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Featured Application: The manuscript aims to provide a signature to predict Overall Survival
in patients with Locally Advanced Non-Small Cell Lung Cancer. The results could offer the
physicians advanced software tools to early evaluate the disease evolution before the treatment
start so to personalize each patient’s therapy. Moreover, this work provides insight into the use
of the different segmentation volumes usually applied in radiation oncology.

Abstract: Lung cancer accounts for the largest amount of deaths worldwide with respect to the
other oncological pathologies. To guarantee the most effective cure to patients for such aggressive
tumours, radiomics is increasing as a novel and promising research field that aims at extracting
knowledge from data in terms of quantitative measures that are computed from diagnostic images,
with prognostic and predictive ends. This knowledge could be used to optimize current treatments
and to maximize their efficacy. To this end, we hereby study the use of such quantitative biomarkers
computed from CT images of patients affected by Non-Small Cell Lung Cancer to predict Overall
Survival. The main contributions of this work are two: first, we consider different volumes of interest
for the same patient to find out whether the volume surrounding the visible lesions can provide useful
information; second, we introduce 3D Local Binary Patterns, which are texture measures scarcely
explored in radiomics. As further validation, we show that the proposed signature outperforms
not only the features automatically computed by a deep learning-based approach, but also another
signature at the state-of-the-art using other handcrafted features.

Keywords: radiomics; NSCLC; Local Binary Patterns; multi-VOI analysis

1. Introduction

Lung cancer is worldwide recognised as the most common type of cancer, with about 18.4% of all
cases [1], also accounting for the largest amount of deaths. Every year, there are about 470 thousand
new cases in Europe and the Non-Small Cell Lung Cancer (NSCLC) is the most frequent one with about
85–90% of all cases [2,3] and, due to the lack of apparent symptoms in early stages, approximately
70% of the new cases are diagnosed with stage III or IV. There are several treatment options that are
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selected depending on the patient’s characteristics; they include the radiotherapy, the chemotherapy,
the surgical resection, the immunotherapy, but also targeted therapy [1,4,5].

We acknowledge that, nowadays, the standard procedure for stage III patients with NSCLC
accounts chemoradiotherapy followed by immunotherapy [6]. However, when considering the
guidelines at the time of this work, for stage III NSCLC, whether they were resectable or not,
chemoradiotherapy (even concurrent followed by immunotherapy) was the recommended therapeutic
approach [7,8], because showed better results than those that were attained by radiotherapy or by
radiotherapy followed by chemotherapy [9,10]. Indeed, Curran Jr. et al. showed that patients randomly
assigned to two different concurrent chemoradiotherapies had a longer survival time than patients
who underwent sequential radio and chemotherapy [9].

The Overall Survival (OS), defined as the length of time from the date of diagnosis until the patient
death, helps to identify patient subgroups with better or worse prognosis, so to hypothesize intensified
treatment options for the latter group. Unfortunately, local recurrence and distant metastasis are still
an issue [11] and, therefore, the strategies to improve OS are urgently needed.

In order to help the personalised medicine to make further steps facilitating the identification
of the correct treatment for each patient, in recent years we have observed a raising interest in the
development and application of Artificial Intelligence (AI) methods to oncology, similarly to what
already happened with success in other medical fields [12–16]. In turns out this has first favoured the
birth of radiomics, and now it is boosting the interests of the scientific community on its potential.
Radiomics is based on the extraction of quantitative biomarkers, also called features, from medical
images, such as CT, MRI, X-ray and PET, in order to diagnose, predict clinical outcome, or guide clinical
decisions [17,18]. The first studies reported promising performances in different clinical applications
for diagnostic and prognostic purposes [19–23].

Several radiomics studies have been conducted on NSCLC, but, to the best of our knowledge,
the discovery of a signature associated to the Overall Survival is still an issue deserving more research
efforts. In this respect, the contribution of this manuscript is twofold. First, we investigate the use of
different Volumes-Of-Interest (VOIs) by exploiting quantitative biomarkers computed not only from
the Gross Tumour Volume (GTV), which is what can be seen, palpated, or imaged, but also from other
two larger VOIs commonly used in radiation treatment clinical practice, which are Clinical Target
Volume (CTV) and Planning Target Volume (PTV). The first take into account the subclinical disease
spread and the last allows for uncertainties in planning or treatment delivery. The idea, inspired by the
radiotherapy practice adopted when planning the treatments, is that the area surrounding the tumour
may contain important information that can be quantitatively exploited by a computer-based approach,
although it cannot be discerned by the visual interpretation. In fact, this area around the tumour
could catch also how the cancer infiltrates the nearby healthy tissues and, hence, potentially it could
help predicting the disease behaviour and patient survival. The other contribution of this manuscript
introduces the Local Binary Pattern (LBP) in the field of radiomics. LBP is a texture measure that is
successfully used in computer vision, that here we extend to a three-dimensional (3D) environment
and we apply with prognostic values in oncology, extending the set of texture features typically used
in the radiomics literature, which are based on the two-dimensional (2D) and 3D second-order joint
probability functions and their derivatives. To deepen our analysis, the approach presented here is
compared to a deep approach, where features are automatically computed, as well as to the signature
proposed by Aerts, et al. [19], which is the most cited at the state-of-the-art.

2. Background

Radiomics is an emerging trend that meets artificial intelligence and medical applications with
prognostic perspective. Examples are mostly related with oncology, with efforts directed towards
glioblastoma [24–26], oesophageal cancer [27], gastric cancer [28], soft tissue sarcoma [29], and lung
tumours [19,30,31]. Nevertheless, recent examples outside the oncological field are related to COVID-19
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outcome [32,33], cardiological issues [34], meningioma subtype, pneumonia, and parkinson outcome
prediction [35–37].

Because of the topic discussed, hereinafter we shortly overview the work concerned with the
prediction of the Overall Survival in patients suffering from the NSCLC [19,20,30,38,39] (Table 1).
Furthermore, the interested readers can deepen AI applications in lung cancer starting from two
reviews that discuss the prediction of lung cancer prognosis [40,41].

The literature explored so far shows a clear predominance of studies that focus on radiomics
descriptors that were extracted from the GTV.

Moreover, the analysis of the literature reveals to us that most of the work computed both 2D and
3D shape and texture descriptors that mostly leverage on the Grey-Level Co-occurrence Matrices or
wavelets. This can be justified by the fact that healthy tissue often differs from tumour tissue, mainly
at the microstructure level.

On these grounds, the contribution of this manuscript is twofold: first, we investigate how the
use of different volumes of interest impacts the Overall Survival prediction. Second, we introduce
the 3D version of the local binary pattern (LBPs), a texture descriptor that is widely used for texture
analysis in 2D images in other fields [42], but still not extended to the radiomic field.
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Table 1. Summary of the background on the radiomics approach to predict the Overall Survival in lung cancer.

Author Images Segmented Volume Study Population Number of Patients Number of Features Features Description Learning Model Performance

Huynh et al. CT GTV NSCLC, I and II stages 113 1605 shape, intensity, texture, Kaplan-Meier method AUC = 0.67
Laplacian of Gaussian filter and wavelets features

Aertset al. CT GTV lung and neck cancer 1091 440 tumour intensity, multivariate Cox proportional AUC = 0.69
shape, texture and wavelet features hazards regression model

Parmar et al. CT GTV NSCLC, I-III/IV stages 464 440 shape, intensity, texture, and wavelets features Wilcoxon test for feature selection AUC = 0.66
and a Random Forest as classification model

Fave et al. CT GTV NSCLC, III stage 107 212 shape and texture features multivariate model AUC = 0.675

Li et al. CT GTV NSCLC, I and II stages 100 722 morphology and texture based features Cox proportional AUC = 0.64
hazards regression model
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3. Materials

This work studies 97 patients with NSCLC stage III that were treated with definitive concurrent
chemoradiotherapy. The enrollment protocol was approved by Ethical Committee of Campus
Bio-Medico University on 30 October 2012 and registered at ClinicalTrials.gov on 12 July 2018 with
Identifier NCT03583723 after an initial exploratory phase. The Institutional review board approved
this analysis, and a written informed consent was collected from all the patients. For each patient,
the simulation CT images were acquired before the treatment using a Siemens Somatom Emotion,
with 140 Kv, 80 mAs, and 3 mm for slice thickness. Subsequently all of the images were preprocessed
using a lung filter (kernel B70) and a mediastinum filter (kernel B31). The patients were then clinically
followed, for a median follow-up of 18.55 months after that it was possible to divide patient into two
classes: 53 dead (class 0) and 44 alive (class 1). The patients had a mean Overall Survival (OS) time of
28.7± 26.4 months (min 4.8 months, max 142.6 months).

In this study we consider three different VOIs for each patient, the Gross Tumour Volume (GTV),
the Clinical Target Volume (CTV), and the Planning Target Volume (PTV) segmented by radiation
oncologists, as already introduced in Sections 1 and 2. For GTV, the expert radiation oncologists
included all the macroscopic disease defined at CT or PET-CT and nodes PET positive and/or larger
than 1 cm in the short axis at CT imaging. Starting from GTV, the other volumes can be segmented:
CTV former contains GTV plus a margin for sub-clinical disease spread, which therefore cannot be
fully imaged, and it represents the volume that must be adequately treated to achieve cure [43]. PTV is
a geometric concept that is designed to ensure that the radiotherapy dose is actually delivered to CTV.
It is determined expanding CTV with a safety margin, which is necessary to manage internal motion
and set-up reproducibility [44].

It is worth noting that the ability to segment tumour mass and the surrounding tissue involved
with the tumour to a certain extent is an important professional skill for a medical speciality that
is radiation oncology. Several methods are proposed in the literature to reduce interpersonal
variability [45,46]. This is why, in our work, the same radiation oncologist segmented all the images in
our repository, and then another lung cancer expert radiation oncologist proofread the segmentations.
Furthermore, to mitigate the inter-reader variability the segmentations were performed according to
the international guidelines [47].

Figure 1 shows an example of these VOIs: the GTV is drawn in red, and it is the smallest
segmentation that precisely delineates the visible tumour; CTV is represented in yellow and it includes
areas, where, in the image, there is no evidence of tumour, but where sub-clinical disease may be. PTV,
in blu, is the largest segmentation.

Figure 1. Example of a CT image of a patient suffering from Non-Small Cell Lung Cancer (NSCLC),
where we highlight the segmentations corresponding to Gross Tumour Volume (GTV) (red), Clinical
Target Volume (CTV) (yellow), and Planning Target Volume (PTV) (blue).
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4. Methods

Figure 2 details the pipeline designed in this work, which can be divided in three main blocks:
data processing with the feature computation, feature selection and final performance computation.
First, the data processing flow is represented in the uppermost green block: it consists in the
segmentation of the three VOIs (GTV, CTV, and PTV) from patients’ CT scans and, then, in the
computation of the descriptors outlined in the next Section 4.1. Second, the feature selection procedure
and the final performance computation are both included in the grey block. Proceeding from left
to right, the descriptors are standardised and ranked in the blue box, then we find the final subset
selection in the purple box that is further detailed in the bottommost diagram. Third, the final model
performance is shown in the rightmost grey blocks. All of these processes are fully described in
the followings.

4.1. Feature Computation

For each patient, several quantitative biomarkers were extracted from all the VOIs. The features
were computed using an in-house software tool coded in MATLAB R2019a (The MathWorks, Inc.,
Natick, MA, USA) that calculates the first order statistical features and two families of textural features:
3D Grey Level Co-occurrence Matrix (GLCM) and Three Orthogonal Planes-Local Binary Patterns
(TOP-LBP). The TOP-LBP implementation of 3D LPBs computationally simplifies the extraction process,
as discussed below.

First-order features: all of these features are computed from the grey levels’ histogram of a ROI
and therefore try to describe the statistical distribution of tissue’s density inside the volume. From
such histograms, we extracted 12 descriptors, which are the moments from first to fourth-order,
namely the mean, the standard deviation, the skewness and the kurtosis, the histogram width,
the energy, the entropy, the value of the histogram absolute maximum and the corresponding grey-level
value, the energy around such maximum, and the number of relative maxima in the histogram and
their energy.

3D Grey Level Co-occurrence Matrix: the healthy and the cancerous tissues usually present
different structural patterns: for this reason, we go beyond the grey levels distribution of the VOIs
voxels performing an additional textural analysis. In this respect, we computed the 3D Grey Level
Co-occurrence Matrix, which generalises the 2D GLCM to the third dimension, being able to catch the
differences of the tissues at the micro scale.

Given a 3D grey-scale image I and a 3D Cartesian reference system O(x, y, z), whose origin
is located in the top-front-left corner of I, the position of each voxel can be identified by a vector
p = px î + py ĵ + pz k̂, with px, py and pz ∈ N. We also denote a displacement vector d = dx î + dy ĵ + dz k̂,
with dx, dy and dz ∈ N. If we define m equal to the number of bit used to represent I, a GLCM3 is a
square matrix of size N = 2m, where each entry (gi, gj), with both gi and gj ∈ [0, 2m − 1], represents
the number of times a voxel in p with intensity gi is separated by a displacement d from another
voxel with intensity gj, therefore located in p + d. Hence, a GLCM3 matrix synthesises the count of
how many values co-occur between neighbouring pixels according to specific displacements. Those
quantities vary, depending on the VOI structure. Denoting as dh the h-th component of d, in order
to assess all possible directions, we considered the combination of dh ∈ {−1, 0, 1} as displacements,
without considering the (0, 0, 0) vector.

This leads to 26 different displacement directions. Furthermore, when considering that each
direction +d produces a GLCM3 matrix that is the transpose of the one produced by its opposite
direction −d, thus giving a redundant informative contribution, we only considered the 13 different
directions given by +d. More details on GLCM3 can be deepened in [48]. Finally, from each GLCM3,
we extract seven second order statistical features, referred to as Haralick descriptors [49]. Namely,
they are autocorrelation, homogeneity, entropy, energy, covariance, inertia, and absolute contrast.
Their formal definition is reported in the Appendix A. Concatenating such measures for each GLCM3
we get 13× 7 = 91 textural descriptors per patient.
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Figure 2. Graphical representation of the method, where the different colours refer to different steps
pipeline described in Section 4. List of abbreviations: VOI: Volume of Interest, LOO: Leave-One-Out,
RFE: Recursive Feature Elimination, N: number of patients, GTV: Gross Tumour Volume, CTV: Clinical
Target Volume, PTV: Planning Target Volume.

Three Orthogonal Planes-Local Binary Patterns: this is a relatively new descriptor in radiomics
scenario, and it is one of the possible generalisation of the well-known 2D LBP to the 3D. Now, we will
briefly recall the computation of a basic bi-dimensional LBP. If we consider a bi-dimensional image
I, then we can compare the intensity Ip of each pixel p with the intensity Ij of all its jth neighbour
pixels that lay on a circle centred in p with radius r. If Ij > Ip, the jth pixel is set to 1, 0 otherwise.
Next, it is possible to process all p’s neighbours in a circular direction, interpreting the sequence of
0s and 1s as a binary string and setting the value of p to the equivalent decimal value. Proceeding as
described through all of the pixels of I, we obtain a new image encoding the intensity distribution of
each pixel respect to its neighbours that can describe the texture of the original image. The number of
patterns for this 2D implementation is 2P, with P denoting the number of local neighbouring points
around the central point. In order to extend a 2D LBP to the 3D environment, a first solution consists
in considering a helix neighbourhood of each voxel [42]. However, to avoid the high increase of
the computational burden, associated to the very large number of patterns for volume LBP, when P
increases, as 23P+2, we chose another 3D implementation of LBP transformation that was also shown
to work fine [42]. It considers the co-occurrence on three orthogonal planes crossing the centre of the
analysed volume, as depicted in Figure 3.

It is based on the computation of three 2D LBPs, each of one is derived from each of the three
planes; their histograms are then computed and concatenated to obtain a unique histogram for the
specific volume. This conspicuously alleviates the computational load, since the number of patterns for
TOP-LBP is 3× 2P. Furthermore, in our LBP implementation, we consider two more variants to cope
with other two issues of 2D LBP definition. First, we computed rotation invariant LBP, i.e., all of the
binary strings obtained as the circular shift of a fundamental string are considered the same. Second,
we implemented a uniform version of LBP, i.e., all binary strings containing more than two crossings
from 0 to 1 or from 1 to 0 are considered not uniform and coded with a specific string. In our case,
setting P = 8, we get 48 features by computing first-order measures from the each of the three 2D LBP.
The interested readers can find more details about LBPs in [42,50].
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Figure 3. Visual representation of a TOP-LBP example: each ellipsoid shows a planar LBP calculated
on a specific orthogonal plane.

4.2. Features Selection and Classification

An important step during a radiomics approach is the features selection step: it helps in reducing
the dimensionality of the problem, lowering the curse of dimensionality and the risk of overfitting,
and it helps finding the most informative set of descriptors for the problem at hand.

The feature selection pipeline, represented in the blue, purple and red blocks of Figure 2, consists
in a wrapper-based approach, which searches and evaluates the best subset of features maximising the
performance of a given classification algorithm. To avoid any bias, features are normalised before each
step, using a standard scaler, as represented in Figure 2. This approach scales features while using the
following equation: z = (x− µ)/σ, with µ mean value, σ standard deviation and with x and z as the
original feature and the scaled feature, respectively.

Starting from the blue box in Figure 2, the feature set was analysed by the Recursive Feature
Elimination (RFE) approach [51], making use of four different classification algorithms, namely
AdaBoost, CART Decision Tree (DT), Random Forest (RF), and XGBoost (XGB) [52]. The use of
four learners and the availability of three different types of VOIs gave rise to 12 runs of the wrapper,
which are listed in Table 2.

The goal of the RFE is to select a feature subgroup, by initially considering all of the features
and recursively examining a smaller and smaller dataset according to an assigned feature importance
attribute. During this process, the selected classifier is trained on the standardised descriptor set to
compute the feature importance attribute based on the accuracy level of the model. The feature with
the lowest attribute is excluded from further analysis. This recursive analysis is performed until the
best feature is found resulting in a final descriptor ranking.

To avoid any bias during the features selection approach, the RFE step was applied according
to a nested leave-one-out (LOO) procedure: indeed, referring to Figure 2, there is an outer grey loop
for final performance computation and an inner blue loop for RFE application. This means that this
analysis was repeated N − 1 times, to obtain a global view of the feature importance. Hence, all of the
N − 1 rankings obtained were summed up to get a final rank of each descriptor.

From this step on we considered two alternative paths referred to as single ranking and total
ranking. On the one hand, in the first path, the ranking procedure was performed independently for
each single experiment, i.e., considering a single classifier and a single type of VOI. Straightforwardly,
each of the 12 experiments listed in Table 2 uses a specific features rank and, in turn, this permits us to
optimise the feature set for each learning algorithm and for each VOI.

On the other hand, in the second path, the wrapper first computes the rank of the features for
the GTV, CTV, and PTV; then, such rankings computed using the same classifier on the three volumes
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were summed up to gain a global ranking for every learning algorithm. This implies that we finally
have four different feature sets, one for each classifier used in the wrapper, regardless of the VOI used.
This permitted designing experiments that are comparable within the same classifier.

Turning our attention to the purple and red boxes in Figure 2, these represent the feature
evaluation workflow to find the best subset and it was performed independently for both single
ranking and total ranking analyses. To find out the best descriptors, we tested different combinations
of features subsets whose performance was evaluated according to a given metric. To this goal, all of
the features were initially sorted by their rank and, then, the subsets were sequentially inspected
using a cumulative forward selection approach (yellow loop). The cumulative forward selection search
procedure starts from a subset with one feature with the highest rank position and then incrementally
adds descriptors with lower ranks, until the set contains all the descriptors. To avoid any bias, each
subset was then evaluated while using a nested LOO configuration, where the inner loop (red LOO)
evaluates the best subset maximising the Area Under the ROC Curve (AUC) metric, whereas the outer
loop is again the grey LOO for final performance computation. Hence, the output of the purple box
is a list of N − 1 best subsets found with the nested procedure. We chose as final set the intersection
among these intermediate subsets, which represents the radiomic signature of the specific combination
of VOI and classifier in Table 2.

Finally, with this set of descriptors, the outer grey leave-one-out computes the ultimate
performance of the system.

Table 2. Overview of all possible combinations of volume of interests (VOIs) and learning algorithms.

Classifier

VOI AdaBoost Decision Tree Random Forest XGBoost

GTV AdaBoost-GTV DT-GTV RF-GTV XGB-GTV

CTV AdaBoost-CTV DT-CTV RF-CTV XGB-CTV

PTV AdaBoost-PTV DT-PTV RF-PTV XGB-PTV

4.3. Comparative Analysis

As reported in Section 1, in this work we deepen the analysis comparing the proposed approach
with the state-of-the-art and with an approach that leverages on image features automatically computed.
Therefore, this last section of the methods introduces the methodology of the competitors.

4.3.1. Comparison with the State-Of-The-Art

As a first point, we compare our approach with the most cited one at the state-of-the-art,
represented by the radiomic signature that was proposed by Aerts et al. [19]. This signature includes
four features: (i) the “statistics energy” that describes the overall density of the tumour volume, (ii) the
“shape compactness” quantifying how compact the tumour shape is, (iii) the “grey level nonuniformity”
that measures for intratumour heterogeneity, and (iv) the “grey level nonuniformity HLH” measuring
intratumour heterogeneity after decomposing the image in midfrequencies through wavelet analysis.
The interested readers can find the formal definition of such measures in the supplementary material
of [19], while their implementation is available in Python [53]. We compute this signature on our dataset
and, for a fair comparison, all of the tests are performed in LOO fashion for all of the classifier-VOI
combinations reported in Table 2.

4.3.2. Comparison with a Deep Learning Approach

Besides the comparison with the handcrafted signature at the state-of-the art, we investigate
the possibility to use automatic feature extractors. To this goal, we consider two well-established
deep networks, i.e., the AlexNet [54] and the ResNet50 [55], and we train them from scratch on our
dataset considering only the CTVs, since they yield the largest performance in the machine learning
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pipeline proposed here, as shown in Section 5. On the one hand, the AlexNet has a feature extraction
step composed of three consecutive blocks containing two convolutional layers and one max pooling
layer. After each convolutional layer, we included a batch normalization layer and a dropout layer,
to prevent exploding gradient values and overfitting, respectively. Subsequently, the classification step
is designed with two dense layers, one with 256 neurons and the other with one neuron, as it is the
output layer. All of the layers implement a LeakyRelu activation function, except for the output that
uses a sigmoid for the final classification. On the other hand, the ResNet50 was designed, as reported
in [55], except for the first max pooling layer, which was eliminated in order to maximally preserve the
information contained in the images, and the output layer that is a dense layer with one neuron with
a sigmoid activation function. In both cases, due to the large computational efforts needed, the test
procedure was conducted in a 10-fold cross validation, with eight folds as training, one as validation,
and one as test. Here, cross validation is preferred to LOO to alleviate the computational burden, while
having enough samples in the training and validation sets. In this case, the CNNs classify each slice
and then patient label is given by majority voting.

As a further direction of investigation, we also study what happens using the CNNs only as
feature extractors that feed the same four classifiers that were used in our approach. In practice,
from both networks pretrained on our dataset, we use as feature set the last layer in the feature
extraction blocks: this yields to 256 descriptors from the dense layer of AlexNet and to 8192 descriptors
from the average pooling layer of ResNet50. These two feature sets separately fed the four classifiers
used in the proposed pipeline, which were trained in order to classify each 2D slice. Again, patient
label is given by majority voting and the performance are computed in 10-fold cross validation

5. Experimental Results

The main experiment described in Section 4 was applied to all possible combinations of classifiers
and VOIs where the features are computed, summarised in Table 2. Furthermore, the experiments are
run also using both the single ranking and the total ranking methods for feature selection. The use
of four classifiers, three VOIs, and two feature selection ranking approaches results in twenty-four
experiments, whose results are presented in Table 3. We measured the following performance metrics:
accuracy = TP+TN

P+N , the area under the ROC curve (AUC), the precision = TP
TP+FP and the recall = TP

TP+FN .
Straightforwardly, TP, TN, P, and N stands for the true positive, true negative, total number of positive
samples, and total number of negative samples, respectively. Hereinafter, we also use FP and FN to
denote the false positive and false negative, respectively. Let us recall that the positive and negative
classes correspond dead and alive patients, respectively, as described in Section 3.

In Table 3, the upper panel shows the performance of the twelve combinations of the classifiers and
the VOIs when the single ranking method is used, whereas the lower panel reports the performance
for the total ranking case. For the single ranking, the accuracy and AUC values range from 60.82%
to 83.51% and from 61.06% to 82.78%, respectively. For the total ranking, the accuracy ranges from
44.33% to 77.32%, and the AUC ranges from 44.43% to 75.96%. The subsets of features selected in each
combination range from two to nine descriptors for the single ranking and from two to 20 descriptors
for the total ranking. Note that, in the total ranking case, we obtain a worse range of accuracy,
AUC values and larger subsets of selected feature in comparison to the single ranking. This could
be expected, since the single ranking approach provides a best feature subset optimised for both the
classification algorithm and the considered VOI.

A more detailed analysis of Table 3 suggests us other three observations. The first is that the
performance on GTV in the single ranking is stable across the four classification algorithms. The same
does not happen for the total ranking case. We deem this indicates that a system built on this VOI
is particularly stable when a volume-specific optimization occurs for the best feature set selection.
Secondly, the overall largest performance was obtained combining the classifier Adaboost with the
CTV in the single ranking procedure. Compared to this result, the best result for the total ranking
procedure was obtained combining the Random Forest Classifier with, again, the CTV. Such best
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results for single and total rankings are highlighted in bold in Table 3. As a third observation, we notice
that, although both the best experiments exploit the CTV, the largest performance are given by the
single ranking approach, where the best feature set was customized on the specific VOI analysed.

Table 3. System performance in all possible combinations. The upper panel refers to the single
ranking strategy for feature selection, whereas the lower panel shows the results considering the total
ranking option.

Single AdaBoost Decision Tree Random Forest XGBoost

Ranking GTV CTV PTV GTV CTV PTV GTV CTV PTV GTV CTV PTV

Accuracy 70.10 83.51 71.13 70.10 60.82 63.92 73.20 78.35 77.32 68.04 71.13 76.29

AUC 70.13 82.78 70.11 70.13 61.06 64.09 71.81 77.29 76.54 66.70 70.11 75.02

Precision 69.81 90.57 81.13 69.81 58.49 62.26 86.79 88.68 84.91 67.19 70.49 73.44

Recall 74.00 81.36 70.49 74.00 65.96 68.75 70.77 75.81 76.27 81.13 81.13 88.68

Total AdaBoost Decision Tree Random Forest XGBoost

Ranking GTV CTV PTV GTV CTV PTV GTV CTV PTV GTV CTV PTV

Accuracy 64.95 72.16 68.04 44.33 58.76 65.98 75.26 77.32 74.23 64.95 72.16 74.23

AUC 64.84 71.83 67.47 44.43 59.18 65.59 73.89 75.96 73.33 62.52 70.09 72.94

Precision 66.04 75.47 73.58 43.40 54.72 69.81 88.68 90.57 83.02 62.67 68.06 71.88

Recall 68.63 74.07 69.64 48.94 64.44 68.52 72.31 73.85 73.33 88.68 92.45 86.79

We also run the ANOVA test among the VOIs both for the results attained by single and total ranking,
whatever the classification paradigm used. When we get a significant result, i.e., at least one of the groups
tested differs from the other groups, we proceed with Least Significant Difference (LSD) that detects the
statistical differences among a group of results. In the case of results provided by the single ranking, we
obtain a p-value equal to 0.0334, suggesting that the performance achieved using the different VOIs are
not the same. The LSD tests show that the results of CTV+Adaboost are significant different (p < 0.1)
from the others in all cases, except for CTV+Random Forest, PTV+Random Forest, and PTV+XGBoost.
In the case of the results provided by the total ranking, the p-value is 1.586× 10−5, suggesting again
that there are differences between the VOIs. The method with the best AUC, i.e., CTV+Random Forest,
shows performance statistically different from all the others except for CTV+AdaBoost, PTV+AdaBoost,
GTV+Random Forest, PTV+Random Forest, CTV+XGBoost, and PTV+XGBoost.

Let us now turn the attention to the radiomics signature underlying the best case,
i.e., CTV+Adaboost in single ranking: as shown in the first column of Table 4 it is composed of
eight features belonging to the LBP set, and one belonging to the GLCM set. In detail, such features are:
“uniform 3D LBP kurtosis”, which estimates the shape of the distribution of all patterns discharging the
noisy patterns, “3D LBP energy”, which represents the homogeneity of the patterns, “rotation invariant
3D LBP absolute maximum”, which is the absolute maximum value among the patterns, regardless
of their rotation, “3D LBP energy around the absolute maximum”, which estimates the homogeneity
of patterns around the absolute maximum value, “rotation invariant 3D LBP energy”, which is the
homogeneity of the patterns without considering their rotation, “uniform 3D LBP energy around
the relative maximum”, which estimates the homogeneity of pattern around a relative maximum
value discharging the noisy patterns, “uniform 3D LBP entropy”, which is a measure of the variety of
patterns discharging the noisy ones, and “uniform 3D LBP skewness”, which measures the asymmetry
of distribution of all patterns discharging noisy patterns, and “inverse GLCM in direction (−1,−1,0)”,
which measures the inverse of grey level attenuation in the ROI over the direction (−1,−1,0).

Turning our attention to the newly introduced set of features, i.e., 3D LBPs, and still focusing on
the single ranking approach, these descriptors were always chosen in the best feature subsets, regardless
of the classifier and the VOIs under consideration. For the sake of brevity, we hereby do not report the
full list of features chosen in each of the 24 experiments. However, to provide a synthetic analysis of the
best feature sets, the second and the third columns of Table 4 show how many times each feature in the
first column (i.e., the radiomic signature of the best case) was included in the best feature set using the
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Adaboost with the GTV and PTV (second column) and the DT, RF, and XGBoost with the CTV (third
column). Note that finding zeros in the occurrences of Table 4 does not exclude the presence of other
LBP features in the best subsets besides those chosen in the experiment with largest performance.

Table 4. Best radiomic signatures. The fist column lists the feature selected in the best performance.
The other two columns indicate the number of times that each descriptor was selected in the best
feature set. Abbreviations: U—uniform, RI—rotation invariant.

Features Selected for AdaBoost CTV #Occurrences in AdaBoost GTV and PTV #Occurrences in DT, RF and XGBoost with CTV

U 3D LBP kurtosis 0 3

3D LBP energy 0 1

RI 3D LBP maxAss 0 0

3D LBP energy around maxAss 0 1

RI 3D LBP energy 0 1

U 3D LBP energy around maxRel 0 1

U 3D LBP entropy 1 3

U 3D LBP skewness 0 3

inverse GLCM (−1,−1,0) 0 1

To deepen the discussion on the effectiveness of 3D LBPs, we excluded them from each signature
selected by our approach and train again each learner. The results are reported in Table 5, where
“-” indicates that the classifier was not trained, since the best set included only 3D LBP descriptors.
When comparing these results with Table 3 we notice that there is not an evident pattern in the
performance differences between the two experiments. Despite that, the use of 3D LBPs improves
the largest accuracy obtained: indeed, without them, the overall best accuracy score decreases from
83.51% to 76.29% and from 77.32% to 75.26% for the single ranking and the total ranking, respectively.
This trend is also manifested by the other performance measures reported for the best cases, indicating
that LBPs actually give an important contribution to the classification task at hand. Furthermore,
we statistically pairwise compared the results reported in Table 3 with those in Table 5 using the
Wilcoxon signed rank test. In the case of single ranking, for AdaBoost+CTV, DT+CTV, RF+CTV,
RF+PTV, and XGBoost+GTV the use of 3D LBPs provides performance larger and statistically different
from those attained excluding these descriptors (p < 0.1). In the case of total ranking, at the same
level of confidence, the results of the test show that the use of 3D LBP provides larger and statistically
different performance for AdaBoost+PTV and XGBoost+CTV.

Table 5. System performance excluding LBP descriptors from the final feature subset in all possible
combinations of Table 2 for single ranking (upper panel) and total ranking (lower panel). The notation
‘-’ indicates that no feature was left in the final set after excluding LBP descriptors. The largest
performance is highlighted in bold.

Single AdaBoost Decision Tree Random Forest XGBoost

Ranking GTV CTV PTV GTV CTV PTV GTV CTV PTV GTV CTV PTV

Accuracy 76.29 69.07 62.89 71.13 48.45 72.16 70.10 69.07 69.07 55.67 69.07 71.13

AUC 75.99 68.22 62.75 70.50 47.81 72.02 68.01 66.87 68.42 51.71 68.22 69.14

Precision 77.78 69.49 66.67 71.93 52.73 75.00 66.67 65.75 70.18 55.56 69.49 67.61

Recall 79.25 77.36 64.15 77.36 54.72 73.58 90.57 90.57 75.47 94.34 77.36 90.57

Total AdaBoost Decision Tree Random Forest XGBoost

Ranking GTV CTV PTV GTV CTV PTV GTV CTV PTV GTV CTV PTV

Accuracy 74.23 73.20 52.58 61.86 - - 75.26 72.16 71.13 56.70 32.99 67.01

AUC 73.52 72.77 52.17 61.23 - - 74.08 70.28 68.95 54.97 36.36 64.02

Precision 74.14 74.55 56.60 64.29 - - 73.02 68.57 67.12 58.21 0 62.96

Recall 81.13 77.36 56.60 67.92 - - 86.79 90.57 92.45 73.58 0 96.23
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5.1. Comparison with The-State-Of-The-Art

The results were compared against the signature presented by Aerts et al. [19] for OS prediction
in NSCLS, as introduced in Section 4. Further, to be one of the most cited works in the state-of-the-art,
such a radiomic signature was also used by Lambin et al. [17] and Kwan et al. [56].

Table 6 reports the performance computed with Aerts et al.’s signature on our dataset: the largest
AUC value was obtained considering the CTV with Random Forest as classifier, and it is equal to
76.92%. Using the same VOI our signature gets an AUC equal to 82.78%, which suggests that the
inclusion of the 3D LBP descriptors boosts the discrimination power and leads to larger performance.
Despite the fact that the best results of Tables 3 and 6 are obtained with different classifiers, comparing
the corresponding columns of the two tables further validates the previous assertion. Also note that
the best combination in Table 6 is based on a Random Forest classifier with the CTV, which is also
one of two best configurations in our experiments: this confirms our results that the CTV is the most
informative volume of interest.

Table 6. Performance with the signature presented by Aerts et al. [19] combined with the classification
algorithms used here. The largest performance is highlighted in bold.

Adaboost Decision Tree Random Forest XGBoost

GTV CTV PTV GTV CTV PTV GTV CTV PTV GTV CTV PTV

Accuracy 63.16 67.37 60.00 63.16 66.32 63.16 73.68 77.89 73.68 46.32 46.32 46.32

AUC 62.88 67.42 59.94 63.13 66.13 62.88 72.84 76.92 72.68 50.00 50.00 50.00

Precision 65.38 70.83 63.27 67.39 68.63 65.38 71.67 74.19 70.97 0 0 0

Recall 66.67 66.67 60.78 60.78 68.63 66.67 84.31 90.20 86.27 0 0 0

5.2. Comparison with a Deep Learning Approach

We conducted a comparison with two deep learning approaches to further assess the power of
the handcrafted features, as described in Section 4. Hence, we performed two experiments: the first
tests the AlexNet and the ResNet50 as a whole classification approach, whereas the second tests the
two deep networks as feature extractors feeding the same four classifiers used herein-before. All of the
results are summarised in Tables 7 and 8 and, in general, they show that the most performing network
is the ResNet50.

In the first experiment, this deep network achieves an AUC equal to 76.49% and an accuracy
equal to 71.11%. Furthermore, the performance differences between the ResNet50 and the AlexNet are
statistically significant according to the Wilcoxon signed rank test (p = 0.0396).

In the second experiment, when the networks are used as feature extractors, we find that the
automatic features they compute combined with the Adaboost classifier provide accuracy and AUC
equal to 73.33% and 73.42%, respectively. Furthermore, using this learner, the performance differences
using the features computed by the AlexNet and by ResNet50 are statistically significant with p < 0.1
according to the Wilcoxon signed rank test. We do not find statistical differences in the pairwise
comparison between the automatic features while using the other three classifiers.

As it is evident, these values were lower than those achieved by the proposed approach
(accuracy = 83.51% and AUC = 82.78%), showing the successful discriminative power of hand-crafted
features. We also assess this difference using again the Wilcoxon signed rank test, comparing our
proposal (AdaBoost+CTV in Table 3) with the best one provided by deep learning approach (ResNet50
features in Table 7). The results of such two approaches are statistically different with p < 0.05.
A possible reason for this finding could be the size of our dataset: indeed, this could hinder the
power of deep approaches, leading to the superiority of handcrafted features with respect to measures
automatically learned.
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Table 7. Performance of the deep features extracted with two state-of-the-art deep neural networks.
The results are computed evaluating the four classification algorithms that were used in the proposed
pipeline in 10-fold cross validation. The largest performance is highlighted in bold.

ResNet50 features AlexNet features

AdaBoost DT RF XGB AdaBoost DT RF XGB

Accuracy 73.33 66.67 70.0 71.11 63.33 66.67 63.33 70.0

AUC 73.42 66.08 69.5 71.17 63.08 67.67 64.00 70.67

Precision 72.81 68.02 68.12 69.94 63.86 70.52 63.89 72.16

Recall 85.67 82.17 89.67 89.67 78.17 79.00 89.17 89.17

Table 8. Results of the AlexNet and the ResNet50 trained from scratch on our dataset.

Accuracy AUC Precision Recall

ResNet50 71.11 76.49 69.49 83.67

AlexNet 57.78 64.37 60.38 65.31

6. Conclusions

In this manuscript, we propose a radiomics approach to predict the Overall Survival in a cohort
of 97 patients suffering from locally advanced non-small cell lung cancer. NSCLC has been already
studied in few other works and, differently from the literature, here we introduce two novel aspects
which have not been analysed in this way so far. The first is the analysis of three different VOIs
commonly used in clinical practice and segmented on CT images routinely collected. The second,
but not secondary, is the introduction of 3D Local Binary Pattern descriptors, already used in computer
vision problems. The both constitute novel and challenging directions of this research.

Among the different combinations of classification algorithms and VOIs, the best accuracy of
proposed approach is equal to 83.51%, achieved using the Clinical Target Volume, the Adaboost
learner, and nine features selected from the pool. The fact that the VOI providing the best results is
the CTV confirms our initial hypothesis that there is information in the surroundings of the visible
tumour and that this is important to predict patients’ OS. Furthermore, the LBPs features proved
to be determinant, improving the classification performance in comparison with respect to other
texture measures.

The promising results described so far suggest three future directions worthy of investigation.
First, the system performance and its variability could be explored for small variations of the
segmentations of the target tumour volume, considering not only the GTV, but also the CTV and PTV.
This will permit us to assess how important it is to get a very accurate automatic segmentation. Second,
we could further explore the potential of LBPs, validating such descriptors on an external dataset, so to
confirm their stability and effectiveness. Third, we are working to enlarge the size of the dataset and to
extend the research in the deep learning area, even when considering deep approaches to artificially
enlarge the size of the training set, such as the Generative Adversarial Networks.
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Appendix A. Haralick Features

This appendix presents in Table A1 the formal definition of Haralick features listed in Section 4.
The content of such tables adopts the following notation:

• G is the number of grey levels in the image I;
• gi and gj denotes two grey level values, with i and j lying in [0, G− 1];
• d is a displacement vector;
• p(gi, gj, d) denotes the grey level co-occurrence matrix (GLCM) of I;
• µp(gj ,d) = ∑G−1

i=0 p(gi, gj, d) and µp(gi ,d) = ∑G−1
j=0 p(gi, gj, d) denote the mean value of the

one-dimensional marginal distributions of the GLCM;
• ∂(gi, gj) = (gi − gj)

2 is a measure of dissimilarity.

Table A1. Definition of the Haralick measures.

Feature Definition

Autocorrelation ∑G−1
i=0 ∑G−1

j=0 [p(gi, gj, d)− µp(gi ,d)µp(gj ,d))]

Homogeneity ∑G−1
i=0 ∑G−1

j=0
p(gi ,gj ,d)

1+∂(gi ,gj)
for g1 6= gj

Entropy −∑G−1
i=0 ∑G−1

j=0 p(gi, gj, d) · log[p(gi, gj, d)], for p(gi, gj, d) > 0

Energy ∑G−1
i=0 ∑G−1

j=0 p(gi, gj, d)2

Covariance ∑G−1
i=0 ∑G−1

j=0 (gi − µp(gi ,d))(gj − µp(gj ,d))p(gi, gj, d)

Inertia ∑G−1
i=0 ∑G−1

j=0 ∂(gi, gj)p(gi, gj, d)

Absolute contrast ∑G−1
i=0 ∑G−1

j=0 |gi − gj| · p(gi, gj, d)
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