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Abstract: Nowadays, in the context of Industry 4.0, advanced working environments aim at
achieving a high degree of human–machine collaboration. This phenomenon occurs, on the one hand,
through the correct interpretation of operators’ data by machines that can adapt their functioning to
support workers, and on the other hand, by ensuring the transparency of the actions of the system
itself. This study used an ad hoc system that allowed the co-registration of a set of participants’
implicit and explicit (I/E) data in two experimental conditions that varied in the level of mental
workload (MWL). Findings showed that the majority of the considered I/E measures were able to
discriminate the different task-related mental demands and some implicit measures were capable of
predicting task performance in both tasks. Moreover, self-reported measures showed that participants
were aware of such differences in MWL. Finally, the paradigm’s ecology highlights that task and
environmental features may affect the reliability of the various I/E measures. Thus, these factors
have to be considered in the design and development of advanced adaptive systems within the
industrial context.

Keywords: implicit/explicit measures; human–machine interaction; symbiotic system; mental
workload; eye tracking; heart rate; electrodermal activity; NASA-TLX; working tasks

1. Introduction

The widespread distribution of cutting-edge software and hardware products in the workplace
requires more and more individuals to interact with technological systems. Most of these tools are
designed and developed to ease the accomplishment of tasks (e.g., avoiding information pollution).
They support workers both at the physical and cognitive level, based on the paradigm of the internet of
things (IoT), which empowers the fast and flexible information exchange among different technological
devices through their digital connection. The IoT concept, applied to the industrial environment,
especially in the context of Industry 4.0, results in an interconnected system of physical entities
characterized by communication exchanges, data processing, and/or sensing capabilities [1]. The goal
of IoT exploitation is to produce a wide range of work-related improvements, such as increased work
safety and security, productivity, and efficiency of resource management.

Humans are often part of such systems, and whenever the interaction between humans and
machines involves a form of mutual support, it could be defined as symbiotic. Licklider first coined the
term man–computer symbiosis to describe this partnership characterized by cooperative interaction
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between the two coupled agents, as happens in nature between two living organisms that draw mutual
support [2]. When these conditions are met, human beings are able to receive more customized
support in performing tasks, and technological devices improve their functioning due to continuous
human–computer interactions (HCI) [3].

In this perspective, the standard human–computer communication is explicit and observable,
and users can intentionally communicate and act within the system, for example, through a graphical
interface. At present, several forms of implicit interaction are spreading, in terms of non-voluntarily
types of communication from the human agent towards the computer, to improve HCI [4,5]. This type
of interaction is characterized by the machine’s acquisition of users’ data that cannot be controlled
or manipulated by them. For instance, bio-signals are usually considered to reflect the users’
psychophysiological state [5,6] and could be acquired by utilizing non-invasive sensors. In symbiotic
systems, these users’ collected data could be shared among all the computational devices connected
through the network. Once it detects the operator’s need for support (e.g., an extreme level of stress),
the system could tailor its interface and functions by implementing real-time adaptive features [7,8].
These concepts were modeled by Gamberini and Spagnolli ([3]; see Figure 1). They postulated that a
symbiotic system collects meaningful data from both the environment and the human, employing a
series of devices such as biosensors (data acquisition). These data are elaborated and interpreted by
the computational tools, exploiting artificial intelligence or machine learning algorithms, resulting in a
reliable and flexible user’s model (data elaboration and interpretation). Lastly, the machine personalizes
its actions and decisions on the actual user’s needs and desires as they are programmed (execution of
automated actions sequence). This sequence of events occurs iteratively. Thus, the symbiotic systems
would be more precise in interpreting the users’ intentions and behaviours and supporting them in
achieving their goals. As a consequence, the performance of the human agent and overall proficiency
would improve.
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Symbiotic systems present two crucial limits: the interpretability of the users’ data and the
transparency of the system’s actions.

Regarding the former, it must be considered that a monitored measure (e.g., heart rate; HR) has no
univocal interpretation. The behavioral and psychophysiological measures may reflect different internal
states related to the specific task that the user is accomplishing. For instance, the electrodermal activity
or visual behaviour can reveal different internal states, such as variations in the level of stress [9,10],
affective state (i.e., arousal and valence) [11], or mental workload [12,13]. A reductionist approach could
lead to the misunderstanding of data, causing a failure to support users when needed, or implementing
adaptive features when they are not necessary. To overcome this problem, the combination of various
sources of information could be the most suitable solution. It is possible to pair users’ implicit and
explicit (I/E) data to achieve the richest level of comprehension [5].

Regarding the second limit, namely the system transparency, it is relevant to clarify to the
users the reasons and the modalities of the machine’s actions that modify the “state” of the world.
This characteristic allows the users to carefully decide which data to provide to the devices and how to
use the information coming from the devices [14]. Whenever this transparency is lacking, the system
becomes a black box, and the user is not capable of understanding the causes of modifications in the
system’s functioning. To test this construct, we could compare if the users’ perceptions (i.e., self-reported
data acquired offline) match the detected changes in the I/E data.

The exploitation of these user’s personal and sensitive data raises a series of issues related to
ethics, privacy violations, and misuse of the processed data, which are intrinsically connected to the
symbiotic system’s main advantage, namely, its capability to act bypassing the user [14,15].

To consider the critical aspects of the symbiotic system mentioned above, we needed to identify
a reliable construct that could be assessed based on implicit, explicit, and subjective measures [16].
Within the work context [8], the impact of mental workload (MWL) on performance has been
analyzed [17–19], especially regarding its optimization for users operating in the environment of
so-called Industry 4.0 [20].

In the ergonomics domain, MWL is defined as the mental demands imposed on workers by
accomplishing tasks, and refers to the operators’ cognitive resources needed to meet the working
requests [21]. One of the most interesting features of the MWL is that it can be exploited to evaluate
how users’ responses are affected by the difficulty of a task [17].

Recent literature reviews have reported a series of implicit measures of MWL that are affected
by variations in the imposed level of mental workload [12,22], such as the heart rate (HR), which
increases with higher task demands [23] and multitasking conditions [24]. Another example is the
skin conductance (SC, or electrodermal activity; EDA) which has been shown to increase in different
situations such as complex driving environments [21] and the presence of secondary tasks [18,25].
Considering eye-related metrics, modulations due to a high level of mental workload are shown in
pupil diameter (i.e., increment [20]), fixation duration and frequency (i.e., decrement [25]), saccadic
frequency (decrement [26]), blink duration (decrement [22]) and frequency (increment [27,28]), and the
nearest neighbor index (NNI) [13,29,30]. MWL is generally assessed explicitly considering the user’s
performance, such as time on task and accuracy [31].

Concerning the self-reported measures of MWL, one of the commonly employed tools is the
NASA task load index (NASA-TLX) questionnaire [32]. This comprises six sub-scales, eventually
providing a single score. Some studies utilize the overall scoring (i.e., computed considering all the
sub-scales), the so-called task load index. Recently, Galy and colleagues [33] have pointed out the
importance of evaluating each dimension of the NASA-TLX questionnaire independently (e.g., mental
demand, physical demand, effort, etc.). By doing so, it is possible to assess how the single sub-scale
scores may be differently affected by the mental workload related to a specific task. In experiments
in which mental demand is increased, participants reported higher perceived mental demand, effort,
and frustration, and lower subjective perception of their task performance [34–36].
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By integrating these multiple sources of information (i.e., I/E), we aim to comprehend how to
improve context-aware interaction and lay the foundations for the future design and development of a
fully integrated symbiotic system.

The Study

The present research could be considered an initial phase of the design and development of a
symbiotic system that can detect an increase in the user’s MWL and, on this basis, adapt its operating
to reduce the task demand. As the first step toward such purpose, this study’s main objective was
to define a set of implicit and explicit measures that could be exploited to monitor variations of the
MWL experienced by the users due to the manipulation of the task difficulty. A second purpose was
to investigate if participants were aware of the different levels of mental load. The assignment was
carried out in an ad hoc built ecological setup, similar to a real assembly line, to increase the outcomes’
potential generalizability. Indeed, this ad hoc system (described in Section 2.3, Equipment and Material)
allowed us to simultaneously observe, and subsequently compare, all the measures under investigation
in the present study.

Based on the two main limits of symbiotic systems (i.e., data interpretability and system
transparency), the study explored the following research questions:

RQ1. Do the implicit and explicit measures reflect the variation in the MWL due to the different
experimental tasks in the same fashion?

RQ2. Do the implicit and explicit measures reflect the subjective perceptions of participants
regarding the MWL imposed by the different tasks?

For research question 1, we expected that both implicit (i.e., ocular, cardiac, and electrodermal
activity), and explicit (i.e., task accuracy) measures would be affected, in a highly ecological paradigm,
by different levels of MWL elicited through the manipulation of task difficulty.

For research question 2, we predicted that the findings related to the implicit and explicit measures
(e.g., eye tracking and task accuracy) would match participants’ subjective perception (e.g., NASA-TLX
scores) in reflecting the different levels of mental workload.

2. Materials and Methods

2.1. Participants

Thirty individuals (F = 16) with a mean age of 32.03 years (SD = 12.02) took part in the
experiment. All participants presented normal or corrected-to-normal vision. None of the participants
had heart conditions. We did not give any kind of compensation for partaking in the trial.
Indeed, participation was voluntary.

2.2. Design

The experiment followed a within-participants design. An independent variable, the task difficulty,
was manipulated: single- (screwing) vs. dual-task (screwing and backward counting). The order of
the tasks was counterbalanced across the participants.

2.3. Equipment and Materials

The workstation was designed and developed within the present study to consider the highest
possible number of implicit and explicit user data. It was composed of a perforated blackboard
(Figure 2a,b), an eye-tracking pair of glasses (Pupil Labs, Figure 2d), and an amplifier for the monitoring
of psychophysiological signals (ProCompt system, Figure 2c).

The handmade blackboard consisted of a hollow parallelepiped with a square base (60 × 60 ×
50 cm) and four telescopic supports, to allow the adjustment of its relative height. Two of the four
vertical sides had 50 holes arranged in 5 parallel horizontal rows, with threaded inserts in each hole,
able to hold hexagonal-head steel bolts (8 × 25 mm). The entire system could register every voluntary
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human-workstation interaction (duration and frequency), from when the participant collected a bolt to
when s/he completely tightened it on the blackboard. Indeed, a Makey Makey board (Makey Makey
LLC©; JoyLabz, Santa Cruz, CA, USA), installed inside the blackboard and connected to a laptop,
allowed this information to be sent to a portable computer. These data were recorded using E-Prime
software (v.2.0; Psychology Software Tools ©; Pittsburgh, PA, USA). The participants, the board,
and a metal drawer containing the screws were part of an electrical circuit. A bracelet worn by
participants was an important part of the system. When s/he touched one of the circuit components,
the ensuing electrical contact sent a trigger to the connected computer to record the information of
the interaction which had just occurred. Two GoPro Hero 4 cameras, one mounted in front of the
participant (i.e., over the blackboard; see Figure 2b) and the other on a lateral position, allowed the
continuous monitoring of the participants. The GoPro and the eye-tracker world-camera sampling
frequency was set to 30 frames per second to permit an offline synchronization of the video-recordings.
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A cinematographic clapper was utilized for synchronizing the measures collected from the
human–workstation interactions and the implicit measures. This tool was also interfaced, through
the Makey Makey board, to the E-Prime software. This clapper created a detectable electrical contact,
which was then synchronized with the frame corresponding to the closure. Therefore, the closing
of this instrument was carried out in the cameras’ visual field to synchronize the video streams and
other devices. Finally, the workstation was equipped with a lighting system, consisting of six strips
of SMD 5050 LEDs, emitting a total of 1100 lumens of cold white light (4500 K), positioned on an



Appl. Sci. 2020, 10, 6416 6 of 19

adjustable support, anchored to the upper base of the blackboard, to maintain the same level of lighting
in the laboratory.

We utilized a pair of binocular eye-tracking glasses (i.e., Pupil Labs; Pupil Labs GmbH©, Berlin,
DE; Figure 2d) in the experiment. This tool is capable of gathering data on fixations, blinks, saccades
(duration and frequency), and pupil diameter. It was connected to an MSI laptop (Intel Core i7-6700HQ,
screen resolution 1920 × 1080). The software Pupil Capture (Pupil Labs GmbH©, Berlin, DE) allowed
the system calibration and the data recording (sampling frequency: 120 Hz). The software Pupil Player
(Pupil Labs GmbH©, Berlin, DE) was utilized to export the eye-tracking data.

Lastly, a Procomp5 Infiniti amplifier (Thought Technology Ltd.; Montréal, QC; Figure 2c) and its
software (i.e., BioGraph Infiniti) permitted the recording of psychophysiological data. The software ran
on a second MSI laptop (in the same configuration as the aforementioned laptop). The heart rate (HR)
was acquired using a blood volume pulsimeter positioned on the left middle finger. The electrodermal
activity (EDA) was collected using two electrodes placed on the annular and index fingers of the same
hand. The hand was placed still on the table and was not involved in any task.

2.4. Tasks

The main task was conceived ecologically, using the blackboard described in the previous section
to perform a real manual screwing task. In the single-task, the participants collected 50 bolts of two
different colours (25 white and 25 black), one at a time. They placed them according to a specific
sequence in the perforated blackboard (Figure 2a,b). The sequence was depicted on a small structure
located above the blackboard’s top left (see Figure 2b, upper-left; Figure 3).
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surround both models are eye-tracker markers.

The models comprised five sequences (one for each row) of four hexagons (i.e., the “heads” of
the bolts). Considering the primary task (i.e., screwing), in both experimental sessions, participants
had to fill in the blackboard from left to right (each row) and from up to down following the model’s
sequences (Figure 3). Participants picked the bolts from a drawer, covered by a small curtain (Figure 2a)
placed below the blackboard.

In the dual-task, users had to also deal with an interference task (i.e., backward counting).
It consisted of continuously subtracting 7, starting from 1000, up to the completion of the main task
(i.e., screwing). Participants were asked to be accurate and fast as much as possible while accomplishing
both the experimental tasks. The backward counting task was chosen as an interfering task because to
be performed it involves multiple cognitive resources (e.g., executive functions, attention, short- and
long-term memory, and procedural and working memory) and this increases the overall general task
demands. Furthermore, it does not explicitly require visual processing.



Appl. Sci. 2020, 10, 6416 7 of 19

2.5. Procedure

The experiment was performed in a quiet and isolated room, comprising different phases. In the
beginning, the participants were administered an informative note and gave informed consent.
Then, they carried out two preliminary tests. A backward counting test was conducted, in which
participants, starting from 900, had to subtract 7 twenty times to complete the task. This task served
as a familiarization with the interference task. Then, participants had to accomplish a Corsi test that
evaluated their visuospatial memory. The Corsi test allowed the eventual exclusion of participants
with reduced visuospatial memory (lower than 3). At this stage, the experimenters administered
a questionnaire concerning demographic information (e.g., gender, education, occupation) and
familiarity with ordinary manual working tasks. Then, participants were helped by the researchers
to wear all the sensors (see Equipment and Materials section for more details). The experimenters
carried out the eye-tracker calibration. An audio file containing the instructions of the first task
(e.g., single-task, low difficulty) was presented. If participants were unsure of something regarding the
task, they could ask the experimenters. Then, a 5-min baseline of psychophysiological measurements
was performed. After the completion of the first task, participants filled out the NASA-TLX
questionnaire. The researchers double-checked all the sensors and devices in preparation for the second
task. A second audio file with the instructions for the second task (e.g., dual-task, high difficulty) was
presented. Participants had to perform the screwing task and, simultaneously, the backward counting
task (i.e., interference). The dual-task ended when the screwing task was completed. Both experimental
sessions were video-recorded.

The whole experiment lasted about one hour.

2.6. Measures

We consider the following implicit, explicit, and subjective metrics.
Explicit

• Task accuracy, the number of errors in the screwing task (mean, s), e.g., bolts placed into the wrong
position or dropped.

Implicit:

• Time on task, the time needed to accomplish the screwing task (mean, s);
• Fixation duration (mean, ms) and frequency (per min);
• Nearest neighbor index (NNI, mean), namely, the dispersion of fixations in the visual field;
• Blink duration (mean, ms) and frequency (per min);
• Saccade duration (mean, ms) and frequency (per min);
• Pupil diameter (mean, mm);
• Heart rate (mean, beats per min);
• Electrodermal activity (mean, micro Siemens, µS).

Subjective:

• Overall task load (NASA-TLX questionnaire); the six-subscales were considered separately.

3. Results

Data were analyzed utilizing RStudio software [37]. We carried out non-parametric tests in the
case of data that were not normally distributed. Whenever needed, the p-values were adjusted applying
the Benjamini-Hochberg (BH) correction for multiple comparisons [38]. Considering the Wilcoxon
tests, the reported values of N were equal to the pairs of measures that showed differences.
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3.1. Task Accuracy

A Wilcoxon test was performed considering the accuracy of the main task (i.e., screwing), as a
function of task difficulty. An effect emerged (N = 28, W = 333, p < 0.01, r = 0.54). Participants made
more mistakes in the dual-task (M = 4.3, SD = 2.5) compared to the single-task (M = 2.7, SD = 2.7;
see Figure 4).
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3.2. Time on Task

A t-test was conducted concerning the time needed to accomplish the tasks as a function of task
difficulty. An effect was shown (t(29) = 7.391, p < 0.001, r = 0.80). Participants needed more time
for carrying out the dual-task (M = 873.36 s, SD = 128.34) compared to the single-task (M = 692.97 s,
SD = 112.31; see Figure 5).
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Figure 5. Mean time on task (s) as a function of task difficulty. *** p < 0.001.
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3.3. Fixation Duration and Frequency

A paired t-test was carried out considering the mean duration of fixation as a function of task difficulty.
A difference emerged (t(29) = −3.992, p < 0.001, r = 0.60). A shorter mean duration was shown in dual-task
(M = 431.1 ms, SD = 128.34) compared to the single-task (M = 488.4 ms, SD = 120.56; see Figure 6a).
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Figure 6. (a) Mean fixation duration and (b) frequency as a function of task difficulty. *** p < 0.001.

A Wilcoxon test was performed regarding the mean frequency of fixation. A difference emerged
(N = 30, W = 11, p < 0.001, r = 0.97). In the single-task (M = 49.5, SD = 9.03), participants made,
on average, more fixations compared to the dual-task (M = 41.04, SD = 11.27; see Figure 6b).

3.4. Blink Duration and Frequency

A Wilcoxon test was conducted regarding the average duration of blinks, and a difference emerged
(N = 30, W = 348, p < 0.05, r = 0.44). The average blink length was higher in the dual-task (M = 215.26 ms,
SD = 23.22) than in the single-task (M = 208.1 ms, SD = 17.12; see Figure 7a). A Wilcoxon test was
performed, considering the mean frequency of blinking, and a difference emerged (N = 30, W = 387,
p < 0.001, r = 0.60). The average number of blinks was higher in the dual-task (M = 11.11, SD = 11.93)
than in the single-task (M = 7.75, SD = 8.5; see Figure 7b).
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Figure 7. (a) Mean blink duration and (b) frequency as a function of task difficulty. * p < 0.05.
*** p < 0.001.
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3.5. Saccade Frequency

Concerning the average frequency of saccades, a difference was shown (N = 30, W = 60, p < 0.001,
r = 0.69). The mean number of saccades was lower in the dual-task (M = 19.67, SD = 5.98) compared to
the single-task (M = 23.28, SD = 5.14; see Figure 8).
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3.6. Heart Rate

The analysis of the mean heart rate, as a function of task difficulty, showed a difference (N = 30,
W = 104, p < 0.01, r = 0.48). Accomplishing the dual-task increased the heart rate of participants
(M = 91.83, SD = 15.06) compared to the single-task (M = 88.57, SD = 14.83; see Figure 9).
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Figure 9. Mean heart rate as a function of task difficulty. ** p < 0.01.

3.7. EDA

A Wilcoxon test was carried out concerning the mean electrodermal activity. No differences
emerged as a function of task difficulty (N = 30, W = 198, p > 0.05). Furthermore, the mean EDA was
evaluated employing a Friedman test as a function of time (X2(3) = 74.64, p < 0.001; see Figure 10).
We then considered in the following analyses the values obtained at the baseline (M = 2.07, SD = 2.28),
during the first task (M = 3.35, SD = 2.81), the resting phase (M = 3.41, SD = 2.85), and the second
task (M = 4.03, SD = 3.03). The series of Wilcoxon post hoc tests (BH correction; [38]) showed that in
comparison to the baseline all the other experimental phases showed higher levels of EDA (respectively,
first task, N = 30, W = 0, p < 0.001, r = 0.87; resting phase, N = 30, W = 0, p < 0.001, r = 0.87; and second
task, N = 30, W = 0, p < 0.001, r = 1.1). Furthermore, the mean EDA associated with the second task
was higher than both the results related to the first task (N = 30, W = 11, p < 0.001, r = 0.83) and the one
of the resting phase (N = 30, W = 3, p < 0.001, r = 1). No differences emerged between the first task and
the resting phase (N = 30, W = 280, p > 0.05).
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3.8. NASA-TLX

A series of Wilcoxon tests, considering four out of a total of six sub-scales (i.e., mental demand,
performance, effort, frustration), highlighted differences as a function of task difficulty. With regard
to the perception of mental demand (N = 27, W = 378, p < 0.001, r = 0.83), participants considered
the dual-task more challenging (M = 74.5, SD = 16.6) than the single-task (M = 37.5, SD = 19.2;
see Figure 11a).
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Figure 11. (a) Mean perceived mental demand and (b) perceived performance as a function of task
difficulty. *** p < 0.001.

Furthermore, participants reported a higher perceived performance (N = 25, W = 36, p < 0.001,
r = 0.62) in the single- (M = 69, SD = 21.67) than in the dual-task (M = 47.83, SD = 21.06; see Figure 11b).

In addition, the perceived effort showed a difference due to task difficulty (N = 27, W = 350,
p < 0.001; r = 0.71). Participants perceived a higher effort in the dual- (M = 72.83, SD = 18.83) than in
the single-task (M = 48.33, SD = 21.67; see Figure 12a).
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Figure 12. (a) Mean perceived effort and (b) perceived frustration as a function of task difficulty.
*** p < 0.001.

Finally, participants experienced a different level of frustration considering the difficulty of the
tasks (N = 26, W = 322.5, p < 0.001; r = 0.68). Participants assigned a higher level of frustration to the
dual-task (M = 60.67, SD = 27.16) than to the single-task (M = 33.5, SD = 25.90; see Figure 12b).

3.9. Measures with Non-Significant Differences

Detailed pieces of information regarding the other dependent variables, which did not show
significant differences as a function of task difficulty, are reported in Table 1.

Table 1. Means and standard deviations of each variable that did not show a significant difference
between the two conditions, the corresponding statistical tests, and p-values. Note: ST = single-task;
DT = dual-task.

Variables
ST DT

Tests p
M (SD) M (SD)

NNI 0.82 (0.058) 0.79 (0.063) t(29) = −2.07 0.047
Saccade Duration (ms) 110.92 (18.41) 111.51 (26.74) N = 30, W = 220 0.81
Pupil Diameter (mm) 4.26 (0.75) 4.32 (0.77) t(29) = 1.58 0.13

EDA (mS) 3.71 (2.82) 3.67 (3.06) N = 30, W = 198 0.48
Physical Demand (NASA-TLX) 48.33 (25.91) 41.17 (24.62) N = 20, W = 65 0.14

Temporal Demand (NASA-TLX) 41.33 (21.13) 49.67 (24.28) N = 24, W = 213.5 0.071

3.10. Multiple Linear Regressions

A series of multiple linear regressions was carried out to test whether the I/E measures could
predict the scores obtained in the scales of the NASA-TLX that showed differences as a function
of task difficulty (i.e., mental demand, performance, effort, and frustration). The I/E measures that
discriminated the two levels of task difficulty (i.e., task accuracy, time on task, fixation duration,
fixation frequency, blink duration, blink frequency, saccade frequency, and heart rate), the task, and all
two-way interactions (i.e., I/E measures–task) were inserted as predictors in the regression models.
The outcomes of the regression model with the mental demand as the dependent variable indicated
that there was a significant collective effect between the considered predictors (F (16, 43) = 4.684,
p < 0.001, R2 = 0.49). However, the individual predictors and the interactions did not significantly
predict the mental demand scores (all ps > 0.05). Similarly, the regression model which considered the
frustration scores (F (16, 43) = 2.455, p < 0.001, R2 = 0.28) highlighted a collective significant effect but
no significant effect of individual predictors or interactions (all ps > 0.05). Considering the other two
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regression models, no collective significant effect between the predictors was shown (i.e., performance:
F (16, 43) = 1.862, p > 0.05, R2 = 0.19); effort: F (16, 43) = 1.859, p > 0.05, R2 = 0.19).

A second multiple linear regression was performed to check if the implicit measures (i.e., time on
task, fixation duration, fixation frequency, blink duration, blink frequency, saccade frequency, and heart
rate) could predict the explicit one (i.e., task accuracy), also considering the task and all two-way
interactions between I/E measures and the task. Results of the regression model indicated that there
was a collective significant effect between the considered predictors (F (15, 44) = 4.582, p < 0.001,
R2 = 0.48). We further examined the individual predictors. The task (B = 26.57, t = 2.335, p < 0.05),
the heart rate (B = −0.052, t = −2.046, p < 0.05), and the interactions respectively between fixation
duration × task (B = −0.23, t = −3.613, p < 0.001) and blink Frequency × Task (B = −0.159, t = −2.241,
p < 0.05) were able to significantly predict the task accuracy. In Figure 13, the significant interactions
that emerged in the regression model are depicted.
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Figure 13. Interactions of the regression model: fixation duration × task (a) and blink frequency × task (b).

4. Discussion

This study first aimed to investigate the feasibility of combining I/E measures to understand if they
could provide univocal interpreted pieces of information in an ecological task (i.e., repetitive work)
characterized by the manipulation of the imposed mental workload. The second aim was to analyze
whether the I/E measures’ variations matched the perceptions of users about the workload experienced.
Therefore, we intended to verify the participants’ awareness regarding the mental demand imposed
by the different tasks, because the adaptive changes in the functioning of future symbiotic systems
will be based on the modification of I/E measures. Thus, in the case of a match between I/E
measures and users’ perceptions, the user will comprehend the actions implemented by the system
(i.e., transparency). We have defined these two issues in terms of data interpretability and system
transparency. We believe that whenever they will be solved, as in a symbiotic system, the HMI
collaboration will be certainly improved. Regarding the interpretability, we compared the results
concerning the ability of these measures to discriminate between two distinct levels of MWL evoked
by two tasks of different levels of difficulty (i.e., single- vs. dual-task). The majority of the considered
I/E measures (i.e., psychophysiological, behavioural, performance) were able to distinguish between
the difficulty (and thus the MWL) of the two tasks.

Although the screwing task does not appear to be extremely difficult (i.e., a limited number
of errors in both experimental sessions), when participants had to deal with the interference task
(i.e., dual-task condition), they made more errors (i.e., 4.3 vs. 2.7). Furthermore, the outcomes related
to this explicit measure reflected one of the considered implicit measures of performance (i.e., time on
task: dual-task (DT), 873.36 s; single-task (ST), 692.97 s).
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In our ecological paradigm, some of the indices concerning ocular behaviour have proven to
be equally useful in discriminating the MWL levels, thus demonstrating once again the I/E binomial
correspondence. These findings are also in line with the literature, considering laboratory settings,
where a shorter duration and a lower number of fixations [21,23,26], lower blinks, and a lower saccade
rate [22,26–28,39,40] were shown in dual-task conditions. Therefore, these ocular indices could be used
in real-world working tasks with characteristics similar to the present ones.

Regarding the psychophysiological measures, the HR has also shown the ability to discriminate
between the two levels of task difficulty, proving its reliability to monitor changes in the user’s MWL.
During the dual-task, the higher level of HR is consistent with previous studies that considered different
tasks in terms of imposed mental load [22,23,41].

Some of the considered measures show contrasting results with respect to the literature. In the
present research, the blink duration showed an increment in the higher mental load condition (i.e., DT),
whereas previous studies reported a decrement in such circumstances [22,24,42]. Reviewing the DT
experimental sessions’ video-recordings, several participants were backward counting, keeping their
eyes closed for prolonged time intervals. This occurrence affected the average blink duration, as has
been noticed in internally focused tasks [43]. Furthermore, the interference task (i.e., backward
counting) did not add visual demands on the participants, which have been proven as a factor that
shortens blink duration [42,44,45].

The expected outcome considering the NNI was a higher dispersion of fixations in the dual-task
(i.e., an NNI close to 1). The absence of a difference could be due to the participants’ strategy, as observed
in the dual-task session’s videos. Indeed, while carrying out the screwing task, several participants
were fixating unique points (i.e., clustering of fixations) on the blackboard to perform the interference
task simultaneously. This visual behavior could influence the NNI value, reducing it in the dual-task
(as clustering brings the value towards zero) compared to a situation of cognitive overload, in which
this value is around 1 (randomness of fixation dispersion across the visual field; [13]).

Considering the pupil diameter, it was not sensitive in discriminating the experimental conditions,
which likely did not present an extreme variation in terms of mental demands (also corroborated by
the low level of errors committed in both conditions).

Therefore, the peculiar features of the proposed tasks highlighted how ocular behaviour could
be influenced by the task to be performed. At the same time, they allow us to highlight the different
levels of reliability of the eye-tracking measures. This suggests the importance of task type in the data
interpretability and points out its importance as a factor that must be considered in the design and
implementation of future symbiotic systems.

Concerning the EDA, no difference emerged as a function of task difficulty. This result contrasts
with other studies that highlighted a large skin response in conditions of high mental load [18,21,25].
Evaluating the EDA as a function of time, the analysis showed a summation effect. Indeed, the signal
did not return to baseline in the resting period, which followed the first task, and it increased further
during the second task. The reason for this may have been the influence of ambient temperatures on
the EDA signal [46]. Despite the use of a ventilation system, the room temperature could not be kept
constant. This occurrence may result in a confounding factor when assessing the difference in mean
EDA as a function of task difficulty.

This result, influenced by the paradigm’s ecology, underlines how the working environment’s
characteristics play a critical role in the correct interpretation of the data. Usually, it is not possible
to maintain a constant ambient temperature within industrial working settings. The EDA analysis
outcomes highlighted that it could be strongly affected by the conditions of the surrounding environment
whenever they are not actively controlled.

To analyze the data on a more individual level, we performed a multiple linear regression to
investigate if the task accuracy (i.e., our explicit measure) could be predicted from the implicit measures
and their interactions with the task. The regression outcomes showed that the task accuracy could be
predicted considering the task (i.e., ST vs. DT), the HR, and considering the fixation duration and the
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blink frequency in different ways in ST and DT (i.e., interactions). As the performance indices strongly
indicate MWL levels [47], these results show how the HR and ocular indices can be interpretable in
association with an explicit measure (i.e., task accuracy) to understand the experienced MWL level.
Focusing on the HR, an increment in this measure, in both ST and DT, will reflect a decrement in task
accuracy, and this occurrence is in line with our previous HR analysis as a function of task difficulty and
the literature [23]. Considering the fixation duration and the task (Figure 13a), the regression model
predicts that in DT when the mean fixation duration is very short (around 200 ms), we should expect
the best task performance, whereas when it is longer (i.e., higher than ~400 ms), the task performance
would be impaired. The opposite pattern is shown in ST. Indeed, the best task performance is predicted
to occur in the case of a longer mean fixation duration (i.e., longer than ~400 ms), whereas the worst
performance would occur in the case of a mean fixation duration around 200 ms. Concerning the
blink frequency (Figure 13b), the model predicts the best performance in both tasks when the mean
frequency/min is high (i.e., higher than 25–30 blink/min). Nevertheless, when the mean frequency of
blinking is lower than ~20, as in the present experiment, the prediction is that the number of errors in
DT should be around double that of ST. This last occurrence is in line with the analysis of task accuracy
as a function of task difficulty (i.e., 4.3 errors in DT and 2.7 in ST).

The second problem that this study has addressed is that of system transparency. To test it,
we analyzed users’ perceptions to verify the correspondence between them and the I/E measurements
used. Participants’ subjective perceptions were assessed using the NASA-TLX questionnaire.
The results demonstrated that the users were aware of the differences in the level of MWL linked to the
experimental conditions. Indeed, mental demand, effort, frustration (i.e., all higher in the dual-task),
and the perceived performance (i.e., lower in the dual-task) reflected this awareness. These outcomes
are in line with the literature. In particular, an increased level of MWL has been correlated with
dual-tasks [48] and tasks of very high difficulty [34–36]. These findings showed a consistent trend
insofar as the results of the analyses of the subjective measures (i.e., NASA-TLX) matched the I/E
measures, confirming our second hypothesis.

To deepen this topic, we also performed a multiple linear regression trying to predict the subjective
results, starting from combining the I/E measures, the task, and the interactions of I/E measures–task.
In the regression analyses, the scores of the four NASA-TLX scales (e.g., mental demand) were not
predicted by the individual factors or the interactions. Nevertheless, it is necessary to consider
that the participants were aware only of their performance accuracy, which was related to their
NASA-TLX scores. Combining I/E measures to predict the subjective scores provided to the NASA-TLX
questionnaire resulted in the absence of an effect, because the regression model included only one
explicit variable and several implicit ones as predictors.

5. Conclusions

We designed and developed an ecological paradigm comprising an ad hoc workstation connected
with devices for acquiring I/E data from users.

Some limitations of the study could be pointed out. First of all, to be able to generalize these results
to real-world situations, the temporal length of the experimental sessions should be similar to the
duration of real working activities (i.e., at least 1 h–2 h per condition). Thus, there will be the possibility
to analyze changes in cognitive and psychophysiological measures over time due to tiredness and
drowsiness. Second, insofar as the participants involved were mainly young adults, it is not possible
to generalize the results to different workforce categories such as senior workers. Such workers may
present different levels of acceptance [49], considering the wearable devices employed (i.e., eye trackers,
surface electrodes). We will consider these aspects in subsequent studies.

However, the data collected showed that some implicit measures (i.e., eye behavior and heart
activity) could be matched with the proposed explicit measure. This combination could be extremely
informative about the type of data that can be exploited by a potential symbiotic system. Indeed,
the considered measures proved their feasibility in monitoring variations in MWL, ensuring a
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proper interpretation of users’ data. The present findings pointed out that, considering the current
experimental tasks, a symbiotic system could exploit the combination of I/E variables (i.e., task accuracy,
HR, fixation duration, and blink frequency) to detect situations of high MWL while a participant is
accomplishing the ST and DT. Indeed, in the ST, a high MWL (and relatedly, a lower task accuracy)
will be reflected by a higher HR, a shorter fixation duration, and a lower blink frequency. In contrast,
in the DT, a high MWL (and relatedly, a lower task accuracy) will be reflected by a higher HR, a longer
mean fixation duration, and a lower mean blink frequency. By doing so, based on a different mean
fixation duration, the system will be also capable of understanding whether the individual is in a
condition of high MWL while performing the ST (i.e., shorter mean duration) or the DT (i.e., prolonged
mean duration). In this way, the system will be capable of implementing a set of adaptive features to
support properly, in both tasks, the individual who is experiencing a condition of high MWL. Moreover,
these findings, as previously discussed in regard to data interpretability, underline once again that the
type of task, as well as the environmental context, crucially influences the predictions based on these
I/E measures.

Furthermore, the correspondence between the majority of I/E measures and the subjective ones
(i.e., participants’ perception of the MWL) suggested that the functioning of cutting-edge systems
that will implement adaptive features based on these users’ data will be transparent to the operators.
The users will understand the changes that the system will operate in consequence of the variations
in their internal state (MWL) linked to the working activities. Thus, the human–machine mutual
understanding will result in a coordinated and fluent interaction, whereby the technology will support
the users whenever needed [50].

In future works, we will implement devices for cognitive and psychophysiological monitoring
in an adaptive workstation equipped with a cobot (i.e., that will adjust its operating to I/E measures
related to the internal state of users). These experiments will be carried out first in laboratory settings
and then in entirely ecological situations (i.e., inside a factory) to establish which design approach
would be the most suitable with regards to the different characteristics of the task and the environment.
A specific set of measures, in response to which the system will implement adaptive functions, will be
grounded on features of both the tasks and environment. For instance, based on the results of this study,
when the temperature of the working environment is non-constant, the EDA should not be considered.

Once the correct data interpretability and a high level of system transparency can be fully achieved,
man and machine will have taken a fundamental step towards reaching a mutual understanding,
which is necessary for the development of a symbiotic system.
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