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Abstract: Organ lesions have a high mortality rate, and pose a serious threat to people’s lives.
Segmenting organs accurately is helpful for doctors to diagnose. There is a demand for the advanced
segmentation model for medical images. However, most segmentation models directly migrated from
natural image segmentation models. These models usually ignore the importance of the boundary.
To solve this difficulty, in this paper, we provided a unique perspective on rendering to explore
accurate medical image segmentation. We adapt a subdivision-based point-sampling method to
get high-quality boundaries. In addition, we integrated the attention mechanism and nested U-Net
architecture into the proposed network Render U-Net.Render U-Net was evaluated on three public
datasets, including LiTS, CHAOS, and DSB. This model obtained the best performance on five
medical image segmentation tasks.
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1. Introduction

Organ diseases (such as coronavirus pneumonia and malignant cancer) are serious threats to
human life. Limited by medical technology, early detection and treatment are still the most effective
methods to increase the survival probability of such diseases. Recognizing the location and contours of
organs through medical images is the medical image segmentation task, which is used as preprocessing.
The appropriate preprocessing (such as [1,2]) is necessary to help doctors in automatic diagnosis
and treatment.

When fighting COVID-19 worldwide, medical image segmentation can greatly assist doctors
in the diagnosis of suspicious patients. Especially in the absence of early nucleic acid detection
reagents, medical image segmentation based on artificial intelligence [3] has played an inestimable
role in alleviating the spread of the epidemic. The studies of medical image segmentation have broad
application prospects and great practical significance.

Early research on image segmentation focused mainly on manual segmentation or semi-automatic
segmentation. The manual segmentation [4,5] relies to a large extent on the expert’s empirical
judgment, which is highly subjective. Therefore, manual image segmentation is so challenging that it
cannot meet the requirements of modern medicine for segmentation tasks. Similarly, semi-automatic
segmentation [6] still cannot lack human participation, which may involve subjectivity and uncertainty.
On the contrary, the automatic image segmentation is to segment the target object from the
image in a fully automatic manner without any human involvement. Naturally, automatic image
segmentation [7,8] is the preference of modern medicine and analysis obtained extensively.

However, it is often difficult for medical images to be as clear as natural images. Directly
using CNN-based natural image segmentation techniques to segment medical images will not obtain
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good results. In 2015, Long [9] and Ronneberger [10] provided other effective ways (FCN and U-Net)
to overcome this difficulty. Since then, there have been many studies [11,12] and applications [13]
based on these two network architectures. Unfortunately, these models usually pay more attention
to the overall characteristics of the target, but ignore the importance of boundaries in medical image
segmentation. Such designs are likely to result in a high evaluation indicator (e.g., Dice and IoU),
but this high indicator does not represent accurate segmentation because it does not perform well
on boundary. Prediction errors at the boundaries will not have any influence on segmentation of
natural images, but it is completely different when segmenting medical images. The rigor of medicine
requires greater accuracy of boundaries, especially in segmentation of human organs. Even a small
boundary error is very likely to cause a larger medical accident.

Therefore, there is an urgent demand for accurate segmentation for medical images. To optimize
the segmentation performance at the boundary, we returned to the essence of image analysis and
looked for strategies.

In the field of image analysis, images are often regarded as regular grids of pixels (points).
Their feature vectors are hidden representations on the regular grid of the image. In image semantic
segmentation, the pixels in the hidden representation will be mapped to a set of labels after uniform
upsampling. These labels are used as output masks to indicate the predicted category at each pixel.
Because the pixels in boundaries are only small percentages of the entire image, the proportion of the
object interior is relatively large and smooth. Thus, the original up-sampling method will unnecessarily
oversample the object interior but undersample the object boundary. Image segmentation methods
often upsample regular grids on a low resolution, which is a compromise between undersampling and
oversampling. This is one important reason for blurry boundary.

To solve this difficulty, we turned to the rendering method in computer graphics for help.
The rendering method does not calculate the labels uniformly on the hidden representation. Rather,
it adaptively selects uncertain points from all pixels of the image to calculate labels. For example,
the subdivision strategy [14] can effectively render anti-aliased high-resolution images. This is the
difference between rendering and upsampling.

As a consequence, we provide a unique perspective on render and propose a network based on
nested UNet, named Render U-Net. Our work is to explore the challenges of accurate medical image
segmentation, which can be summarized as follows:

1. Render U-Net draws on the idea of render in computer graphics. For “rendering” high-quality
boundaries, Render U-Net adapts a subdivision-based point-sampling method to replace the
original upsampling method (Section 3.3).

2. Render U-Net integrates the Attention mechanism (Section 3.2) into the nested U-Net architecture
(Section 3.1), and it introduces deep supervision (Section 3.4) to supervise the extraction of
semantic information at all levels. This gives trained Render U-Net a flexible structure, and so it
performs pruning operations during testing (Section 3.5).

3. Render U-Net was evaluated on three public datasets (LiTS, CHAOS, and DSB), and it achieved
very competitive performance in five medical image segmentation tasks (Section 4.4).

4. Although the render method has been frequently used in computer graphics, this is the first time
that the main idea of rendering is introduced into the semantic segmentation for medical images.

The remainder of our paper is organized as follows: Section 2 will give an introduction to related
works in this field. Section 3 will analyze the proposed methods, including nested network architecture,
attention gate, point-sampling method, deep supervision, and model pruning. Section 4 will explain
the experimental setups and analyzes the experimental results. Section 5 will conclude this work.
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2. Related Works

2.1. U-Net Architecture and Variants

U-Net [10] is one of the most studied approaches in the field of medical image segmentation.
This network has a very symmetrical encoder–decoder structure, where the encoder and decoder are on
the left and right sides of the network, respectively. There are basic convolutional layer and activation
layer ReLU on both sides. In addition, in the encoder, a 2 × 2 max-pooling layer is followed by the
convolutional layer to increase the robustness to disturbance.In the decoder, upsampling restores the
features extracted by the convolutional layer from the low-resolution feature map. This process is
repeated until it is decoded to the resolution of the input. Between the encoder and decoder in U-Net,
there are also skip connections to reduce the loss of semantic information caused by downsampling.
Due to the above settings, U-Net became the more preferred choice when segmenting medical images.

As a consequence, the applications of U-Net are also widely common in computer vision tasks [15,16].
At the same time, many studies have improved the U-Net architecture and proposed various U-Net
variants accordingly. H-DenseUNet [11] is proposed by Li et al. This variant retains effective features
to the maximum extent by combining dense connections of 2D and 3D. R2U-Net [17] is proposed by
Alom et al. This variant upgrades the original U-Net structure, combining the residual unit and RCNN.
ResUNet-a [18] proposed by Diakogiannis is another variant based on R2U-Net. It not only adds
residual connections, but also combines pyramid scene parsing pool and multi-task inference in the
new network. From another perspective, Zhou et al. redesigns the skip connections between the nested
convolution layers and proposes UNet++ [19]. Immediately afterwards, Li et al. added an attention
mechanism to it and proposes the ANU-Net [20]. UNet3+ [21] is an improvement of connections in
the original U-Net. This network combines multi-scale functions.

2.2. The Attention Mechanism

The attention mechanism is inspired by the study of human vision. The human visual system can
collect hundreds of millions of external information every second. Therefore, in order to efficiently
mine useful information, this system will automatically select the collected information and only focus
on specific parts of it, while ignoring other useless parts.

Natural language processing (NLP) firstly applied the attention mechanism to the extraction of
key grammatical components of sentences. The attention mechanism is used to identify key semantics
(such as subject, predicate, object, etc.), and ignore descriptive semantics (such as adjective). This can
help the learning process of the model more targeted. Naturally, the attention mechanism is then
widely used in other fields [22–27] because it enables the model to distinguish and concentrate key
information. In the semantic segmentation task, most of the research [25,28] regards the attention
mechanism as a module. RA-UNet [25] is built on the U-Net, combining with residual connection and
attention mechanism.

2.3. PointRend

PointRend [29] is a new method of image segmentation proposed by the Facebook artificial
intelligence laboratory. They believe that the challenge of image segmentation can also be solved
by rendering, and proposed PointRend. This module can be built on many advanced models that
currently exist.

In various quantitative evaluations on the COCO and Cityscapes datasets, PointRend has achieved
significant gains by improving mask AP by 1 to 2 percentage points for both instance and semantic
segmentation. In addition, PointRend also depends on a backbone. The stronger the backbone,
the better the segmentation performance.
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3. Methodology

In this paper, we introduced five methodologies to solve five kinds of challenges in medical image
segmentation. An overview of these methodologies is shown in Figure 1.

Figure 1. Overview of methodologies in Render U-Net. Nested architecture is analyzed in Section 3.1.
Attention mechanism is analyzed in Section 3.2. The point-sampling method is analyzed in Section 3.3.
Deep supervision is analyzed in Section 3.4. Model pruning is analyzed in Section 3.5.

• To collect full semantic information from different levels, Render U-Net is built on the nested
U-Net architecture. This architecture can learn various features from different depths. The dense
skip connections are added between convolutional blocks (Section 3.1).

• To focus on the global information of the target organ, we introduce the Attention mechanism as a
module in the nested architecture (Section 3.2).

• To locate detailed boundary information of the target organ, we propose the point-sampling
method to replace the original upsampling method (Section 3.3).

• To effectively supervise the semantic information extraction process at all depths, the deep
supervision and new hybrid loss function are introduced. (Section 3.4).

• To reduce model parameters and apply Render U-Net to mobile devices, we remove unrelated
components during inference and get a pruned, shallower version of Render U-Net (Section 3.5).

3.1. Nested U-Net Architecture
U-Net and its variants are the popular backbone in semantic segmentation experiments.

UNet++ [19] and ANU-Net [20] are two representative architectures. The nested U-Net architecture of
Render U-Net referred to these works. The structure of the Render U-Net is shown in Figure 2.

We see in Figure 2 that the structure of Render U-Net has perfect symmetry, showing an inverted
pyramid shape. In this inverted pyramid structure, the convolutional blocks are nested from top to
bottom. This nested structure design allows the network to train only one shared encoder for feature
extraction and four decoders for feature recovery.

In the encoder, convolutional blocks transfer features from top to bottom. In the decoders,
the detailed information is restored by point-sampling from the deeper layer in a bottom-up manner.
This point-sampling is a kind of rendering method, which predicts the mask from low resolution to high
resolution by selecting uncertain points. Furthermore, dense skip connection under attention selection
is set up between each convolution block, which strengthens the effectiveness of semantic information
transmission. In this way, concatenation layers fuse the semantic information from different levels.

The nested architecture can extract features of different depths. The deep supervision (Section 3.4)
allows the network to spontaneously select the features that are most suitable for the task,
thereby avoiding a complex selection of features. In addition, the attention mechanism (Section 3.2)
and the point-sampling method (Section 3.3) can be integrated in this architecture.
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Figure 2. Structure of Render U-Net. Every convolutional block captures features through two
convolutional layers, which are activated by ReLU functions. From a horizontal perspective, all blocks
are connected by dense skip connections with attention gates. Each block in the decoders concatenates
multi-scale features from its all preceding blocks. Each block in the encoder transfers features from
top to bottom through the maxpooling method from a vertical perspective, and each block in the
decoder integrates multi-scale features across different resolutions through the point-sampling method.
In addition, the block in deeper layer is sent to the attention gate as a gate signal.

3.2. Attention Gate

To help the model better strengthen the learning of the target region, an attention-aware module
was added to the network. This module was designed by Oktay [24] and named Attention gate.
The details of the Attention gate are analyzed in Algorithm 1.

Algorithm 1: Framework of the Attention Gate in Render U-Net.
Input: g, the upsampling feature;
f, the corresponding depth feature.
Output: F3, Attention selected feature.

1 Result = BNg

(
WT

g × g + bg

)
+ BN f

(
WT

f × f + b f

)
.

2 Convolutional operation (Wg, bg)(W f , b f ) extracts contextual information in the gate signal (g)
and then determines the focus regions in upsampling features ( f ). BatchNorm (BNg, BN f )
normalizes the data and reduces the jitter of the data between batches, thereby improving the
training speed. These two results are added, pixel by pixel, to merge the features.

3 F1 = σ1 (Result).
4 ReLU activation function (σ1(x) = max (0, x)) is used to add nonlinear factors.
5 F2 = BNθ

(
WT

θ × F1 + bθ

)
.

6 Convolutional operation (Wθ ,bθ) extracts features in the target region. BatchNorm (BNθ)
normalises the data.

7 α = σ2 (F2).
8 Sigmoid activation function (σ2(x) = 1

1+e(−x) ) converts the Attention coefficient α value into the
range [−1, 1].

9 F3 = f × α.
10 The upsampling features ( f ) are multiplied, pixel by pixel, by the coefficients (α) to change the

value of certain regions, so as to achieve the purpose of paying attention to or suppressing
different task regions.

11 return F3;
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The diagram of the Attention gate is shown in Figure 3. As seen, Attention gate is placed on
the dense skip connection between convolution blocks. The upsampling feature from deeper block
is used as the gate signal to focus on the target from prior block. The Attention gate performs well
in selection by producing the attention coefficient α. Multiplying α and the feature from the encoder
pixel by pixel can change the value and distribution of the latter. To strengthen the learning of the
target organ, the weight of the target area has been enhanced. Similarly, the weight of the irrelevant
region is reduced, thereby suppressing the learning of the area. Therefore, Attention gate can improve
the efficiency of propagating semantic information.

Figure 3. Diagram of Attention gate between convolutional block X3_0 and X3_1. The feature of X4_0 is
used as a gate signal to focus regions in the encoder feature of X3_0. These two features are added after
the convolution and BatchNorm layers.After activation by ReLU, the result is sent to the convolution
and BatchNorm layers to extract features. Finally, the attention coefficient α is obtained through the
sigmoid function and then it dot-products, pixel by pixel, by using the upsampling feature to get the
feature after attention selection, which is X3_1.

3.3. Point-Sampling Method

Images can be regarded as regular grids of pixels (points). Their feature vectors are hidden
representations on the regular grid. Pixels upsampled uniformly on the hidden representations are
mapped to a set of labels. The rendering method does not calculate the labels uniformly on the
hidden representations. Rather, it adaptively selects uncertain points from all pixels of the image to
calculate the labels. We adopted the idea of the classic subdivision [14] strategy. This strategy calculates
only those locations where the values are significantly different from their neighbors. The values
at other locations are obtained by interpolating the existing results. This process, which we call
the point-sampling method, computes masks from low resolution to high resolution by selecting
uncertain points. We used the proposed point-sampling method to solve the boundary blur problem.
The point-sampling method consists of the following steps:

1. The encoder–decoder architecture takes an input image (black arrows) and extracts features from
the encoder (green arrows and grids).

2. The lightweight coarse decoder yields a coarse mask prediction for the target object (red arrows)
and upsamples features (blue arrows and grids) using bilinear interpolation.

3. To refine the coarse mask, the Point-sampling method selects some uncertain points from the
coarse predicted mask, as shown by the red points in the figure.

4. A simple MLP is set to extract the point-features of each point independently and predict
their labels.

5. The point-features are mapped to the size of the encoder feature (dashed gray arrows), and the
feature at the corresponding position is replaced (dashed red arrows) to obtain the point-sampling
features (red grids).

6. The encoder-features are concatenated with the upsampling features and attention selected
point-sampling features.
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7. The concatenated features are input into the fine decoder (black arrows) to obtain the fine
prediction result.

From the above steps, the point-sampling method is different from the traditional
upsampling method. The point-sampling method increases the selection of uncertain points (step 3)
and the extraction of point-features (step 4). Therefore, the key of the point-sampling method
consists of two parts. The first part is how to flexibly and adaptively select uncertain points in
the image. The second part is how to extract the corresponding point-features to enhance segmentation.
The detailed analysis of point-sampling method is in Figure 4.

Figure 4. Detailed analysis of the Point-sampling method (red arrows, dots, and grids) applied to
image semantic segmentation. A set of uncertain points from coarse prediction is selected to extract
point-features. These features will replace original upsampling features and concatenate to refine
the boundary.

Point selection strategy. The main idea of our selection strategy is that uncertainty points
are mostly in areas where it is difficult to classify objects. After the coarse mask is predicted by
coarse decoder, there are N most uncertain points on the image plane. We believe that the selection of
the most uncertain points should focus not only on the uncertain areas (e.g., the boundaries between
different classes), but it should also retain a certain degree of uniform coverage. Such a design can
achieve the greatest degree of accurate segmentation and enhance anti-interference ability.

To achieve the above goal, we referred to the following principles in [29] for point selection
and balance.

• Over generation: First, randomly sample kN points from a uniformly distributed point set.
These kN points will be used to over-generate candidate points, and k should be greater than 1.

• Important sampling: Then, we will coarsely predict the segmentation class of the above kN points.
After that, we will perform interpolation and calculate the uncertainty estimation of all selected
points. Next, we will select the top βN points with the highest uncertainty. These points are
considered important points.

• Unimportant sampling: After removing the above-mentioned important points from kN points,
(1 − β) N points remain. These points are regarded as unimportant points sampled from a
uniform distribution.

In this way, we obtain the fine predicted mask from low resolution, and this procedure is shown
in Figure 5.
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Figure 5. Example of the coarse-to-fine process. First, a coarse mask on a 5 × 5 grid is predicted by
the coarse decoder. Next, the N most uncertain points (dots in grids) are selected to recover detail on
the finer grid. Finally, these point-features are extracted and then used to replace the original features
extracted by the encoder.

3.4. Deep Supervision

To improve convergence speed and solve the problem of gradient disappearance, deep supervision
was first proposed in [30]. In our work, deep supervision was introduced to supervise the semantic
information collected by the nested architecture. Figure 6 shows how deep supervision is implemented
in Render U-Net.

Figure 6. Implementation of deep supervision in Render U-Net. Ground truth supervises the output
of the nested convolution structure. The four results X0_1,X0_2, X0_3,X0_4 are compare with ground
truth and directly participate in the calculation of hybrid loss.

Because Render U-Net redesigned dense skip connections, deep supervision can help the network
supervise different levels of semantic information. Then, we used the hybrid loss function in [20]
to calculate the loss of the four output results from different levels. By analyzing the characteristics
of medical image segmentation, the hybrid loss function reintegrated three loss functions, including
dice coefficient, cross entropy, and focal loss. The mathematical formulation of the above hybrid loss
function is:

Hybrid Loss =
4

∑
i=1

(
1−

[
b× Y× log Yi

|Yi−0.5|r
+

2× Yi×Y + s

Y2
i + Y2

+ s

])
(1)

In the above mathematical formula, Y is the actual segmentation result after manual labeling, and Yi

is the segmentation prediction result from the block X0_i in the network. When calculating the loss,
we regard Y and Yi as pixel matrices. All operations in the formulation are calculated on the entire
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matrices. | | is the absolute value function, s is the smooth factor, b is the balance factor in Focal loss,
and hyper parameter r is used for difficult samples.

Firstly, because of the particularity of the medical sample, positive (existing organ) samples
usually occupy a small proportion in the dataset. To reduce the influence of the sample imbalance,
b is added as a balance factor to the above hybrid loss function, where b overcomes this problem by
giving different weights to different samples. This solution draws on the idea of focal loss in which the
negative samples (Y = 1) multiply the b to get bigger loss value.

Secondly, there are also easy and difficult samples in clinical diagnosis, where simple samples
mean the patients with clear symptoms while the difficult samples mean the patients with
confused symptoms. In fact, there are more simple samples in the dataset. In order to better help the
network to achieve a good segmentation of samples with different diagnostic difficulties, the hyper
parameter r is introduced. In the organ segmentation task, when predicted result Yi approaches
0, the more likely the sample is to be classified as negative. Similarly, when predicted result Yi
approaches 1, the more likely the sample is to be classified as positive. On the contrary, when Yi
approaches 0.5, it is so hard to diagnose that it is the difficult sample and the loss increases. As a
consequence, this hyper parameter r can help model optimize the segmentation of difficult samples.

Thirdly, in order to calculate the similarity between the segmentation results and the real results,
the dice coefficient is introduced as a measurement, which is defined as 2×Yi ×Y+s

Y2
i +Y2

+s
. The higher the

degree of similarity, the bigger the value of the dice coefficient.

3.5. Model Pruning

We have pruned the Render U-Net at four different depths and obtained four pruned
sub-networks, which are shown in Figure 7. We all know that there are both input forward propagation
and loss back propagation during model training. The components in the gray region can transmit
errors during the loss back propagating. These components are essential for weight updates and
cannot be removed. The reason why we can only remove the gray components during inference is that
the network only has input forward propagation in the test phase, and the subsequent components
will not affect the previous output and can therefore be removed.

As shown in the figures, all convolution blocks, upsampling, downsampling, skip connections,
and attention gates in the gray area have been pruned, which are retained during training but deleted
during prediction. We rename the pruned networks as Render U-Net L1, L2, L3, and L4. In addition,
LN also denotes that the final output of the network comes from X0_N . The Render U-Net selects
the pruned model by evaluating the four sub-networks’ segmentation performance on the validation
dataset. If the performance of one sub-network on the validation dataset has reached expectations,
we can use the shallower Render U-Net for segmentation during inference. For example, in the most
ideal case, if the most pruned architecture L1 can have satisfactory segmentation performance when
validated, then the final result of the network comes from X0_1. On the contrary, in the least ideal case,
if only the minimally pruned architecture L4 can output good segmentation result, the final result will
come from X0_4.

In summary, in this section, we introduced five methodologies used in Render U-Net. Section 3.1
analyzed the nested architecture to collect full semantic information from different levels. Section 3.2
analyzed the Attention gate to enhance the learning of the target organ. Section 3.3 analyzed the
proposed point-sampling method to render high-quality boundaries of the target organ. Section 3.4
analyzed the deep supervision and the redesigned hybrid loss function to provide complete semantic
information. Section 3.5 analyzed the model pruning to speed up prediction and decrease parameters.
For the next section, we designed experiments to validate our improvements.
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(1) Render U-Net L1 (2) Render U-Net L2

(3) Render U-Net L3 (4) Render U-Net L4

Figure 7. Deep supervision helps the trained Render U-Net pruning at different depths to obtain four
sub-networks, which are represented by Render U-Net L1, L2, L3, and L4. The gray components in
these sub-networks have been deleted during inference.

4. Experiments and Results

Four experiments are designed to prove our improvement due to the introduced methodologies,
including segmentation experiment, attention learning experiment, point-sampling experiment,
and model pruning experiment.

4.1. Datasets

The above four experiments are all carried out based on five public medical image datasets.
The detailed information is summarized in Table 1. The target organs cover human liver, spleen,
kidney and cell nuclei, and the image data come from common CT, MRI, and cell scans. The detailed
introductions of the datasets are as follows:

The LiTS [31] dataset comes from the 2017 MICCAI challenge. The train set has 130 labeled CT
image data and the test set has 70 unlabeled CT image data. There are three types of objects in the LiTS
dataset: liver, tumor, and background. In this segmentation experiment, we only focus on the liver and
regard it as a positive object, and the others as a negative object.

The CHAOS [32] dataset comes from the 2019 ISBI challenge. Only the MRI image data are used
in this article, including 120 labeled DICOM datasets in the train set. There are four types of objects
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in the CHAOS dataset: liver, right kidney, left kidney, and spleen. In this segmentation experiment,
we considered the left and right kidney as the whole kidney and train three kinds of organs separately.

The DSB [33] dataset contains 670 labeled nuclei scans. In DSB, we first rescaled the intensity
(set min at 0 and max at 255) and transformed all the images into gray images. Then, we used the
Otsu threshold [34] and inverted the intensity of images so the majority of pixels were above the
threshold. Moreover, we did not use any clustering, thinking that training a single model would lead
to better generalization.

In order to remove irrelevant details in the image, we only take the Hounsfield Unit value in the
range of [−200, 200] in the image. We take one-fifth of all annotated cases as the validation dataset,
and the rest as the training dataset.

Table 1. An overview of some important information of the medical image datasets used in
this experiment.

Application Resolution Modality Provider

Liver 256 × 256 CT 2017 MICCAI LiTS
Spleen 256 × 256 MRI 2019 ISBI CHAOS
Kidney 256 × 256 MRI 2019 ISBI CHAOS
Liver 256 × 256 MRI 2019 ISBI CHAOS

Nuclei 96 × 96 Mixed 2018 DSB Kaggle

4.2. Optimization Techniques and Performance Evaluation

The proposed model is an end-to-end model, which means that we did not use too many
preprocessing methods and denoising techniques. We just modified the size of the input image to meet
the requirements of the network. The entire project is based on pytorch for deep learning programming
and application. We used Nvidia GeForce GTX1080Ti for network training. During training, we used
the hybrid loss function proposed in Section 3.4 for back propagation and network parameters update.
In addition, Adam is selected as the optimizer, the learning rate is initially 0.01, and decreases to 0.0001
with training. In the optimizer, we also added a braking mechanism. When the training loss has been
20 epochs and no longer decreases, we will interrupt the training.

In the organ segmentation experiment, we used five popular indicators in medical image
segmentation tasks to evaluate segmentation quality, including dice coefficient (Dice) [35],
mean intersection over union (mIoU) [36] , precision [37], recall [38], and Hausdorff distance [39].
mIoU is the mean value of IoU obtained in the segmentation experiment for each class in the current
dataset. The mathematical expressions of the above metrics are:

Dice =
2× TP

2× TP + FP + FN
(2)

IoU =
TP

TP + FP + FN
(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

Hausdor f f Distance(Y, Ȳ) = max {dYȲ, dȲY} = max
{

max
y1∈Y

min
y2∈Ȳ

d (y1, y2) , max
y2∈Ȳ

min
y1∈Y

d (y1, y2)

}
(6)

where TP is the True Positive, FP is the False Positive, FN is the False Negative. Y means the
segmentation result when Ȳ is the annotated result. The d() means the calculation of Manhattan
distance. The Hausdorff distance is added for evaluation of the segmentation on boundary. After the
mask output by the model is obtained, the pixel value of the organ area is 1, and the pixel value of the
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background area is 0. When calculating the Hausdorff distance, we only consider the boundary of the
object. In addition, the ∈ denotes the boundary of the object. As the values of the first four indicators
rise, the similarity increases, and the accuracy of segmentation improves.

4.3. Feature Visualization

In Sections 3.1 and 3.4, we introduced the nested convolution structure and dense skip connection
into Render U-Net. In this section, we display the features of the first layer, which intuitively confirms
the superiority of the network structure for semantic feature extraction.

As we can see in Figure 8, we used four different networks for the liver MRI image
segmentation task. Then, we visualized the features of the first layer X0_N (N ∈ [0, 1, 2, 3, 4]). We can
find that the feature representation of U-Net is not clear enough, and the semantic information is not
completely extracted. This is because the original skip connections in U-Net are relatively simple, where
the encoder features are directly connected to the decoder features after upsampling. In comparison,
the features in UNet++ and Render U-Net are connected by more complex skip connections,
which merged more semantic information, and gradually formed a clearer feature representation.
In addition, we find that, because of the introduction of deep supervision (Section 3.4), the loss of each
output node could be calculated. This helps Render U-Net extract semantic information better.

Figure 8. Visualization and comparison of feature maps along skip connections for liver MRI images.
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4.4. Segmentation Results

The proposed model has completed the organ segmentation experiments under the mentioned datasets.
The experimental results are compared with seven other popular models. In addition,
we also combined the proposed point sampling method with UNet++ to obtain Point UNet++.
This experimental result was added to the comparison to prove that the point sampling method
improves the segmentation performance. Tables 2–6 collect the experimental results based on the
above nine models.

Table 2. The experiment results of the LiTS test dataset.

Models mIoU Dice Precision (%) Recall (%)

UNet [10] 0.8949 0.9445 93.24 95.70
R2UNet [17] 0.9069 0.9511 93.80 96.48
UNet++ [40] 0.9446 0.9715 98.16 96.17

PointUNet++ 1 0.9655 0.9825 98.04 98.45
UNet3+ [21] 0.9784 0.9891 98.94 98.87

AttentionUNet [24] 0.9339 0.9658 96.79 96.37
AttentionR2UNet 2 0.9238 0.9603 97.12 94.98

ANU-Net [20] 0.9748 0.9815 98.15 99.31
Render U-Net 0.9823 0.9911 98.89 99.33

1 PointUNet++ is the integration of UNet++ and the Point-sampling method. 2 AttentionR2UNet is
the integration of R2UNet and the attention mechanism.

Table 2 compares the liver segmentation performance on CT images, where Render U-Net had the
best performance. The output of model and the manually annotated result are compared in Figure 9.
Our proposed network increased IoU by over 0.0484 [24], and increased the Dice coefficient by 0.0253,
increased precision by 2.1 percentage points, and increased the recall rate by 2.96 percentage points.

Figure 9. Comparison of model outputs and ground truth. (a) shows the other three figures stacked
from top to bottom, where the predicted extra areas are clearly seen. The red area in (b) is the manually
annotated result. The blue region in (c) is the output of Render U-Net. The green region in (d) is the
output of Attention U-Net. Some areas with incorrect predictions are indicated with red arrows in
the figure.

Similarly, Table 3 compares the spleen segmentation performance on MRI images, where Render
U-Net had the best performance. The output of the model and the manually annotated result are
compared in Figure 10. Our proposed network increased mIoU by over 0.1672 [10], and increased the
Dice coefficient by 0.0981, increased precision by 14.98 percentage points, and increased the recall rate
by 4.29 percentage points.
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Table 3. Performance of spleen segmentation for MRI images.

Models mIoU Dice Precision (%) Recall (%)

UNet [10] 0.7618 0.8648 82.34 91.06
R2UNet [17] 0.8150 0.8977 93.60 86.24
UNet++ [40] 0.8105 0.8953 86.37 92.93

PointUNet++ 1 0.9057 0.9502 97.70 92.50
UNet3+ [21] 0.8582 0.9235 94.77 90.18

AttentionUNet [24] 0.8413 0.9138 91.54 91.22
AttentionR2UNet 2 0.8162 0.8979 90.88 88.73

ANU-Net [20] 0.8923 0.8979 95.19 93.44
Render U-Net 0.9290 0.9629 97.32 95.35

1 PointUNet++ is the integration of UNet++ and the Point-sampling method. 2 AttentionR2UNet is
the integration of R2UNet and the attention mechanism.

Figure 10. Comparison of model outputs and ground truth. (a) is composed of the other three figures
above are stacked from top to bottom, where the predicted extra areas are clearly seen. (b) is the
manually annotated result. The blue region in(c) is the output of Render U-Net. The green region in
(d) is the output of U-Net. Some areas with incorrect predictions are indicated with the red arrows in
the figure.

Table 4 compares the liver segmentation performance on MRI images, where Render U-Net
had the best performance. The output of model and the manually annotated result are compared in
Figure 11. Our proposed network increased IoU by over 0.0267 [20], increased the Dice coefficient
by 0.0149, increased the precision by 1.3 percentage points, and increased the recall rate by 1.68
percentage points.

Table 4. Performance of liver segmentation for MRI images.

Models mIoU Dice Precision (%) Recall (%)

UNet [10] 0.7537 0.8596 87.31 84.65
R2UNet [17] 0.7780 0.8750 92.11 83.39
UNet++ [40] 0.8423 0.9139 93.06 89.79

PointUNet++ 1 0.8551 0.9218 94.01 90.42
UNet3+ [21] 0.8224 0.9005 93.00 88.02

AttentionUNet [24] 0.7600 0.8637 91.11 82.09
AttentionR2UNet 2 0.8244 0.9035 94.74 86.40

ANU-Net [20] 0.8789 0.9355 94.23 92.88
Render U-Net 0.9056 0.9504 95.53 94.56

1 PointUNet++ is the integration of UNet++ and the Point-sampling method. 2 AttentionR2UNet is
the integration of R2UNet and the attention mechanism.
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Figure 11. Comparison of model outputs and ground truth. (a) is composed of the other three figures
above stacked from top to bottom, where the predicted extra areas are clearly seen. The red area in
(b) is the manually annotated result. The blue region in (c) is the output of Render U-Net. The green
region in (d) is the output of ANU-Net. Some areas with incorrect predictions are indicated with the
red arrows in the figure.

Table 5 compares the kidney segmentation performance on MRI images, where Render U-Net
had the best performance. The output of model and the manually annotated result are compared
in Figure 12. Our proposed network increased IoU by over 0.038 [40], and increased the Dice
coefficient by 0.0213, increased precision by 4.23 percentage points, and increased the recall rate
by 0.95 percentage points.

Table 5. Performance of kidney segmentation for MRI images.

Models mIoU Dice Precision (%) Recall (%)

UNet [10] 0.8446 0.9158 89.20 94.08
R2UNet [17] 0.8554 0.9221 91.92 92.50
UNet++ [40] 0.8658 0.9281 90.87 94.82

PointUNet++ 1 0.8942 0.9442 92.66 96.24
UNet3+ [21] 0.8449 0.9155 89.91 93.44

AttentionUNet [24] 0.8577 0.9234 90.97 93.76
AttentionR2UNet 2 0.8734 0.9324 91.41 95.15

ANU-Net [20] 0.9010 0.9479 94.00 95.60
Render U-Net 0.9038 0.9494 94.14 95.77

1 PointUNet++ is the integration of UNet++ and the Point-sampling method. 2 AttentionR2UNet is
the integration of R2UNet and the attention mechanism.

Figure 12. Comparison of model outputs and ground truth. (a) is composed of the other three figures
above stacked from top to bottom, where the predicted extra areas are clearly seen. The red area in
(b) is the manually annotated result. The blue region in (c) is the output of Render U-Net. The green
region in (d) is the output of UNet++. Some areas with incorrect predictions are indicated with red
arrows in the figure.

Table 6 compares the nuclei segmentation performance, where Render U-Net had the best
performance. The output of model and the manually annotated result are compared in Figure 13.
Our proposed network achieves IoU that increased over 0.1504 [21], and the Dice coefficient
increased by 0.0951, the precision decreased 11.68 percentage points, and the recall rate increased 8.18
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percentage points. It is also worth noting that U-Net also performs well in nuclei segmentation tasks.
In particular, because U-Net has a simpler model, it is more suitable for such task.

Table 6. Performance of nuclei segmentation by the models in the DSB test dataset.

Models mIoU Dice Precision (%) Recall (%)

UNet [10] 0.7909 0.8833 86.18 90.59
R2UNet [17] 0.6987 0.8199 81.23 82.77
UNet++ [40] 0.7028 0.8229 92.36 74.36

PointUNet++ 1 0.7507 0.8569 92.22 80.06
UNet3+ [21] 0.6853 0.8121 81.20 81.28

AttentionUNet [24] 0.7660 0.8675 85.81 87.71
AttentionR2UNet 2 0.7025 0.8235 89.85 76.16

ANU-Net [20] 0.8259 0.9003 91.42 89.77
Render U-Net 0.8360 0.9072 92.88 89.46

1 PointUNet++ is the integration of UNet++ and the Point-sampling method. 2 AttentionR2UNet is
the integration of R2UNet and the attention mechanism.

Figure 13. Comparison of model outputs and ground truth. (a) is composed of the other three figures
above stacked from top to bottom, where the predicted extra areas are clearly seen. The red area in
(b) is the manually annotated result. The blue region in (c) is the output of Render U-Net. The green
region in (d) is the output of UNet3+. Some areas with incorrect predictions are indicated with red
arrows in the figure.

Obviously, the proposed network outperformed other networks in the five segmentation
experiments above. The improvement is attributed to the nested structure, attention mechanism,
point-sampling method, and deep supervision.

4.5. Attention Learning Results

According to the results in Table 2 through Table 6, networks based on the attention mechanism
consistently outperform original networks in the five tasks. Moreover, the proposed Render U-Net
outperforms any other attention-aware models. Thus, we can conclude that the introduction of the
attention gate is attributed to the improvement on the segmentation performance.

Figure 14 is two groups of changes of the attention coefficient α when segmenting liver from the
CT image on the LiTS dataset. We can get the following conclusions of the attention coefficient α from
the figure:

• The attention coefficient will gradually change with model training. At the same time, the attention
coefficient changes the weights of the focused area during training. In addition, then the attention
coefficient is multiplying the feature pixel by pixel.

• The weight around the target organ will gradually increase to enhance the learning of this area,
as shown in the red area in the above figure.

• Similarly, the weight of the confused tissue area that is not related to the segmentation target will
gradually decrease, which is used to inhibit the learning of this area, as shown in the blue area in
the figure above.
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Figure 14. The graph of the attention coefficient α changing with training. The color change in the
figures represents the change in the weight of attention learning, where red represents enhancement
and blue represents inhibition. (a1–f1) is the first group of changes. (a2–f2) is the second group of
changes. (a1,a2) are the input CT images. (b1,b2) are the ground truth of liver, respectively. (c1–f1) and
Figure (c2–f2) are two groups of the attention coefficients α in different training phases.

4.6. Point-Sampling Results

We used the parameters (k = 3, β = 0.75, n = 8096) for uncertain points selection strategy.
Considering that all the segmentation tasks in the experiments were binary classification tasks,
we used the distance between the probability of coarse prediction mask and 0.5 as a measure
of point uncertainty. Table 7 compares the boundary segmentation performance measured by
Hausdorff distance, where Render U-Net had the best performance. Figure 15 shows the example of
the point-sampling process for nuclei segmentation.

Table 7. Hausdorff distance of five segmentation tasks.

Models Liver (CT) Spleen Kidney Liver (MRI) Nuclei

UNet [10] 14.95 11.94 11.87 30.98 35.54
R2UNet [17] 17.76 9.05 12.71 28.05 41.19
UNet++ [40] 9.31 7.82 11.97 25.59 34.05

PointUNet++ 1 7.62 6.32 10.53 23.12 32.32
UNet3+ [21] 6.36 7.25 13.13 23.97 37.21

AttentionUNet [24] 7.21 6.23 13.63 23.09 34.85
AttentionR2UNet 2 12.26 8.20 13.87 20.33 35.51

ANU-Net [20] 5.48 5.97 10.64 18.06 32.04
Render U-Net 4.41 5.39 10.49 16.96 31.65

1 PointUNet++ is the integration of UNet++ and the Point-sampling method. 2 AttentionR2UNet is
the integration of R2UNet and the attention mechanism.
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Figure 15. Diagram of the Point-sampling process for rendering a higher resolution boundary when
inferring nuclei. The red dots in different resolution are the selected uncertain points to calculate.

As we can see, during point-sampling, our network selected a set of uncertain points and
calculated masks from low-resolution (32 × 32) to high-resolution (256 × 256). Compared with
the traditional upsampling method that calculates full-resolution points (256 × 256 = 64 K),
the point-sampling method can extract boundary information by using only a few points for
prediction (8096 × 3 = 24 K), thereby assisting the overall segmentation task and reducing
computational overhead.

4.7. Model Pruning Results

Table 8 quantifies the segmentation performance and inference time on four tasks, including
spleen segmentation, kidney segmentation, liver segmentation, and nuclei segmentation. We can
get conclusions that model pruning can be used to obtain a model with fewer model parameters,
which should have a faster prediction speed. More specifically, in the spleen segmentation task,
the performances of Render U-Net L3 and L4 are very close, but the parameter amount of L3 is only
2.91 M. Therefore, in this task, we can use a shallow sub-network Render U-Net L3 to get segmentation
performance similar to L4, which owns 12.0 M parameters. Through this pruning operation, we can
save 75.75% of the parameter, and reduce the prediction time by 22.93%, while Dice only reduces
0.0178 and mIoU reduces 0.0306. In the kidney MRI image task and liver MRI image segmentation task,
pruned models achieved the similar improvement on prediction speed at the expense of a small
amount of performance.

Table 8. Segmentation results of four pruned models. The inference time (counted by seconds) is
calculated by segmenting 1K images.

Model
Spleen Kidney Liver Nuclei

Dice mIoU Time Dice mIoU Time Dice mIoU Time Dice mIoU Time

L1 0.8258 0.7203 28.54 0.7588 0.6198 28.37 0.6624 0.5332 18.10 0.8490 0.7529 8.74
L2 0.9272 0.8655 44.95 0.8519 0.7450 41.77 0.7546 0.6480 34.63 0.8516 0.7603 22.74
L3 0.9451 0.8984 59.88 0.9353 0.8793 59.09 0.8797 0.8170 50.28 0.9072 0.8360 40.35
L4 0.9629 0.9290 77.69 0.9494 0.9038 80.32 0.9056 0.9504 64.79 0.8864 0.8065 61.67

In particular, it is also worth noting that Render U-Net L3 performed better than L4 in the nuclei
segmentation task. After analysis, we believe that this is because the semantic information extracted
by L3 is enough to restore the characteristics of the nuclei, while the features extracted by L4 are more
complex and not suitable for such a task. This result is mutually confirmed with the results in Table 6.

Figure 16 directly compares the relationship between performance and inference time of four
pruned models with different parameters. As we can see, the parameters of the four sub-networks
are various, where the parameters of the shallowest sub-network is 0.1 M, while the deepest one
has 12.0 M.
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Figure 16. Diagram of the relationships between the Dice coefficients and inference times of the four
pruned Render U-Nets with segmentation of four kinds of objects. We use four blue circles with
different areas to denote sub-networks with different parameter amounts.

In the most ideal case, if the segmentation result of Render U-Net L1 has reached expectations,
then we can save 99.9% of the parameters. Unfortunately, according to the four segmentation
experimental results on CHAOS and DSB, the segmentation performance of L1 cannot meet the
basic requirement. We analyze the reason because it is too shallow for extracting effective features.

5. Conclusions

In this paper, we provided a unique perspective on render, and we viewed the medical image
segmentation task as a render problem. We adapted a subdivision-based point-sampling method to
replace the original upsampling method for “rendering” high-quality boundaries. The proposed model,
called Render U-Net in this paper, performed segmentation experiments on LiTS, CHAOS, and DSB
datasets together with other models, including U-Net, R2U-Net, UNet++, Point UNet++, UNet3+,
Attention U-Net, Attention R2U-Net, and ANU-Net. The experiment’s results demonstrated that the
proposed network outperforms in overall and boundary segmentation. We make the following analysis:
the improvement in accuracy is due to the integration of the point sampling method, supervised dense
skip connection, and attention mechanism in the nested architecture. The point-sampling method has
been proven to render higher-quality boundaries than the traditional upsampling method.
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