˙̂u =

1
m11

[
τu − b3ũ− b4|ũ|γ2 sgn(ũ)− d̄u sgn(ũ)

]
d̂u = m11 ˙̂u− τu = −b3ũ− b4|ũ|γ2 sgn(ũ)− d̄u sgn(ũ)

(61)

where d̂u is the observation value of the disturbance, 0 < γ2 < 1, b3, b4 are positive design constants
and define the estimation error as ũ = û− u. Then, taking the time derivative of ũ results in

˙̃u =
1

m11

[
−b3ũ− b4|ũ|γ2 sgn(ũ)− d̄u sgn(ũ)− du

]
(62)

Theorem 2. For the mathematical model of an underactuated MSV (4) and (5), considering the compound
disturbance du, a finite-time disturbance observer is designed as (61), then the disturbance observation error d̃u

can converge to 0 in finite time.

Proof. Define the Lyapunov function as follows:

Vdu =
1
2

ũ2 (63)
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Taking the time derivative of Vdu results in

V̇du = ũ
1

m11

[
−b3ũ− b4|ũ|γ2 sgn(ũ)− d̄u sgn(ũ)− du

]
≤ −b3

1
m11

ũ2 − b4
1

m11
|ũ|γ2+1

= −2
b3

m11
Vdu − 2(γ2+1)/2 b4

m11
V(γ2+1)/2

du

= −χ3Vdu − χ4V(γ2+1)/2
du

(64)

where χ3 = 2 b3
m11

and χ4 = 2(γ2+1)/2 b4
m11

. According to the Lemma 1, the estimation error ũ converges

to 0 in finite time, and the convergence time is: T2 ≤
ln
(

1+ χ3
χ4

V1−(γ2+1)/2
du

)
χ3(1−(γ2+1)/2) .

The observation error of the compound disturbance du is

d̃u = d̂u − du = m11 ˙̂u− τu − (m11u̇− τu)

= m11 ˙̃u
(65)

Because it is proven that the estimation error ũ converges to zero in finite time, the disturbance
observation error d̃u converges to 0 in finite time, that is d̃u = 0, ∀t ≥ T2. Theorem 2 has
been proven.

To handle the actuator saturation (6), a finite-time velocity input saturation compensator is
designed as follows:

χ̇u = −kχu1 χu − kχu2 Sχu + ∆τu (66)

where χu is the output of the finite-time velocity input saturation compensator, kχu1 > 0, kχu2 > 0,
∆τu = τu − τuc. Sχu is designed as follows:

Sχu =


|χu|

1
2 sgn(χu), if |χu| ≥ εχu

3
2

ε
− 1

2
χu χu −

1
2

ε
− 3

2
χu χ2

u, else
(67)

Then, the finite-time surge velocity constraint controller is designed as follows:

τuc = m11u̇d − kuue − ku1|ue|
1
2 − d̂u + kχu χu (68)

where ku, ku1 and kχu are control parameters.
Consider a Lyapunov function as follows:

Vu = V5 +
1
2

χ2
u (69)

Taking the time derivative of Vu along (66)–(68), we have

V̇u =− kuu2
e − ku1|ue|

3
2 − ued̃u + kχu χuue

+ ue∆τu − kχu1 χ2
u − kχu2 |χu|

3
2 + χu∆τu

(70)

According to the Theorem 2, for ∀t ≥ T2, the disturbance observation error d̃u = 0. Therefore,
for ∀t ≥ T2, there are

V̇u =− kuu2
e − ku1|ue|

3
2 + kχu χuue

+ ue∆τu − kχu1 χ2
u − kχu2 |χu|

3
2 + χu∆τu

(71)
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Based on the Young’s inequality, we can obtain

ueχu ≤
1
2

u2
e +

1
2

χ2
u (72)

ue∆τu ≤
1
2

u2
e +

1
2

∆τ2
u (73)

χu∆τu ≤
1
2

χ2
u +

1
2

∆τ2
u (74)

Substituting (72)–(74) into (71), we have

V̇u ≤−
(

ku −
kχu

2
− 1

2

)
u2

e − ku1|ue|
3
2

−
(

kχu1 −
kχu

2
− 1

2

)
χ2

u − kχu2 |χu|
3
2 + ∆τ2

u

(75)

4. Stability Analysis

Theorem 3. Consider the whole control system of the mathematical model (4) and (5) with external disturbances,
model parametric uncertainties, and input saturation, and suppose that Assumptions 1 and 2 are satisfied. The
update law and the desired heading angle are presented as (19) and (20), the auxiliary system is developed as (34),
the finite-time disturbance observers are designed as (43) and (61), the finite-time tracking constraint controllers
are designed as (50) and (68), and the finite-time input saturation compensators are designed as (48) and (66).
Select the appropriate controller parameters: kr >

kχr
2 + 1

2 , kχr1 >
kχr
2 + 1

2 , ku >
kχu

2 + 1
2 and kχu1 >

kχu
2 + 1

2 ,
then the following conclusions are valid:

(i) All the error signals of the whole control system are uniformly ultimately bounded. Additionally, position
errors meet the constraint requirements, that is |xe| < kx(t) and |ye| < ky(t).

(ii) The tracking error of an underactuated MSV can converge into a small neighborhood around zero in
finite time.

Proof. Construct the Lyapunov function of the whole control system as follows:

V =V1 + Vr + Vu

=
1
2

log
k2

x
k2

x − x2
e
+

1
2

log
k2

y

k2
y − y2

e
+

1
2

ψ2
e +

1
2

ζ2
r

+
1
2

m33r2
e +

1
2

χ2
r +

1
2

m11u2
e +

1
2

χ2
u

(76)

By virtue of (23), (57), (75) and Lemma 2, the differentiation of V can be obtained:

V̇ ≤− k1

k2
x − x2

e
log

k2
x

k2
x − x2

e
− k3U

(k2
y − y2

e )
√

δ2
y + ∆2

log
k2

y

k2
y − y2

e

− k2

k2
x − x2

e
log

3
4

(
k2

x
k2

x − x2
e

)
− k4U

(k2
y − y2

e )
√

δ2
y + ∆2

log
3
4

(
k2

y

k2
y − y2

e

)

− kψψ2
e − kψ1|ψe|

3
2 − (ar − 1)ζ2

r − ar1 |ζr|
3
2 − (kr −

kχr

2
− 1

2
)r2

e

− kr1|re|
3
2 − (kχr1 −

kχr

2
− 1

2
)χ2

r − kχr2 |χr|
3
2 − (ku −

kχu

2
− 1

2
)u2

e

− ku1|ue|
3
2 − (kχu1 −

kχu

2
− 1

2
)χ2

u − kχu2 |χu|
3
2 + ∆τ2

r + ∆τ2
u

≤− K1V − K2V
3
4 + K3

(77)
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where K1 = min


2k1

k2
x − x2

e
,

2k3U

(k2
y − y2

e )
√

δ2
y + ∆2

, 2kψ, 2(ar − 1),
2

m33
(kr −

kχr

2
− 1

2
),

2(kχr1 −
kχr

2
− 1

2
),

2
m11

(ku −
kχu

2
− 1

2
), 2(kχu1 −

kχu

2
− 1

2
)

, K2 =

min


2

3
4 k2

k2
x − x2

e
,

2
3
4 k4U

(k2
y − y2

e )
√

δ2
y + ∆2

, 2
3
4 kψ1, 2

3
4 ar1,

(
2

m33

) 3
4
kr1, 2

3
4 kχr2 ,

(
2

m11

) 3
4
ku1, 2

3
4 kχu2


and K3 = ∆τ2

r + ∆τ2
u .

(i) According to (77), we have

V̇ ≤ −K1V − K2V
3
4 + K3 ≤ −K1V + K3 (78)

Because 2k1
k2

x−x2
e
≥ ε, 2k3U

(k2
y−y2

e )
√

δ2
y+∆2

≥ κ, similar to [15] and [20], solving the inequality (78) yields

0 ≤ V ≤ Γ =

(
V(0)− K3

K1

)
e−K1t +

K3

K1
(79)

Obviously, the BLF (14) is bounded. Therefore, it can be seen intuitively obtained that xe, ye,
ψe, ζr, ue, re, χu and χr are uniformly ultimately bounded. In addition, the BLF (14) satisfies the
following inequalities:

1
2 log k2

x
k2

x−x2
e
≤ V ≤ Γ

1
2 log

k2
y

k2
y−y2

e
≤ V ≤ Γ

(80)

Then, by solving [80], we obtain:

|xe| ≤ kx
√

1− e−2Γ < kx

|ye| ≤ ky
√

1− e−2Γ < ky
(81)

Therefore, this means that the position errors of the underactuated MSV meet the constraint
requirements—i.e., |xe| < kx, |ye| < ky.

(ii) When V ≥ K3
ΠK1

, K3 ≤ ΠK1V, where 0 < Π < 1. Therefore, from (77), we can see:

V̇ ≤ −K1V − K2V
3
4 + K3

≤ −(1−Π)K1V − K2V
3
4

(82)

From Lemma 1, we can infer that V can converge to region
{

Ω : Ω ≤ K3
ΠK1

}
in finite time.

The convergence time is: T = 4
(1−Π)K1

ln (1−Π)K1V
1
4 (0)+K2

K2
. This means that the position tracking

errors |xe| < kx, |ye| < ky in T. Similarly, the yaw tracking error ψe, the yaw angle rate tracking error
re, the surge velocity tracking error ue, and the states χu, χr of the input saturation compensators
converge into a small neighborhood around zero in T. According to Theorems 1 and 2, the observation
errors d̃r, d̃u of disturbance observers converge to 0 in T1 and T2, respectively.

5. Simulation

In this section, the effectiveness and superiority of the proposed finite-time control scheme are
verified by comparative simulation. The model parameters of the underactuated MSV are given as:
m11 = 25.8, m22 = 33.8, m33 = 2.76, d11 = 0.93, d22 = 2.89, d33 = 0.5. The desired path is chosen
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as Xp = [50sin(ϑ/50), ϑ]T . The initial position is chosen as X0 = [2, 2]T . The initial surge velocity is
chosen as u0 = 0.2, and the desired surge velocity is chosen as ud = 1. The initial value of other states is
set as zero. The time-varying external disturbances are simulated as: τwu = 0.1sin(0.1t) + 0.5sin(0.05t),
τwv = 0.05sin(0.05t), τwr = 0.1sin(0.1t) + 0.1sin(0.05t).

The position error constraints are selected as kx(t) = 6e−0.15t + 0.5, ky(t) = 6e−0.15t + 0.5, and
the input saturation limitations are set as τu max = 4N, τu min = −4N, τr max = 7N and τr min = −7N.
The control parameters are selected as k1 = 0.1, k2 = 2, k3 = 70, k4 = 1, ∆ = 10, kψ = 10, kψ1 = 0.7,
b1 = 2, b2 = 1, kχr1 = 1, kχr2 = 1, kχr = 0.01, kr = 5, kr1 = 0.01, b3 = 2, b4 = 1, kχu1 = 1, kχu2 = 0.01,
kχu = 0.01, ku = 15, ku1 = 0.02, ar = 2.5, ar1 = 0.01, br = 2.5, cr = 2.5.

To better show the effectiveness and superiority of the proposed finite-time path following control
scheme, the comparison is constructed with the EC-LOS guidance law [14] and backstepping controller.
The EC-LOS guidance law is given as follows:θ̇ =

U cos(ψ− ψp + β) + θs

σ

ψd = ψp − β + arctan(−θe, ∆)
(83)

where θs = kεs
εs

k2
cs
π sin

(
πε2

s
2k2

cs

)
cos
(

πε2
s

2k2
cs

)
+ kεs0εs and θe = kεe

εe

k2
ce
π sin

(
πε2

e
2k2

ce

)
cos
(

πε2
e

2k2
ce

)
+ kεe0εe. In

addition, the EC- LOS controller parameters are given as follows: kεs = 2, kεe = 2, kεs0 = 0.2, kεe0 = 0.2,
∆ = 12.

The simulation results are described in Figures 4–10. Figure 4 shows the desired path and the
actual path of the underactuated MSV under two guidance laws. It is shown that the proposed
control scheme can control the vessel to follow the desired path quickly, which converges faster than
the control scheme based on the EC-LOS guidance law. Figure 5 illustrates the velocities u, v and
r of the underactuated MSV under two guidance laws, in which the vessel can quickly reach the
desired surge velocity ud under the proposed control scheme. Figures 6 and 7 show the along-track
error and the cross-track error of the underactuated MSV under two guidance laws. As shown in
the Figures 6 and 7, both the along-track error and the cross-track error can quickly converge into
a small neighborhood around zero under two guidance laws, and they will not exceed the position
error constraints. However, the convergence rate of the along-track error and the cross-track error
under the FT-LOS guidance law is faster than that under the EC-LOS guidance law. The comparison
between the observation error of the finite-time disturbance observer and that of the disturbance
observer is depicted in Figure 8. From Figure 8, we can see that the observation errors d̃u, d̃r of the
disturbance observer converge to 0 in about 25 s and 27 s, respectively, and the observation errors d̃u,
d̃r of the finite-time disturbance observer converge to 0 in about 15 s and 10 s, respectively, which are
shorter than the convergence times of the observation errors of the disturbance observer. The surge
force τu and the yaw moment τr of the underactuated MSV under input saturation are shown in
Figures 9 and 10, respectively. Under the finite-time input saturation compensator, the surge force and
yaw moment of the underactuated MSV are all within the ranges of the input saturation constraint.
Consequently, from the simulation results, it can be concluded that the proposed finite-time path
following control scheme is more efficient and provides a better dynamic performance.
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Figure 4. Desired path and actual path of the underactuated MSV.
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Figure 5. The surge velocity, sway velocity and yaw angle velocity of the underactuated MSV.
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Figure 6. Along-track error of the underactuated MSV by different guidance laws.
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Figure 7. Cross-track error of the underactuated MSV by different guidance laws.
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Figure 9. The surge force τu under the input saturation.



Appl. Sci. 2020, 10, 6447 20 of 22

0 50 100 150 200 250 300
−10

−8

−6

−4

−2

0

2

4

6

8

10

t(s)

τ r(N
)

 

 
FT−LOS
EC−LOS

Figure 10. The yaw moment τr under the input saturation.

6. Conclusions

In this paper, a finite-time path following control algorithm has been presented for the
underactuated MSV with external disturbances, model parametric uncertainties, position constraint
and input saturation. Different from the existing literature, position error constraints, input saturation
and finite convergence time are simultaneously considered in the control design. The FT-LOS guidance
law is designed to obtain the desired yaw angle and simultaneously constrain the position error of
the underactuated MSV. The finite-time constraint controllers are designed to achieve tracking control
in finite time. Then, the finite-time disturbance observers are proposed to estimate the compound
disturbance including the external disturbances and model parametric uncertainties. Additionally,
the finite-time input saturation compensators are designed to avoid the actuator saturation and satisfy
the requirement of finite-time convergence. The stability analysis shows that the proposed finite-time
control algorithm can strictly guarantee the constraint requirement of the position, and all error
signals of the whole control system can converge into a small neighborhood around zero in finite time.
Eventually, comparative simulation results illustrate the effectiveness and superiority of the proposed
finite-time control algorithm. In future work, we will consider the unknown sideslip angle and time
delays in the underactuated MSV.
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Abbreviations

The following abbreviations are used in this manuscript:

MSV Marine surface vessel
LOS Line-of-sight
BLF Barrier Lyapunov function
FT-LOS Finite-time line-of-sight
PLOS Proportional line-of-sight
ILOS Integral line-of-sight
EC-LOS Error-constrained line-of-sight
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