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Abstract: The Grover search algorithm reduces the security level of symmetric key cryptography
with n-bit security level to O(2"/2). In order to evaluate the Grover search algorithm, the target
block cipher should be efficiently implemented in quantum circuits. Recently, many research works
evaluated required quantum resources of AES block ciphers by optimizing the expensive substitute
layer. However, few works were devoted to the lightweight block ciphers, even though it is an active
research area, nowadays. In this paper, we present optimized implementations of every Korean
made lightweight block ciphers for quantum computers, which include HIGHT, CHAM, and LEA,
and NSA made lightweight block ciphers, namely SPECK. Primitive operations for block ciphers,
including addition, rotation, and exclusive-or, are finely optimized to achieve the optimal quantum
circuit, in terms of qubits, Toffoli gate, CNOT gate, and X gate. To the best of our knowledge, this is
the first implementation of ARX-based Korean lightweight block ciphers in quantum circuits.

Keywords: Grover search algorithm; block ciphers; quantum circuits; CHAM; HIGHT; LEA; SPECK

1. Introduction

As the Internet of Things (IoT) technology gets developed, a number of wearable and smart
devices are gradually spreading through people’s life [1]. Between these IoT devices, abundant data,
from simple sensor data to even sensitive personal data, are being exchanged and processed. In order to
protect these sensitive data, the exchange process of the data must be secured properly. To achieve the
security, cryptographic algorithms must be applied to the data. However, applying the cryptographic
algorithm requires resources, including computational power and memory. Most of the IoT devices
do not have enough resources in order to apply cryptographic algorithms of conventional computers
since most of them are equipped with low computational power and small memory footprint.

In order to resolve this hard condition, lightweight cryptography has been actively studied [2].
Unlike classical cryptography, a lightweight cryptography is designed for low-end devices.
Most lightweight cryptography focuses on using resources efficiently to operate in the
resource-constrained devices. However, as a cryptography, it is still important to maintain security
even from the potential attacks using not only conventional computers, but also the upcoming
quantum computers.

The advent of quantum computers and quantum algorithms has dramatically changed the
cryptography community. The most well-known modern public key cryptography, such as RSA
and Elliptic Curve Cryptography (ECC), are based on the difficulties of factorization and discrete
algebra problem [3]. However, Shor’s algorithm can perform prime number factorization efficiently,
making RSA and ECC vulnerable [4].

In the field of symmetric key cryptography, the impact of quantum computers is not as critical as
the case of the public key cryptography. The Grover search algorithm can be used to find the n-bit
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secret key at the speed of v/, which is the most effective quantum attack method for block ciphers [5].
Applying the Grover search algorithm to block ciphers is the most efficient way to measure the security
level of block ciphers against attacks from quantum computers. For this reason, not only the Grover’s
algorithm but also the cryptography must be implemented with a quantum circuit for cryptanalysis.
Since the development of quantum computer is a rudimentary stage, finding the optimal quantum
resource for the target algorithm is one of the most important research fields.

In order to estimate the quantum resources, a number of block cipher implementations have been
investigated [6-9]. Grassl et al. estimated the quantum resource required for AES block cipher to apply
the Grover search algorithm [6]. Afterward, Langenberg et al. and Jaques et al. found more optimal
substitute layer design in quantum circuits than Grassl et al. [7,8]. Recently, Anand et al. implemented
the SIMON in quantum gates [9], which is a block cipher developed by the National Security Agency
(NSA) to support the hardware environment [10].

In this paper, we implemented SPECK and every Korean lightweight block cipher for the quantum
resource estimation. To optimize the quantum circuit, functions, such as the key scheduling and the
round functions, were optimized by simultaneously calculating results. In addition, the number
of qubits was reduced by efficiently arranging the order of operations and the order of objects.
Target ciphers are ARX-based structures designed with Addition, Rotation, and XOR operations.

1.1. Contribution

1.1.1. Optimized Implementation of ARX-Based Block Ciphers in Quantum Gates

Quantum gates for AES block ciphers have been actively studied. However, only a few works
were devoted to lightweight ARX-based block ciphers. In this paper, we implemented four different
ARX-based block ciphers and presented optimized implementations to reduce required qubits.

1.1.2. First Quantum Implementation of ARX-Based All Korean Block Ciphers and In-Depth Analysis

Korean block ciphers, such as LEA, HIGHT, and CHAM are efficiently implemented in quantum
gates. This is the first implementation of Korean block ciphers in quantum gates. We analyzed the
implementations and show the security against the quantum computer and their features.

1.1.3. Quantum Resource Estimation between Software-Oriented and Hardware-Oriented
Block Ciphers

The architecture of block cipher is largely divided into software-oriented (i.e., SPECK) and
hardware-oriented (i.e., SIMON). We compared both block ciphers in quantum gates and estimated
the quantum security.

The remainder of this paper is organized as follows. In Section 2, target block ciphers, quantum
implementations, and quantum algorithms are given. In Section 3, proposed quantum implementations
for block ciphers are given. In Section 4, the evaluation of proposed quantum implementation is
presented. Finally, Section 5 concludes the paper.

2. Related Works

2.1. Notation

In this paper, the following notations are commonly used, and Table 1 explains its meaning.
2.2. Target Block Ciphers

2.2.1. Hight

In CHES'06, ultra lightweight block cipher HIGHT was presented [11]. HIGHT is a 64-bit
block cipher with 128-bit keys. Eight whitening keys and 128 subkeys, 8-bit respectively,
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are generated from the 128-bit key. HIGHT block cipher performs 8-bit wise ARX operations and the
encryption/decryption operation consists of 32 rounds. In each round, a 64-bit round key is required,
and, in total, 2048-bit of round keys are needed to process a 64-bit block. The parameters for the
HIGHT block cipher are shown in Table 2.

Table 1. Notations.

Notation Meaning
K Initial keywords
RK Round key
@ XOR operation
H Modular addition operation
ROL; Rotation left operation (i-bit)

ROR; Rotation right operation (i-bit)

Table 2. Parameters of HIGHT.

Cipher Block Size (bits) Key Size (bits) Word Size (bits) Keywords Rounds
HIGHT 64 128 8 16 32

The key schedule of HIGHT uses the initial key words K to generate whitening keys WK and
round keys RK. The whitening key is used for initial conversion of plain text and final conversion for
cipher text. The whitening key is generated as follows:

WK]i]
WKIi]

Ki+12],0<i<3

Ki—4], 4<i<7 @

The connection polynomial of LFSR # is x” + x> + 1. The initial internal state value of h is
3o = (S6,55,54,53,52,51,50) = (1,0,1,1,0,1,0). For 1 <i <127, §; is generated as follows and used for
round key generation:
Si+6 = Si+2 D Si—1
e e e e s @
0i = (Si16,5i4+5/Si+4sSi+3,5i+2,S5i+1,5i)

Round key RK is generated as follows:

fori=0to7:
forj=0to7:
RK[16-i+j] = K[j —imod 8] B 16.i ] (©)]
forj=0to7:
RK[16-i+j+8] = K[(j —imod 8) + 8] B d14.i1j+8

Before performing the round function, the initial conversion of plaintext T using four whitening
keys WK is performed in the encryption process, as follows:

Xo[0] = T[0] B WK]0]
Xo[2] = T[2] & WKI1] @
Xol4] = T[4] BWK[2]
Xol6] = T[6] & WK[3]

In the round function of HIGHT, auxiliary functions Fy(X) and F; (X) using left rotation operation
are used, and, for 1 <i < 32, the round function is shown in Equation (6):
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Fo(X)

In the last round i = 32, the
not changed as follows:

= ROL; (X) @& ROL,(X) & ROL;(X)
Fy(X) = ROL3(X) & ROL4(X) & ROLg(X)

, j=13,5,7
(Fo(Xi-1[6]) B RK
(Fo(Xi—1
(FO(XI 1
(Fo(Xi—1

il

0

[
FO Xz [

1)
2]) BRK
4]) @ RK

Xplil = Xalil, i=0,2,4,6

X3[l] = X3 [1] & (Fl(X31 [0]) & RK
X3[3] = Xa1[3] & (Fo(X3[2]) BRK
X32[5] = X31[5] B (F1(X31[4]) © RK
X32[7] = X31[7] @ (Fo(X31[6]) B RK

[4i

® RK[4i
[4i
[4i

1)
—4))
—3])
2))

124))
125))
126))
127))

4 of 25

Q)

(6)

F1(X) is also used, and the output positions of the input values are

@)

After executing all round functions, the ciphertext C is generated by the final conversion using
the whitening key, and the final conversion is shown in Equation (8):

C[i] = ng[i],i =1,3,57
C[0] = X32[0] H WK[4]
C[2] = X32[2] ® WKI5]
C[4] = X3;[4] HWK]6]
Cl6] = X32[6] & WK]7]

Key schedule and round function structure of HIGHT are shown in Figure 1.
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Figure 1. Key schedule and round function of HIGHT.

2.2.2. CHAM

®)

InICISC’17, a family of lightweight block ciphers CHAM was announced by the Attached Institute
of ETRI [12]. The family consists of three ciphers: including CHAM-64/128, CHAM-128/128, and
CHAM-128/256. The CHAM block ciphers are of the generalized 4-branch Feistel structure based on

ARX operations.
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InICISC'19, the revised version of CHAM block cipher was presented [13]. In order to prevent new
related-key differential characteristics and differentials of CHAM using a SAT solver, the numbers of
rounds of CHAM-64/128, CHAM-128/128, and CHAM-128/256 are increased from 80 to 88, 80 to 112,
and 96 to 120, respectively. Table 3 shows the parameters of the block ciphers CHAM.

Table 3. Parameters of CHAM.

Cipher Block Size (bits) Key Size (bits) Word Size (bits) Keywords Rounds
CHAM-64/128 64 128 16 8 80
CHAM-128/128 128 128 32 4 80
CHAM-128/256 128 256 32 8 96

By performing the key schedule on the initial key words K = {K[0],K[1], ..., K[m — 1]}, generates
round key RK = {RK]0], RK[1],...,RK[2m — 1]} for use in the i-th round for 0 < i < r. The key schedule
is shown in Equation (9) below, where 0 < i < m:

RK[i] = K[i] ® ROL(K[i]) & ROLg(K[i])

RK[(i + m) @1] = K[i] ® ROL,(K[i]) & ROLy (K[i]) ©)

If the round key RK is generated through key scheduling, the plaintext
T = {Xo[0], Xo0[1], X0[2], X0[3]} is encrypted by repeating the round function in the following
two cases.

If i from the i-th round for 0 < i < r is odd, the upper function is called. If the i is even, then the
lower function is called:

Xitalj] = Xi[j+1],(0 <j <2)

X;1[3] = ROLg((X;[0] & i) B (ROLy (X;[1]) & RK[i mod 2m])) (10)
In the rest of the cases, the following function applies:

Xl'-H[j] = XiU"‘l]/ (0 <j< 2) (11)

X;11[3] = ROL1((X;]0] @ i) B (ROLg(X;[1]) ® RK[i mod 2m]))

Key schedule and round function structure of CHAM are shown in Figures 2 and 3.

Y

19—» Re[(i + m)@®1]

A

Kli]

A4

c}—» Ryli]

a

Figure 2. Key schedule of CHAM.
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Xi[3] Xiv1[3]
Xil[2] Xit1l2]
Xi[1] * Xiy1[1]
ROL,
Ry[i mod 2 m] —bé'

X;[0] —»éP—E Xi4100]

Figure 3. Round function of CHAM.

2.23. LEA

In WISA’13, a lightweight block cipher LEA was presented [14]. LEA is a 128-bit block cipher
supporting three key lengths, i.e., 128-bit, 192-bit, and 256-bit. LEA-128, LEA-192, and LEA-256 require
24, 28, and 32 rounds, respectively. In each round, 192-bit round keys are required. The word size is
32-bit and primitive operations are 32-bit wise addition, rotation, and exclusive-or. The parameters for
the LEA block cipher are shown in Table 4.

Table 4. Parameters of LEA.

Cipher  Block Size (bits) Key Size (bits) Word Size (bits) Keywords Rounds

LEA-128 128 128 32 4 24
LEA-192 128 192 32 6 28
LEA-256 128 256 32 8 32

The key schedule of the LEA uses constant value ¢ representing the ASCII codes of ‘L,” ‘E,” and ‘A,
and the key schedule is slightly different depending on the parameters. The key schedule of LEA-128
for 0 <i < 24 is as follows:

5[0] = Oxc3efe9db, 6[1] = 0x44626b02
d[2] = 0x79e27c8a, (3] = 0x78d f30ec )
0[4] = 0x715ea49, 6[5] = 0xc785da0a
0[6] = OxeO4ef22a, 6[7] = Oxe5c¢40957
K[0] = ROL; (K[0] E ROL;(3[i mod 4]))
K[1] = ROL3(K[1] BROL;1(6[i mod 4]))
K[2] = ROLg(K[2] B ROL;5(8[i mod 4])) (13)
K[3] = ROLy; (K[3] B8 ROL, 5(6]i mod 4]))

[
RK; = (K[0], K[1], K[2], K[1], K[3], K[1])

Unlike the key schedule, the round function is performed as follows for 0 < i < r regardless of
the parameter for the plaintext P = {X[0], Xo[1], Xo[2], Xo[3]}:

(14)

Key schedule and round function structure of LEA are shown in Figures 4 and 5.
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K[0] K[1] K[2] K[3]

ROL;(8[i mod 4)] ROL;41(8[i mod 4)]

EE|/ EEl/ EEI/

ROL;(8[i mod 4)] / ROL;,5(8[i mod 4)]
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Figure 4. Key schedule of LEA-128.
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Figure 5. i-th round function of LEA.

2.2.4. SPECK

In 2013, NSA released two lightweight block ciphers, SPECK and SIMON, for the low-end
devices [10]. SPECK has been implemented in order to perform efficiently in the software environment.
The SIMON, on the other hand, has been implemented and optimized for hardware. Although these
two ciphers are considered sisters, SIMON has already been designed as quantum circuit [9]. For this
reason, this paper only covers quantum circuit implementation and optimization for SPECK.

SPECK takes the form of block cipher and is implemented with an ARX structure that consists
of simple operations such as addition, rotation, and bit-wise exclusive operation. SPECK is also
implemented in various parameters to provide different levels of security, which are shown in Table 5.

Table 5. Parameters of SPECK.

Block Size (bits) Key Size (bits) Word Size (bits) Keywords Rounds

32 64 16 4 22

48 72,96 24 3,4 22,23
64 96,128 32 3,4 26,27
96 96, 144 48 2,3 28,29

128 128,192, 256 64 2,3,4 32,33,34
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A key schedule gets processed in order to generate a round key RK, which will be used in
each round. The initial key words are K = {K[0],1[0],...,I[m — 2]}, and the following key schedule
is performed for 0 < i < r, and the new key value RK = {K][0],K[1],...,K[r — 1]} is used as the
round key. « and B are 7 and 2 when the size of the block is 32-bit, respectively. For the rest of the
block size, « and § are 8 and 3, respectively:

I[i +m — 1] = (K[i] BROR(I[i])) & i

K[i +1] = ROL(K[i]) @ I[i +m — 1] (15)

During the round function of SPECK with the block size of 2n, for 0 < i < r, a 2n-bit ciphertext
word is generated using an n-bit round key for a 2n-bit (X[0], X[1]) input word:

X[1] = (ROR,(X[1]) B X[0]) & RK]i]

X[0] = ROL4(X[0]) & X[1] (16)

Key schedule and encryption of SPECK in case of m = 2 are shown in Figure 6.

Round 1 Round 2 Round 3

X[0] ROLﬁFrCD ROLg [—VCD ROLs ()
Meor L N L
X[A] — [ ForefpX D | FoRe P [ rore P

K[0] ROLg T'C) ROLg () >
0 7
1[o] Eotete () ‘

Figure 6. Overview of SPECK(m = 2) block cipher: key schedule and encryption.

2.3. Quantum Implementations and Algorithms

2.3.1. Quantum Gates

Quantum computers have several gates that can emulate the classical gates. The two most
representative gates are CNOT and Toffoli gates. The CNOT gate performs a NOT gate operation
on the second qubit when the first input qubit of the two input qubits is set as one. The NOT gate (i.e.,
X gate) inverts the state of the qubit. This gate performs the same role as the addition operation on the
binary field. The circuit configuration is shown on the left side of Figure 7. The Toffoli gate takes three
qubits as input. When the first and second qubits are set to one, the gate performs a NOT gate operation
on the last qubit. This serves as an AND operation on the binary field. The circuit configuration for Toffoli
gate is shown on the right side of Figure 7.

A lot of works have been done on the addition operation in quantum computers [15-18].
Among them, Cuccaro et al. suggested the riple-carry addition circuit to achieve the most optimal
design by using only one ancillary qubit [15]. For n-bit addition operation, 2n 4 2 qubits, 2n Toffoli
gates, and 4n CNOT gates are used.
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a
b b

b b c—B— c®(a-b)

Figure 7. Circuit configuration of the (left) CNOT and (right) Toffoli gate.

a D a®Pb

2.3.2. Grover Search Algorithm

The Grover search algorithm is a quantum algorithm that finds specific data for 7 unsorted data.
The classic method requires O(2") searches in brute force attack. However, this can be found within
O(2"/2) times with the Grover search algorithm. The Grover search algorithm consists of an oracle
function and a diffusion operator, as shown in Figure 8.

Diffusion operator

0 {HH HTHH X A H/x-
10> 4 H [ oracle HHXHHHDPIHHAXHH /X
11> H [

Figure 8. Grover search algorithm.

The oracle function f(x) returns 1 if input x is the solution to the search. Otherwise, it returns 0.
When f(x) = 1, the sign of the state x is flipped. It then proceeds to the diffusion operator step,
which increases the amplitude of the solution. The searching step is as follows: First, the average
amplitude is calculated for all data. Second, the difference between the amplitude and the average
amplitude of each data are calculated. If the answer to find in the 2-bit input is 10, the status after these
two steps is as shown in Figure 9.

.......... || average

|[00) |01) |1F> |11)

Figure 9. Condition after the oracle of Grover algorithm.

After performing the oracle function, the amplitude of the solution has a different sign from
other amplitudes. The difference from the average amplitude increases and the difference between the
non-answer amplitudes decreases. The Grover search algorithm increases the amplitude probability
of the solution by repeating the oracle function and diffusion operators. The status after diffusion
operations is given in Figure 10.
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amplitude : 1

[00) |01) |10y |11

Figure 10. Condition after diffusion of the Grover algorithm.
2.3.3. Previous Quantum Implementations

Advanced Encryption Standard (AES) is the international block cipher standard [19] and the
block cipher is widely used in practice, such as database encryption and network security. For this
reason, a number of works focused on quantum resource estimation for the AES block cipher.

Grassl et al. have presented first quantum circuits to implement an exhaustive key search for the
AES and analyzed the quantum resources required to carry out such attacks [6]. All three variants of
AES (key size 128, 192, and 256 bit) are implemented for the Grover’s quantum algorithm with optimal
operations for each layer.

Langenberg et al. presented new quantum circuits for all three AES key lengths. For AES-128,
the number of Toffoli gates can be reduced by more than 88% compared to Grassl et al.’s estimates [6],
while simultaneously reducing the number of qubits [20].

Previous works of AES have derived the full gate cost by analyzing quantum circuits for the
cipher but focused on minimizing the number of qubits. In [8], they have studied the cost of quantum
key search attacks under a depth restriction and introduced techniques that reduce the oracle depth,
even if it requires more qubits. As part of this work, they released Q# implementations of the full
Grover oracle for AES-128, AES-192, and AES-256, including unit tests and code to reproduce their
quantum resource estimates.

In [9], the reversible implementation of SIMON block cipher was presented. This block cipher is
hardware-oriented suggested by NSA. They have successfully implemented the Grover oracle and
Grover diffusion for key search. They have estimated the resources in terms of CNOT, Toffoli, and X
gates, which are required to carry out the quantum attack on the block cipher.

3. Proposed Method

In this chapter, we describe the optimized quantum circuit for applying the Grover’s algorithm to
HIGHT, CHAM, LEA, and SPECK block ciphers.

All block ciphers implemented in this paper are composed of modular addition, rotation, and XOR
operations based on ARX. In the quantum circuit, the rotation operation can be designed without
using any gates by changing the order of qubits. Given a = {ag,a1,a2,a3} and b = {bg, b1, by, b3},
the operation a >> 1 is performed. Then, the XOR operation b = b & a is performed on the elements
of b and the elements of 4 changed in order by rotation. In this case, since a is {ay,a,,a3,a0} after
a>> 1, it is completed by performing CNOT(ay, by), CNOT(ay, b1), CNOT(a3, by), and CNOT(ay, b3).
In this way, there is no cost for the rotation operation, and the XOR operation can be performed simply
with a CNOT gate.

However, for addition operation, Toffoli gates are required, so a more complex circuit is needed
than the previous two cases. We used the method of Cuccaro et. al’s ripple carry addition [15]. In order
to use the ripple-carry addition circuit, not only the qubits of the calculation target, but also two
additional qubits for carry calculation are required. Since the addition of block cipher is the modular
addition, the value of highest carry qubit can be ignored. Therefore, the addition operation can be
performed only with the initial carry qubit of ¢. Since this ¢y qubit is initialized to 0 after addition
operation, it can be recycled at any time.
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The block cipher is largely divided into two steps, including key schedule and round function.
In order to reduce the required qubit, an on-the-fly approach is utilized.

3.1. HIGHT

In this section, we describe the proposed HIGHT block cipher in the quantum circuit to apply the
Grover search algorithm.

3.1.1. Key Schedule

In order to reduce the use of qubits in HIGHT, rather than generating all the round keys in
advance, the key schedule is performed simultaneously during the round. In the key schedule,
the &y = {s¢, S5,54,53,52,51,50} is used first, and then a new J; must be generated for 1 < i < 127.
At this time, the number of qubits can be saved by recycling the existing qubits. For example,
when creating a é; in Equation (2), a new sy is generated, and the sy is not included in new J;.
Therefore, we do not allocate a new qubit for sy, but operate on the existing sy and treat it as a new
value. The detailed process for this is shown in Algorithm 1.

Algorithm 1 Generate J; of HIGHT.

Input: 6; 1 = {S(i+5)°/o7/5(i+4)%7/S(z‘+3)%7/5(i+2)°/07/5(i+1)°/07/ Si%7/s(i71)%7}
Output: J;

1 5(i_1)%7 <= CNOT(S (4 2)%7, S(i—1)%7)
2: return ¢; = {S(i—l)%7rS(i+5)°/o7/5(i+4)%7rS(i+3)%7/S(i+2)%7rS(i+1)°/o7rsi%7}

As mentioned earlier, to reduce the number of qubits, the key schedule is performed
simultaneously with the function of the round. Rather than generating all round keys at once, the
key schedule is performed in units of 16 keywords. Instead of generating a round key in new qubits,
the operation is performed on the initial key K = {K[0], K[1], ..., K[15]} to convert it to round key
RK = {RK]0],RK[1],...,RK[15]}. The detailed process for this is described in Algorithm 2.

Algorithm 2 i-th key schedule of HIGHT.
Input: 516‘(i*1)’ K
Output: K

1: forj=0to7 do

Generate (516,(i_1)+]-
RK[16- (i — 1) + ] <~ ADD(dy5 (;_1)4; K[j — i +1mod 8])
Use RK[16 - (i — 1) + j] in round function
Reverse : ADD(6y4.(j_1)+j, K[j — i+ 1mod 8])
end for
forj=0to7do

: Generate d16.(j_1)4 18
9: RK[16- (i — 1)+ +8] +~ ADD(S16.;_1)4j4s K[(j — i + 1 mod 8) +8))
10:  Use RK[16- (i —1) + j + 8] in round function
11:  Reverse : ADD(d16.(j_1)1j48, K[(j —i+1mod 8) +8])
12: end for
13: return K = {K[0],K[1],...,K[15]}

The RK of 16 keywords is used for 4 rounds. After use, RK is initialized to K by
reverse operation. In addition, again, the key schedule is performed to generate the round key
RK = {RK[16], RK[17],..., RK[31]} to be used for the next four rounds.
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3.1.2. Round Function

In HIGHT, before proceeding to the round function, the plaintext T is initially converted using
the whitening key as shown in Equation (4). The quantum circuit design for this is in Algorithm 3.

Algorithm 3 Initial conversion of HIGHT.

Input: T,K
Output: Xj

1: Xo[] «~ T[], i=1,3,57
2: Xo[0] +~ADD(K[12], T[0])
3: 0[2] %CNOT [ } [}
4 Xo[4] +ADD(K[14], T[4])
5: Xo[6] < CNOT(K[15], T[6])
6:

return X = {X,[0], Xo[1],..., Xo0[7]}

We optimized the round function by properly specifying the operation target and order in the
round function. The detailed process for this is described in Algorithm 4 and explained in detail.

Algorithm 4 Round function of HIGHT.
Input: Round i, X;_1, RK
Output: X;

1: First, operation:

2 X;-1[0] « Fo(X;-1[0])

3 Xi_1 [0] — CNOT(RK[4Z — 4], Xi1 [0])

4 Xi[2] <= ADD(X;_1[0], X;_1[1])

5: X;_1[0] <~ CNOT(RK[4i — 4], X;_1[0]) (reverse)
6 X;_1[0] + Fy_reverse(X; 1[0])

7. Second operation:

8 Xi—1[2] « Fo(Xi-1[2])

9 X;_1[2] + ADD(RK[4i — 3], X;_1[2])

10 X;[4] + CNOT(X;_1[2], X;_1[3])

11: X;_1[2] + ADD(RK|[4i — 3], X;_1[2]) (reverse)
12; X;_1[2] + Fy_reverse(X;_1[2])

13: Third operation:

14: Xi-14] + Fo(Xi-1[4])

15 X;_1[4] «+ CNOT(RK[4i — 2], X;_1[4])

16: Xi[6] +— ADD(X;_1[4], Xi-1[5])

17: X;_1[4] + CNOT(RK[4i — 2], X;_1[4]) (reverse)
18: X;_1[4] + Fy_reverse(X;_1[4])

19: Fourth operation:

20: Xi1[6] < Fo(Xi-1[6])

21 X;_1[6] < ADD(RK[4i — 1], X;_1[6])

22: X; [0] — CNOT(XZ_l [6}, Xi_q [7})

23: X;_1[6] < ADD(RK[4i — 1], X;_1[6]) (reverse)
24: X;_1[6] + Fy_reverse(X;_1[6])

25: Last operation:

26 Xi[jl=Xiali—1, j=1,357

27: return X; = {X;[0], X;[1],..., Xi[7]}
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In particular, through the optimization of the auxiliary function Fy and Fj, no additional qubit was
used, and the use of the CNOT gate was also reduced. First, since the RK must be used immediately
after generation, and then returned to the initial K by a reverse operation, the operation of the round
function proceeds in the order of generation of the RK.

Second, in order not to use additional qubits, the new X; must operate on the existing X;_;.
However, if you look at the first and third lines of Equation (6) and second line of Algorithm 4, you can
see that the value of X(i,l)[O], which is first calculated in the round function, is used again. Thus,
X;_1[0] value should not be changed. However, X;_1[1] is no longer used after calculation. Therefore,
by calculating the value of X;[2] in X;_1[1], no additional qubits were required. The rest of the round
function follows the similar procedure. The specific process is presented in Algorithm 4.

The auxiliary functions Fy and Fj rotate the input value and then XOR-ing them all. Since input
value is 8-bit, if qubits for the generated value are allocated and then XOR-ing the rotation value
of input, this requires 8 x 3 = 24 CNOT gates and 8 new qubits. We efficiently optimized this
auxiliary function. The desired output was generated by mixing the input values without allocating
the qubits for the outputs of Fy and F;. As a result, 21 CNOT gates in Fp and 24 CNOT gates in F; were
implemented without additional qubits. The detailed process for Fy and F; functions is presented in
Algorithms 5 and 6.

Algorithm 5 Fy(X[i]) of HIGHT.

Input: X[i]

Output: Xy [i]

1: CNOT(X[i][4], X[i][5]), CNOT(X[i][3], X[i][4])
2: CNOT(X[i][2], X[i][3]), CNOT(X[i][2], X[i][0])
3: CNOT(X[i][4], X[i][2]), CNOT(X[i][5], X[i][2])
4 Xnew!i][4] < X[i][2]

5. CNOT(X[i][7], X[#][5])

6: Xnew|][6]  X[i][5]

7. CNOT(X[i][6], X[i][4])

8: Xnew|i][5]  X[i][4]

9: CNOT(X[i][0], X[i][3]), CNOT(X[i][1], X[i][3])
10: Xnew|i][2] <= X[i][3]

11: CNOT(X[i][6], X[{][1]), CNOT(X[][7], X[i][1])
12: Xiew][0] = X[i][1]

13: CNOT(X[i][7], X[i][0])

14 Xpew|1][1] < X[i][0]

15: CNOT(X[i][5], X[i][6]), CNOT(X[i][4], X[i][6])
16: CNOT(X[{][3], X[i][6]), CNOT(X[i][1], X[i][6])
17: Xnew!][7] <= X[i][6]

18: CNOT(X[i][6], X[{][7]), CNOT(X[{][5], X[i][7])
19: CNOT(X[][1], X[{][7]), CNOT(X[i][0], X[i][7])
20: Xnew!i][3] = X[i][7]

21: return Xpew = { Xnew[0], Xuew[1], - - -, Xnew[7] }

In the round function, after using Fy and Fj, it should be returned to the original input value.
For this, the Fy_reverse and F;_reverse functions should be executed in reverse order of calculation of
the Fy and F; functions.
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Algorithm 6 F; (X) of HIGHT.

Input: X
Output: X0

S N e e e e e e T
= O 0 ® NN O U o W N = O

D U S

CNOT(X[ ],X[4]) CNOT(X[l},
Xnew[7] < X[4]
CNOT(X[2], X[3]), CNOT(X|0],
Xnew6] < X[3]
CNOT(X [ ],X [2]) CNOT(X [7},
Xnew[5] = X[2]
CNOT(X[ ],X[l]) CNOT(X[6},
Xnew[4] = X([1]
CNOT(X [ ], X [0]) CNOT(X [5},
Xnew(3] < X[0]
: CNOT(X[ ],X[7] CNOT(X[4},
: CNOT(X[ ],X[7] CNOT(X[Z},
. CNOT(X[0], X[7]), CNOT(X[5],
Xnew[2] = X[7]
. CNOT(X[0], X[6]), CNOT(X[7],
: CNOT(X[ ],X[6]) CNOT(X[l},
Xnew[1] = X[6]
: CNOT(X[ ],X[S]) CNOT(X[6},
. CNOT(X 3], X[5]), CNOT(X][0],
: Xnew{ ] [5]

X[4])
X(3])
X[2])
X[1])
X[0])
X[7))
X[7))
X[7))

X[6])
X[6])

X[5])
X[5])

. return Xpewy = { Xnew[0], Xnew(1], - - -,

the last round since the overall structure is almost identical.

In the last 32nd round, the round function from Equation (7) is performed. Compared to the
previous round functions, shown in Algorithm 4, the biggest difference is that the last round uses
auxiliary function, F;, while calculating. Therefore, we have omitted the quantum circuit design for

After all the round functions have been performed, the final conversion from Equation (8) gets
performed and encryption gets completed. The quantum circuit design for final conversion is also
omitted because it is almost identical to the initial conversion from Algorithm 3. The overall quantum
circuit for HIGHT is shown in Figure 11.
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Round 0 Reverse Reverse Reverse Reverse

First operation ————— Secnod operation /—l—\ Third operation f_k_\ Fourth operation f—l—l Round 1 --- 31

XO[O]H ADD D—] Fo.reverse] X,[1]
Xo[1] X1[2]
Xol2] Fy ADD ADD Fo_reverse X1[3]
Xo[3] D X1[4]
Xo[4] F —P | a0 | D Fo._reverse X41[5]
XolS] Xi[6]
Xol6] Fo ADD ADD Fy_reverse X,[7]
Xo[7] D X1[0]

5 enerate § ADD te § — ADD ADD generate § ADD

ADD ADD_reverse & ADD el [ L eenerate 8 [ app

K[0] ’J
K[1] ADD ADD _reverse |— _reverse
K[2] ’_ADD_‘ _reverse —
K[3] ’_ADD ADD _reverse _reverse

Figure 11. Quantum circuit for HIGHT.
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3.2. CHAM

In this section, we describe the proposed CHAM block cipher in the quantum circuit to apply the
Grover search algorithm.

3.2.1. Key Schedule

The key schedule of CHAM has the same structure as the auxiliary functions Fy and F; of HIGHT.
It performs ROL;, ROLg or ROL;, ROL1; operations on initial keywords K, and XOR-ing them all
on the K. Therefore, the method of optimizing the auxiliary function of HIGHT was applied to the
key schedule of CHAM. The CNOT gate is performed between the qubits storing K to generate an
output in which both the K and rotation values of K are XOR-ed. In the key schedule from Equation (9),
the first line operation is well optimized without any additional qubits. The detailed process of the first
line in Equation (9) is described in Algorithm 7. Not as much as first line operation, the second line
operation in Equation (9) has been optimized for using three temporary qubits. The detailed process of
key schedule is described in Algorithm 8.

After performing Algorithms 7 or 8 to use RK generated from K, K is required again when
generating another round key RK. Therefore, after using the round key;, it is necessary to perform a
reverse key schedule operation as done in HIGHT.

Algorithm 7 RK{[i] key schedule of CHAM.

Input: K[i]
Output: RK[i]

1: CNOT(K[i][0], K[][8]), CNOT(K[i][1], K[i][9])

2. CNOT(K[i][2], K[i][10]), CNOT(K[i)[3], K[i][11])
3: CNOT(K[i][4], K[i][12]), CNOT(K[i][5], K[i][13])
4: CNOT(K[i][6], K[i][14]), CNOT(K{[i][15], K[i][6]
5: forj =0to5 do

CNOT(K[i][j + 9], K[1][j]), RK[i][j + 1] « K[i][]]
end for
CNOT(K[i][7], K[i][6]), RK[i][7] ]
CNOT(K[i][8], K[i][15]), RK[i][0] « K[i][15]
10: CNOT(K[i][8], K[i][7]), RK[i][8] + K]i][7]
11: forj =0to 6 do
122 CNOT(K[][j], K[i][j + 8]), RK[i][j + 9] +— K[i][j + 8]
13: end for
14: return RK[i] = {RK[i][0], RK[{][1], ..., RK[i][15]}

o *®» N D




Appl. Sci. 2020, 10, 6407

17 of 25

Algorithm 8 RK[i + 8 & 1] key schedule of CHAM.

Input: K]i]
Output: RK[i +8® 1]

1: CNOT(K]i][15],temp]0]), CNOT(K][i][9] temp|0])

2: CNOT(K[i][5],temp[1]), CNOT(K[i][15] temp|[1])

3: CNOT(K[i][4],temp[2]), CNOT(K[i][10] temp|[2])

4 CNOT(K[i][14], K[i][15]), CNOT(K[7][4], K[i][15]

5: CNOT(K[l] [9], K[i][4]), CNOT(K[i][3], K[i] [4]

6: RK[i +8 & 1][15] + K[i][15], RK[i + 8 & 1][4] + K[i][4]
7. CNOT(K|[14], K[1][9)), CNOT(K]i][8], K[1][9]

s CNOT(K[{][13], KIi][14]), CNOT(K[i][3], K[1|[14]

9: RK[i +81][9] « KI[i][9], RK[i + 8 & 1][14] « K[i][14]
10: CNOT(K[i][8], K[i][3]), CNOT(K[7][2], K[i][3]

11: CNOT(K[i][13], K[i][8]), CNOT(K[:][7], K[{][8]

12: RK[i +8 @ 1][3] + K[i][3], RK[i + 8 ® 1][8] +— K]i][8]
13: CNOT(K[i][12], K[{][13]), CNOT(K[i][2], K[i][13]

. CNOTUF, Kil[2) CNOT(K( 1] K12

15: RK[i + 8 @ 1][13] + K[i][13], RK[i + 8 & 1][2] + K]i][2]
16: CNOT(K[i][12], K[i][7]), CNOT(K]i][6], K]i][7]

17: CNOT(K[i][1], K[i][12]), CNOT(K]i][1], K[i][12]

18: RK[i +8 @ 1][7] + K][i][7], RK[i + 8 & 1][12] + K[i][12]
19: CNOT(K]i][6], K[i][1]), CNOT(K[i][0], K[i][1]

20 CNOT(K[][11], K[i][6]), CNOT(K[7] (5], K[i][6]

21: RK[i+ 8@ 1][1] + K[i][1], RK[i + 8 ® 1][6] + K][i][6]
22: CNOT(K[i][10], K[i][11]), CNOT(K[i][0], K[i][11]

23: RK[i+ 8 @ 1][11] «+ K[i][11]

24: CNOT(temp[O] K[i][10]), CNOT(temp[ |, Kli][0])

25 RKi+8 1][10] + K[i][10], RK[1[0] « K[1]0]

26: CNOT(temp|2], K[i][5])

27: RK[i 4+ 8 ® 1][5] « K][i][5]

28: return RK[i+8& 1] = {RK[i +8 & 1][0], RK[i +8 @ 1][1],...

,RK[i + 8 &1][15]}

3.2.2. Round Function

In the second line of the round function from Equation (10), among the input X; values, the values
of X;[1], X;[2], and X;[3] are used as new values of X1, but X;[0] is not used after calculation. Therefore,
the value of X;[0] in the second line can be used by computing X; 1 [3] to save the qubits for a new value.

In the second line of the round function, the constant i is XOR-ed to X;[0]. This is done by
performing the X gate on the qubit according to the position where the bit of i is 1 in X;[0]. For example,

ifi=3=1(1,1,0,0,...,0), X gate is performed on the qubits X3[0][0] and X3[0][1].

The round function of CHAM is expressed in Equations (10) and (11). The detailed circuit design
process is shown in Algorithm 9, and the overall quantum circuit for CHAM-64/128 is shown in Figure 12.
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Algorithm 9 Round function of CHAM.
Input: RK, X;, Round i
Output: X; 4

1: if i is odd then

2 X[1] « Xi[1] < 1

3: X;[1] +CNOT(RK][i mod 2m], X;[1])

4 X;[0] +X gate(i, X;]0])

5. X;[0] +ADD(X;[1], X;[0])

6:  X;[1] +~CNOT(RK[i mod 2m], X;[1]) (reverse)
7. Xi[1] < X;[1] >> 1 (reverse)

8 X3 « X;[0] < 8

9 Xiyl[] < Xili+1], j=012

10: else

1 X;[1] + X;[1] < 8

122 Xj[1] «<CNOT(RK][i mod 2m], X;[1])

13:  X;[0] <X gate(i, X;[0])

14 X;[0] «+~ADD(X;[1], X;[0])

15 X;[1] «+~CNOT(RK[i mod 2m], X;[1]) (reverse)
16 X;[1] < X;[1] >> 8 (reverse)

17 Xi1 [3] — X; [0] «1

18: XiJr][]'}(—XiU—Fl], j=0,1,2

19: end if

20: return Xjq = {Xiy1[0], Xit1[1], Xija (2], Xip1 [3]}

Round 0 Round 1 +++ Round 79
Xo[0] X gate (0) ADD D, X4[3] X;[2]
Xo[1] — &Y v PG X,[0] X gate (1)H —Q—xz[sl
Xo[2] X[ . ALD xlo—
Xo[3] X1[2] X[1]

K[0] RK[0] RK([0]
Key schedule Key reverse
Reverse RK[1] RK[1]
K[1] Key schedule ‘_Y_, Key reverse
: Reverse
K[7]

Figure 12. Quantum circuit for CHAM-64/128.

3.3. LEA

In this section, we describe the proposed LEA block cipher in the quantum circuit to apply the
Grover search algorithm.

3.3.1. Key Schedule

In the LEA-128 key schedule from Equation (13), the first round key RKj is generated using the
initial keywords K and a constant value ¢. In addition, the next round key RK; generation requires RKy
and 4. Therefore, in order not to use additional qubits in the key schedule of the LEA, the key schedule
and the round function are performed simultaneously by using the round key in the corresponding
round function and generating the next round key. The detailed process for this is in Algorithm 10.
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Algorithm 10 i-th key schedule of LEA-128.
Input: §, K(i =1) or RK; (i > 1)

Output: RK;_,

1: K[0] +~ ADD(8[(i — 1) mod 4] < (i — 1), K][0])
2: K[0] + K[0] <« 1

3: K[1] + ADD(4[(i — 1) mod 4] << (i), K[1])

4 K[1] + K[1] < 3

5. K[2] < ADD(5[(i — 1) mod 4] << (i +1),K[2])
6: K[2] + K[2] «< 6

7. K[3] <+~ ADD(5[(i — 1) mod 4] << (i +2),K[3])
8: K[3] + K[3] <« 11

9: return RK; 1 = {K[0],K[1],K][2],K[1],K[3],K[1]}

3.3.2. Round Function

In the round function, additional qubits were not used by appropriately specifying the operation
order and target. New qubits for X; 1 from Equation (14) are not allocated, and it is calculated in the X;
and treated as a new value X; 1. The operation starts from the third line of Equation (14). X;[3] is used as
the value of X;1[2] because X;[3] is no longer used. After the third line operation is finished, the value of
X;[2] in the second line is no longer used, so it is used as the new value X;1[1]. The detailed process for
this is in Algorithm 11. The overall quantum circuit for LEA-128 is shown in Figure 13.

Algorithm 11 Round function of LEA-128.

Input: X;, RK, Round i

Output Xit1

X;[3] + CNOT(RK;[5], X;[3

X;[2] +- CNOT(RK;[4], X;[2
]
]

1)
1)
Xi[3] + ADD(X;[2], X;[3])
X;[2] + CNOT(RK;[4], X;[2]) (reverse)
Xi11[2] + Xi[3] <« 3
X;[2] + CNOT(RK;[3], X;[2])
X;[1] <~ CNOT(RK;[2], X;[1])
Xi[2] «+ ADD(X;[1], X;[2])
X;[1] + CNOT(RK;[2], X;[1]) (reverse)
Xiq[1] + Xi[2] << 5
X;[1] + CNOT(RK;[1], X;[1])
. X;[0] + CNOT(RK;[0], X;[0])
Xi[1]
Xi
X

R U T

e T T
@ N 22

1] + ADD(X;[0], X;[1])

0] + CNOT(RK;[0], X;[0]) (reverse)

i+1[0] « Xi[1] <9

: Xi+1 [3] — Xi [0]

return X1 = {Xi11[0], Xi1[1], Xi1[2], X1 (3]}

== e
N @k
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Round 0 Round 1 --- 23
Hol0) B pop [P x3—
%] B aoo P 7 S— Xil0}—
Xo[2] D D D 5) X, [1]—
0 T aop [ V% 1
Xo[3] C) 3 Xi[2]—

8[0] ADD 1ﬁADD%zﬁADD%!)-{ADD_J

8[1]
8[2]
4[3]

K10) AD; D) Reverse
K[1] [a0D | L5

K[2) I D | B

K[3] [—ADD N Reverse

Reverse

Figure 13. Quantum circuit for LEA-128.
3.4. SPECK

In this section, we describe the proposed SPECK block cipher in the quantum circuit to apply the
Grover search algorithm.

3.4.1. Key Schedule

Looking at Equation (15), key words K = {K[0],![0],...,I[m —2]} are extended to key
K = {K[0],K[1],...,K[r — 1]} through key schedule. To save the use of qubits, we update the qubits of
K[0] used in the first round and use it as the next round key instead of generating all round key RK.
As aresult, K[0] is used as a round key from start to finish. Qubits assigned to the initial keywords K,
an element of the key schedule for updating the round key K|0], are reused to the end. By recycling
the qubits in this way, all round functions can be completed with only the initial keyword qubits. If
a round key is generated in K[0], the next round key must be generated after executing the round
function. For 1 < i < r, the detailed process for the key schedule is in Algorithm 12.

Algorithm 12 RKJi] key schedule of SPECK.
Input: K = {K[0],1[0],...,I[m — 2]}

Output: RK]i]

LI —=1)%(m—1)] < 1[(i—1)%(m—-1)] >«

2. 1[(i —1)%(m — 1)] + ADD(K[0],[(i — 1)%(m — 1)])

3 1[(i —1)%(m—1)] < Xgate((i —1),1[(i — 1)%(m — 1)])
4 K[0] + K[0] << B

5. K[0] <= CNOT(![(i — 1)%(m — 1)], K[0])

6: RK][i] + K]0])

7. return RK[{]

3.4.2. Round Function

Round function of SPECK from Equation (16) uses only input plaintext X and round key RK.
It proceeds by updating the input X, and encryption is completed when all round functions are
performed. The detailed process for this is described in Algorithm 13. The overall quantum circuit for
SPECK-32/64 is shown in Figure 14.
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Algorithm 13 Round function of SPECK.

Input: X, RK, Round i

Output: X; 4

CXi[1] <+ Xi[1] >

Xi[1] <~ ADD(X;[0], X;[1])
Xi1[1] < CNOT(RK;[i], X;[1])
X; [0] — X; [0] XK B

Xi4+1[0] = CNOT(X;41[1], X;[0])
return X1 = {X;1[0], Xi1[1]}

[ANERCLI SR A > e

Round 0 Round 1 Round 2 Round 3 Round4 «++ 21

Xo[0 pyman D PN 5
xU[1] aop | T aop | X T aop [ XY ADD

olll— O 3 ® 3 & :

K[0] P ADD Z ADD P

oo [P 3 200 ]

1[o] v ‘ ‘

1] 71 ADD X gate (1)

1[2] (| ADD S

Figure 14. Quantum circuit for SPECK-32/64.

4. Evaluation

In order to evaluate quantum gates, we utilized the quantum computer emulator. We utilized the
well-known IBM’s ProjectQ framework for evaluation of the proposed method (https:/ /github.com/
ProjectQ-Framework/ProjectQ). The framework provides quantum computer compiler and quantum
resource estimator. This is useful for accurate evaluation. Proposed quantum gates are written in
Python and follow the ProjectQ grammar.

4.1. Cost of Quantum Gates

The most expensive of the quantum gates used in the implementation is the Toffoli gate. Toffoli gate
consists of six CNOT gates + seven T gates. In other words, Toffoli gate costs more than six CNOT gates.
Therefore, the number of Toffoli gates is the most important factor in evaluating quantum resources.
On the other hand, the cost of an X gate is the cheapest and the number used for implementation is overall
negligibly low.

4.2. Korean Block Ciphers in Quantum Gates

Korean block ciphers, such as CHAM, LEA, and HIGHT, are based on the ARX architecture.
However, the primitive operations for each block cipher are totally different, in terms of word size and
the number of operations. In Table 6, the quantum resource estimates for each block cipher, and the
higher cost is shown in red and the lower cost is shown in green. The detailed comparison is as follows.

Table 6. Comparison between Korean block ciphers in terms of quantum resources.

Block Cipher Plaintext (bit) Key (bit) Qubits Used Toffoli Gates CNOT Gates X Gates

64 128 196 2400 12,285 240
CHAM 128 128 268 4960 26,885 240
128 256 396 5952 32,277 304
HIGHT 64 128 201 6272 20,523 4
128 128 385 10,416 28,080 68
LEA 128 192 513 15,624 39,816 100

128 256 641 17,856 45,504 130
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4.2.1. Case 1: 64-Bit Plaintext & 128-Bit Key

First, we compared CHAM-64/128 and HIGHT-64/128 block ciphers in terms of quantum
resources. The number of qubit, Toffoli gate, and CNOT gate for CHAM-64/128 is lower than
HIGHT-64/128 by 5, 3872, and 8203, respectively. In CHAM-64/128, it is all about performing a 16-bit
Addition operation once in the round function. However, in HIGHT, 8-bit addition operations are
performed 14 times in the round function, including the reverse operation. As a result, the circuit
complexity of HIGHT is higher, even though CHAM performs more round functions. Only the number
of X gates for HIGHT-64/128 is lower than CHAM-64/128 by 236. This is because CHAM performs an
operation that XOR-ing constant i.

4.2.2. Case 2: 128-Bit Plaintext & 128-Bit Key

Second, we compared CHAM-128/128 and LEA-128/128 block ciphers in terms of quantum
resources. The number of qubit, Toffoli gate, and CNOT gate for CHAM-128/128 is lower than
LEA-128/128 by 117, 5456, and 1120, respectively. From the qubit point of view, LEA adds the constant
0 to the key value in the key schedule. If it was an XOR operation, it can be solved only by an X gate
without an additional qubit like CHAM. However, because it is an addition operation, setting the
value of J requires 128 qubits, so LEA uses more qubits. As you can see intuitively, the key schedule
and round function of the LEA consist mostly of addition. Therefore, LEA has the high complexity
among the block ciphers in this paper. Only the number of X gates for LEA-128/128 is lower than
CHAM-128/128 by 172. This is because, unlike CHAM, LEA does not use the X gate during the round
function, but uses the X gate only when initially setting the J value. The number of X gates is equal to
the 6’s hamming weight.

4.2.3. Case 3: 128-Bit Plaintext & 256-Bit Key

Third, we compared CHAM-128/256 and LEA-128/256 block ciphers. The number of qubit,
Toffoli gate, and CNOT gate for CHAM-128/256 is lower than LEA-128/256 by 245, 11,904, and 13,152,
respectively. Only the number of X gate for LEA-128/256 is lower than CHAM-128/256 by 174.
This result also shows that, even in large-scale parameters, CHAM has lower complexity in quantum
gates than LEA.

4.2.4. CASE 4: Addition of LEA and HIGHT

Lastly, we compared addition of LEA and HIGHT. LEA-128 performs addition operations four
times in the key schedule, three times in the round function, a total of seven, whereas HIGHT performs
addition operations four times in the key schedule, four times in the round function, a total of eight.
Unlike a classic computer, on a quantum computer, initializing qubits to its previous value requires
a reverse operation that iterates over what was done. Since the result of the addition operation of
the LEA gets used continuously, the reverse operation is not required. On the other hand, in HIGHT,
in order to minimize the usage of the qubit, it is necessary to perform the reverse operation after
using the addition result. Therefore, a total of six reverse operations are added, resulting in increased
circuit complexity.

Overall, the CHAM block cipher requires the lowest quantum resources. This result introduces
the fact that classical security level is not directly related to quantum attack efforts. The lesson is that
modern lightweight block ciphers are not good options against quantum computers.

4.3. Software-Oriented and Hardware-Oriented Block Ciphers

We also evaluated the quantum resources for software-oriented block cipher (i.e., SPECK) and
hardware-oriented block cipher (i.e., SIMON). SPECK consists of addition, XOR, and rotation, while
SIMON consists of logical-and, XOR, and rotation. The main difference is addition (i.e., SPECK) and
logical-and operation (i.e., SIMON). In Table 7, the comparison between SPECK and SIMON in terms



Appl. Sci. 2020, 10, 6407 23 of 25

of quantum resources is given. The result shows that the number of qubit, toffoli gate, and CNOT gate
for SIMON is lower than SPECK. Only the number of X gate for SPECK is lower than SIMON. For this
reason, we can conclude that hardware oriented block cipher is more vulnerable than software-oriented
block cipher in terms of Grover search algorithm.

Table 7. Comparison between SPECK and SIMON in terms of quantum resources.

Plaintext (bit) Key (bit) Qubits Used Toffoli Gates CNOT Gates X Gates
SPECK SIMON [9] SPECK SIMON [9] SPECK SIMON [9] SPECK SIMON [9]
32 64 97 96 1290 512 3706 2816 42 448
48 72 121 120 1982 864 5606 3312 42 792
48 96 145 144 2074 864 5866 4800 45 768
64 96 161 160 3162 1344 8890 5184 54 1248
64 128 193 192 3286 1408 9238 7396 6% 1216
96 96 193 192 5172 2496 14,436 9792 60 2400
96 144 241 240 5360 2592 14,960 10,080 64 2448
128 128 257 256 7942 4352 22,086 17,152 7 4224
128 192 321 320 8192 4416 22,784 17,472 80 4224
128 256 385 384 8444 4608 23,484 26,624 81 4352

4.4. SPN and ARX Based Block Ciphers

AES is based on SPN structure composed of AddRoundkey, ShiftRows, SubBytes,
and MixColumn.

AddRoundkey is an operation that XOR-ing a key value to data, and can be implemented
relatively simple by using only CNOT gates. ShiftRows is free because it uses only rotation operations.

On the other hand, MixColumn requires a (complicated) multiplication circuit, which uses more
Toffoli gate than addition circuit, and generic n-bit multiplication requires at least an additional
n qubits. Some multiplication works using the Karatsuba algorithm have been performed, which
can reduce the number of Toffoli gates, but this requires extra qubits. SubBytes is an operation for
substituting data in 8-bit units, and the actual operation is an operation for affine conversion after
obtaining an inverse on GF(28) for one byte. For inversion operation, squaring and multiplication are
performed together. Squaring can be performed with only 19 CNOT gates on an 8-bit basis without
additional qubits, but, as mentioned earlier, inversion is a complex circuit because of multiplication.
That is, in the SPN structure, the complexity of the circuit is greatly increased compared to the ARX
structure due to SubBytes of substitution and MixCoulmn of permutation.

Several studies with quantum resource estimation required for AES block ciphers are presented
in Table 8. The implementation of Langenberg et al. [7] is relatively well optimized because the S-box
operation is optimized efficiently.

Table 8. Quantum resources to implement AES-128.

Block Cipher Qubits Used Toffoli Gates CNOT Gates X Gates

Grassl et al. [6] 984 151,552 166,548 1456
Almazrooie et al. [21] 976 150,528 192,832 1370
Langenberg et al. [20] 864 16,940 107,960 1507

5. Conclusions

In this paper, we presented the optimized implementation of ARX-based Korean block ciphers in
quantum gates. The proposed implementation achieved the optimal number of qubit and quantum
gates by carefully designing the adder circuit and its reversible gates. This is the first implementation
of Korean block ciphers in quantum gates. The result shows that the CHAM block cipher requires
the lowest quantum resources, which means the CHAM block cipher is the most vulnerable towards
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the Grover search algorithm. We also evaluated the SPECK and SIMON on quantum gates. The
result shows that hardware-oriented block cipher (i.e., SIMON) shows the lower quantum resources
than SPECK.
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