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Abstract: Cellular structures consist of foams, honeycombs, and lattices. Lattices have many
outstanding properties over foams and honeycombs, such as lightweight, high strength, absorbing
energy, and reducing vibration, which has been extensively studied and concerned. Because of
excellent properties, lattice structures have been widely used in aviation, bio-engineering, automation,
and other industrial fields. In particular, the application of additive manufacturing (AM) technology
used for fabricating lattice structures has pushed the development of designing lattice structures to a
new stage and made a breakthrough progress. By searching a large number of research literature,
the primary work of this paper reviews the lattice structures. First, based on the introductions
about lattices of literature, the definition and classification of lattice structures are concluded.
Lattice structures are divided into two general categories in this paper: uniform and non-uniform.
Second, the performance and application of lattice structures are introduced in detail. In addition,
the fabricating methods of lattice structures, i.e., traditional processing and additive manufacturing,
are evaluated. Third, for uniform lattice structures, the main concern during design is to develop
highly functional unit cells, which in this paper is summarized as three different methods, i.e.,
geometric unit cell based, mathematical algorithm generated, and topology optimization. Forth,
non-uniform lattice structures are reviewed from two aspects of gradient and topology optimization.
These methods include Voronoi-tessellation, size gradient method (SGM), size matching and scaling
(SMS), and homogenization, optimization, and construction (HOC). Finally, the future development
of lattice structures is prospected from different aspects.

Keywords: unit cell; uniform lattice structures; non-uniform lattice structures; topology optimization;
additive manufacturing

1. Introduction

Lattice structure is an attractive material for many design applications (aerospace, biological
engineering, mechanical engineering, etc.) because of the excellent properties including the
light-weighting, high specific strength and stiffness, dissipate heat, and so on. As porous materials,
before the lattice structure appeared, the name of cellular structure was more widely spread. The concept
of “cellular structure” was originally proposed by Gibson and Ashby Evans, Hutchinson, et al. [1–3].
Gibson and Ashby deemed that cellular structure included foams (open-cell and closed-cell foams),
honeycombs [1,2]. However, lattice structure as another type of cellular material is different from
foams and honeycombs, and the difference of structure mainly lies in unit cell topology and scale,
and properties [4,5].
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In order to classify more clearly the types of cellular structures, Dhruv Bhate [6], Tao and
Leu [7] classified cellular structures into three categories, i.e., foams (open-cell and closed-cell foams),
honeycombs, and lattice structures. The shape of unit cells in the foam structures are randomly
generated (as shown in Figure 1a), and the cell walls have random orientations in space [2]. In the book
of Metal Foams: A Design Guide, Ashby, Evans and Fleck, et al. had introduced in detail the properties,
applications, and manufacturing methods of metallic foam structures [8]. Davies and Zhen indicated
clearly that metallic foam structures had high porosity ranging from 40% to 98% [9]. Foams are the
common cellular structures. Like cork, cancellous bone and wood show various foams. Honeycomb
structures have regular shape, and unit cells have the same shape and size (Figure 1b) [2,10]. There are
many cell shapes in honeycombs such as tetrahedron, triangular prism, square prism, hexagonal prism,
and so on [2,11]. At present, re-entrant honeycomb auxetic structures [12–16] and chiral honeycomb
structures [17–19] are attractive, which improve the performance and extend the application of
honeycombs. Lattice structures are the kind of architecture that are formed by the array of spatial unit
cells with edges and faces (as shown in Figure 1c) [7,20]. Cellular shape and size can be uniform or
non-uniform. In some academic studies, cellular structures are often equivalent to lattice structures
because of neglecting the differences between lattices and foams and honeycombs [21,22]. In their
research literatures, the foam structures are actually the lattice structures. In fact, compared with foams
and honeycombs, lattice structures have better mechanical properties [3,23]. Queheillalt, et al. [24,25]
and Clough et al. [26] demonstrated that lattice structures have the potential to improve compressive
and shear strength over foams and honeycomb structures when designed to suppress buckling.
Otherwise, lattice structures have many superior properties that foams and honeycombs do not get
because of the unique property of tailoring. In other words, each unit cell, and even each strut in
the lattice structure can be set as the design variable and be optimized to satisfy specific customized
requirements functionally, which means mechanical properties of lattices are more flexible to be
controlled than foams and honeycombs [23,27]. Therefore, it can be concluded that lattice structures
have better performance than foam structures and honeycomb structures.
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In fact, in early industrial structure design, the solid material structure is mainly used because of
its sufficient and other material properties. Although the solid material structure to a large extent meets
the design requirements, there are still many defects, such as waste of materials, inflexible design,
huge structure volume, and manufacturing difficulties. Besides, with the development of science and
technology, the requirements for structural properties are higher than before. At present, structure
design in industrial field pays more attention to lightweight and high performance. For example, in the
field of aerospace, structural design not only requires excellent mechanical properties, but also meets
the requirements of lightweight materials. In this way, scientific materials with low cost and high
performance can be realized and achieved. With the application of cellular structure, it reduces the
weight of structure, and realizes the design application of lightweight and high strength. Taking truss
structure as an example, the hollow truss structure designed by filling the truss with cellular material
has higher second-order moment of inertia. Compared with the solid truss structure, the cellular
structure can improve the bearing capacity of the truss [28]. However, in terms of application, foams,
honeycombs and lattices are not exactly the same (as listed in Table 1). Although these three structures
have common applications such as aerospace, automotive, marine, and biomedical engineering, and so
on, lattice structures are more widely used because of satisfying specific functional requirements.

Table 1. Applications of cellular structures.

Type of Cellular Structures Applications

Foams Energy absorbers [1,2,8,9], Filters [9,29], Silencers [9], Flame arresters [9],
Heaters and heat exchangers [9,29], Eelectro-chemical devices [9,29].

Honeycombs Energy absorbers [1,2,15,30–33], Biomedical implants [30–32], Filters [34,35],
Sensors [34,35], Actuators [34,35], Vibration absorber or damper [36–39].

Lattices

Energy absorbers [1,2,40–42], Heaters and heat exchangers [23,27,43–46],
Engine hood [47], Biomedical implants [48–55], Wings [56], Gas turbine
engine fan blades [57], Vibration absorber [58–61], Robotic system [62],

Spacecraft and aircraft structures (i.e., fuselage, rib) [63–65].

In view of the excellent properties, various unit cells and wide applications of lattice structures
among cellular structures (including foams, honeycombs and lattices), lattice structures are becoming
the research hot topic in academia and worthy to be reported. Compared with the review
literature [33,48,66–68] of cellular structures, this manuscript has the following innovative perspectives
about lattice structures.
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(1) The manuscript especially distinguishes the differences between lattices and foams and
honeycombs from aspects of structure and properties. Additionally, the manuscript divides lattice
structures into cellular structures.

(2) The manuscript reviews the definition and classification, properties and applications,
and manufacturing methods of lattice structures. Especially, there are some shortcomings in
the definition of lattice structures in some literature. Therefore, based on the understanding of
lattice structures, the definition is given new content, which makes the definition more perfect.

(3) The most excellent work is to reclassify the lattice structures, which is divided into uniform lattice
structure and non-uniform lattice structure. The design and optimization methods of lattice
structure are reviewed comprehensively over existing literature.

(4) The manuscript also emphasizes the lattice structure of non-uniform Poisson’s ratio, which is
rarely involved in other literature. The lattice structures with different Poisson’s ratios are
discussed in detail.

Consequently, in the second part of the manuscript, the definition and classification, properties
and applications, and manufacturing methods of lattice structures are introduced. In the third part,
different methods of designing and optimizing uniform lattice structures are reviewed. Similarly,
different methods of designing and optimizing non-uniform lattice structures are reviewed in the
fourth part of this paper. Finally, in the fifth part of this paper, the review of lattice structures is
summarized, and the future design trend of lattice structures is prospected.

In addition, in order to facilitate researchers to retrieve the literature of lattice structures, the
manuscript provides the retrieval method of literature cited by this paper. The keywords refer to
cellular structure, foam, honeycomb, lattice structure when retrieving. For example, when retrieving the
properties of lattice structure, you should use keywords such as lattice structure, strength, and stiffness
on Google Scholar. Otherwise, literature cited by this manuscript have a long time span (about 40 years)
and cover a wide range of contents, which support the review of lattice structures.

2. Lattice Structures

2.1. The Definition and Classification of Lattice Structure

As for the definition of lattice structures, Gibson and Ashby defined early the structures in which
the cell walls have a common generator as two-dimensional cellular structures like honeycombs,
and defined the structures in which cell walls have random orientations in space as three-dimensional
cellular structures like foams [2]. However, there is still no unified concept about the definition of lattice
structures, because the topology structures of lattices are not limited to only changing size of struts and
connection mode of cells. Many scholars have their own understanding of lattice structures based on
Gibson and Ashby’s definition of lattice structures. Generally speaking, lattice structures are defined as
the three-dimensional structures composed of consecutively and repeatedly arranged interconnected
cells, which can also be understood as a porous material structure composed of interconnected struts
and nodes in three-dimensional space [69–72]. Tao et al. defined lattice structure as an architecture
formed by an array of spatial periodic unit cells with edges and faces [7]. Dong et al. defined lattice
structure as the truss-like structure with interconnected struts and nodes in three-dimensional space [23].
Seharing et al. defined lattice structure as the porous and hollow structure formed by arranging
unit cells in three-dimensional space [73]. Helou et al. defined lattice structure as the space-filling
unit cell that is able to be tessellated along any axis with no gaps between the cells [74]. There is a
common point in the above definitions of lattice structure, that is, lattice structure is a three-dimensional
space structure. For all that, there are still shortcomings in the above definition of lattice structure.
For example, Tao’s definition of lattice structure [7] only emphasizes the periodic unit cells arrangement
but ignores the aperiodic unit cells. Moreover, the gradient lattice structure appears in the structural
design, which cannot be defined by distinguishing periodic and aperiodic unit cells arrangement.
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As for the classification of lattice structures, according to the arrangement of unit cells in lattice
structures, lattice structures are generally divided into random lattice structures and periodic lattice
structures [2,4,7,10]. With the design and optimization of topology structures, Wang and Rosen
proposed the conformal lattice structures originally [75]. Compared with periodic lattice structures,
conformal lattice structures can strengthen or consolidate complex surfaces. Dong et al. [23] described
the classification of lattice structures in detail. They divided lattice structures into three categories,
the first category is random lattice structures or disordered lattice structures (as shown in Figure 2a).
The unit cells of random lattice structures are randomly distributed in the design space, and have
different topological structures and sizes. The second category is periodic lattice structures. This kind
of lattice structures can be regarded as the structure formed by periodic repeated arrangement of
lattice cells with certain shape, topology, and size in three-dimensional Euclidean space (as shown
in Figure 2b). The third kind is pseudo periodic lattice structures (also called conformal lattice
structures). In pseudo lattice structures (i.e., conformal lattice structures proposed by Wang and
Rosen), each unit cell only has the same topology, but its size is different (as shown in Figure 2c).
Although lattice structures are divided into random, periodic, and pseudo, they can represent the
unit cells arrangement in space, it is difficult to represent the unit cells arrangement form for gradient
lattice structure. For example, the step-wise gradient lattice structure includes three floors (as shown
in Figure 3) [76], each step of lattice structure has the same cell topology and regular arrangement,
but the cell topology and arrangement between steps are different. In this way, it is difficult to classify
the lattice structure as periodic or aperiodic cellular structure. In addition, with the research of positive
Poisson’s ratio (PPR) and negative Poisson’s ratio (NPR) materials, many scholars have begun to
study lattice structures with different Poisson’s ratio, which is usually named as non-uniform lattice
structures [77–81]. In short, lattice structures with gradient and non-uniform PR unit cells should be
referred to as non-uniform structures.
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For the purpose of this paper, based on the research of lattice structure in the cited literature,
the following is the definition and classification of lattice structure in this paper. Lattice structure is a
porous three-dimensional spatial structure formed and tessellated by unit cells with different topological
geometries, and belongs to cellular structures (including foam structure, honeycomb structure and
lattice structure). According to the uniformity of cells distribution, the lattice structures are classified
into uniform lattice structures and non-uniform lattice structures. Uniform lattice structures refer to
the porous structures with uniform distribution of unit cells, which are formed by the same topological
shapes and geometric sizes of unit cells repeatedly arranged in space. The non-uniform lattice structures
refer to the porous structures in which unit cells have different topological shapes or geometric sizes
and the unit cells are not arranged repeatedly, i.e., in the uneven distribution of materials.
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2.2. Properties and Applications of Lattice Structures

2.2.1. Properties

Lattice structure is usually used in lightweight structure design to minimize material loss and
energy consumption in the manufacturing process. Energy, material, and time of manufacturing
process can be saved effectively by designing and optimizing the lattice structure [71]. It is common
knowledge that lattice structure has good mechanical properties. In Section 2.2, the properties of lattice
structure are described in detail.

(1) High stiffness and strength [25,72,82–88]. Bauer et al. [82] fabricated and characterized
micro-truss and -shell structures made form cellular ceramic composites. They observed a size
dependent strengthening of the alumina shell, especially when the characteristic thickness was less
than 100 nm. The compressive strength of the artificial porous material was 280 MPa and the density
was less than 1000 kg/m3. Mahshid et al. [88] fabricated structure samples including solid, hollow,
and lattice structure, and compared the strength of structures by compression test. The deformation of
samples after compression test is shown in Figure 4. The result indicated that though the strength of
lattice structure was lower than that of solid structure, it can still meet the application requirements,
and reduced the use of materials, and achieve lightweight design.
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(2) High energy absorption [40–42,89–91]. Ozdemir et al. [42] carried out quasi-static test analysis
on lattice structures with cubic cells, diamond cells, and re-entrant cells respectively. They studied the
dynamic load deformation behavior of lattice structures, including failure process and stress–strain
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response. Under the condition of low-speed and high-speed collision, the lattice structures showed
obvious difference in deformation behavior and energy absorption effect. Al-Saedi et al. [90] investigated
that the energy absorption capability of graded and uniform lattice structures (as shown in Figure 5).
The result indicated that the total cumulative energy absorbed by the graded lattice structure was
3.2 ± 0.1 MJ/m3, and by the uniform lattice structure was 2.6 ± 0.2 MJ/m3. The total cumulative energy
absorption per unit volume was higher in functionally graded lattice than in uniform lattice (as shown
in Figure 6).

(3) High damping [58–61]. Yin et al. [60] studied the damping performance of Hollow composite
pyramidal lattice (CPL) through vibration test. The experimental results showed that the CPL structure
increased the damping property of the material and had a tremendous damping effect. Yin pointed
put that the damping ratios of space-filled CPL structures increased about two times that of hollow
CPL structures for first three orders and four times for the fourth order.
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Bandgap is the most promising feature for lattice structure when it comes to vibration isolation
and damping. Syam, Elmadih, and D’Alessandro et al. [92–96], carried out many studies on bandgaps.
Syam et al. designed six different lattice structures to investigate the vibration damping and isolation [92].
They used finite element simulation to analyze the displacement of six lattice structures under the
same load condition. The results showed that the lattice structures of model 2, model 3, and model 5
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had strong damping and vibration isolation effect (as shown Figure 7). As for vibration amplitude,
model 3 can reduce vibration more than model 2 and model 5 for all damping factors. But model 1, 4,
and 6 were too weak to sustain the predefined load. These studies provide a good theoretical basis for
the application of lattice structures in vibration damping and isolation.
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(4) Dissipate heat [27,44–46,78,97–100]. Wadley and Queheillalt [45] compared copper textile-based
lattice structures with selected heat dissipation media including stochastic open-cell metal foams,
periodic Kagome and lattice frame materials, corrugated ducts and louvered fins. Wadley and
Queheillalt [45] pointed out that although the copper textile-based lattice structures performed as well
as the stochastic open-cell metal foams (aluminum and copper based), the pumping power required
was significantly lower for the textile-based structures, because of the periodic topology. Therefore,
their overall thermal efficiency was about three times greater than that of comparable weight open-cell
copper foams. In addition. Catchpole-Smith et al. also investigated the thermal conductivity of lattice
structures [98]. Results showed that thermal conductivity was primarily a function of the material
properties and volume fraction of the sample. The Schwarz primitive unit cell consistently gave the
highest conductivity, with diamond and gyroid unit cells being marginally lower (as shown in Figure 8).
On heat exchange and heat transfer properties of lattice structures, Fink et al. [99] and Do et al. [100]
studied fluid dynamics of flow through microscale lattice structures, and verified the heat exchange
and heat transfer performance of lattice structure.

The mechanical properties of lattice structure are the fundamental aspects for the design of
lattices. Only when the lattice structure with good mechanical properties is designed, it will be
more widely used in various industries. For example, the fatigue behavior of lattice structure,
is frequently investigated [101–107]. By controlling and designing the unit cell shape, surface
properties, post treatment and graded porosity, the fatigue behavior can be significantly improved,
which may guarantee the long-term application [104]. Therefore, the premise of designing lattice
structure is to consider its application field and performance, which is the basis of designing lattice
structure and determines the application period of lattice structure.
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2.2.2. Applications

The excellent properties of lattice structures fill in the blank of manufacturing industry and provide
unprecedented opportunities for structures with better manufacturing performance. The properties
of lattice structures determine their wide application fields. Because of lightweight and high
strength, lattice structures are often used in the structural design of aircraft, rocket, and other
aerospace fields [63–65,108–110], automotive fields [47,56,57]. In addition, lattice structures have
bio-compatibility and high strength, which can be designed into the shape of human tissue and
bone to replace the diseased organs. Lattice structures have been tremendously used in the medical
field because of flexible mechanical properties and structural characteristics, which can meet specific
requirements [48–55,111–120]. The specific applications of lattice structures are shown in Figure 9.
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2.3. Manufacturing Methods of Lattice Structures

At present, there are two kinds of methods of fabricating lattice structures, i.e., traditional
machining processes and additive manufacturing. Helou and Kara [74] summarized the traditional
processing and manufacturing methods, such as water jet cutting, investment casting, electroless
plating, electrodeposition, and various processing methods in additive manufacturing including fused
deposition modeling (FDM), selective laser melting (SLM), selective laser sintering (SLS), electron beam
melting (EBM), binder jetting (BJ), etc.

There are advantages and disadvantages in the fabrication of lattice structure by traditional
processing methods. In terms of advantages, the lattice structures with large-scale structure can be
fabricated by traditional processing method. Adversely, using traditional processing methods to
fabricate the lattice structures will be time-consuming and cumbersome post processing and cause
more energy consumption and produce waste material. For instance, the investment casting method
proposed by Deshpande [21,24] has high requirements for the fluidity of melt-liquid metal, resulting in
being limited to nonferrous casting alloys with high fluidity. Additionally, the process of investment
casting is very complex and easy to produce defects. Figure 10 is principle of 3D lattice structure of
metal prepared by investment casting. The cell size of octahedral lattice materials fabricated by this
process can only reach millimeter scale, which is difficult to meet the requirements of micro-nano-scale
lattice structure. In addition, the extrusion and electro-discharge machining method (as shown in
Figure 11) proposed by Queheillalt [122] still needs special mold, and the fabricating process is
particularly complex and increases the generation cost. It is difficult to fabricate lattice structures with
thin ribs and panels. Besides, stretching net folding method and punched hole mesh drawing method
are proposed by Kooistra [123,124]. The biggest advantage of stretching net folding is that the plate
mesh is made of the original sheet metal, which wastes less raw materials in the production process
and saves the raw materials greatly. However, it still needs severe deformation in the manufacturing
process and can only be used for materials with high ductility, resulting in low structural strength and
complex processing technology [125,126]. Additionally, stamping forming method caused most of
the material wastes. The splicing technology proposed by Wadley [126] still has the defects such as
unstable lattice structures and limited performance.
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Additive manufacturing (AM) technology, as a new processing method, adopting the method of
adding materials layer by layer, provides promising opportunities to automatically and flexibly fabricate
structures with complicated shapes and architectures that could not be fabricated by conventional
manufacturing processes. The combination of lattice structure and additive manufacturing technology
is an unprecedented breakthrough in the field of industrial design. The fabrication of lattice structures
by AM technology has the following advantages: (1) design flexibility; (2) fabricate lattice structure
with wide range of sizes; (3) many kinds of materials (rubber, metal, alloy, ceramic, fiber, etc.);
(4) set up program for automatic processing; (5) save energy and reduce cost, etc. There are also
some shortcomings in AM technology, i.e., when designing lattice structures with suspended
geometry, support materials need to be added, which also causes certain material waste and increases
post-processing time. However, based on AM technology, the lattice structures have high design
flexibility and can be fabricated into structural materials with complex internal geometry and small
geometric size. Scientific researchers have designed different forms of lattice structures by AM,
which promotes the development and wide application of lattice structures [48,127–129]. In this paper,
the fabrication of lattice structures by AM technology is summarized, as shown in Table 2 (Table 2 is
written with reference to Dong et al. [23]). In this paper, the index of relevant research literature is
limited, it cannot summarize lattice structures by AM, and only lists some references published from
2018 to 2020 year in Google Scholar.
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Table 2. A summary of lattice structures fabricated by AM.

AM Process Material Lattice Structures Reference

SLM

Ti-6Al-4V
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Table 2. Cont.

AM Process Material Lattice Structures Reference

SLM 316L stainless steel
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Table 2. Cont.

AM Process Material Lattice Structures Reference

FDM PLA filaments
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3. Design and Optimization of Uniform Lattice Structures

According to Section 2.1, the lattice structures are classified into uniform lattice structures and
non-uniform lattice structures in this paper. In this section, the design and optimization of uniform
lattice structures are mainly described from three aspects: (1) unit cell structure design, (2) mathematical
algorithm, and (3) unit cell topology optimization. For the definition of lattice structure, lattice structure
is formed by arrangement of unit cells in space. Different types of unit cells have their unique
characteristics, which can reflect and determine the performance of the whole lattice structures.
Therefore, design and optimization of unit cells are the basic research elements. In the third section of
the paper, the design and optimization of uniform lattice structures are mainly realized and achieved
through the design and optimization of single unit cells. Three aspects are described: (1) Uniform
lattice structures formed based on the design of unit cell shape; (2) uniform lattice structures formed
based on mathematical algorithm; (3) uniform lattice structures formed based on the optimization of
unit cell topology.

3.1. Unit Cell Design Based on Geometric Wireframe

Lattice structures are a kind of porous material formed by repeated arrangement of unit cells.
The properties of lattice structures are directly related to the geometric size, shape, structure, and spatial
arrangement of unit cells. Most of academic work on the properties of lattice structures are based on
the design of unit cell structures, the change of unit cells arrangement, and the optimization. With the
application of various modeling software, it is easy to design different unit cell structures. Designers
can freely use CAD software to design the geometric structure of unit cells, and then analyze the
performance of the unit cells by finite element or experimental methods, and finally form a uniform
lattice structure according to a certain arrangement of unit cells. Many literatures have studied the
design of unit cells [154–165], the structures of unit cells in literature are shown in Appendix A.

For the design of unit cell shape, Chen [157] proposed a 3D texture mapping method, which enabled
designers to select the unit cell structure that satisfied the design requirements from cell structure
library (as shown in Figure 12), and then the internal structure was generated and defined in the
Extensible Markup Language (XML) file combined with the selected unit cell structure. System can
automatically convert the unit cell structure file into a CAD model. Finally, all the unit cells formed a
lattice structure. The basic idea of 3D texture mapping is shown in Figure 13. For example, the designer



Appl. Sci. 2020, 10, 6374 15 of 36

knows in advance the stress state of solid cube structure on the left of plus sign, and then selects the
lattice structure on the right side of the plus sign to map into the cube, forming a lattice structure by
Boolean on the right side of the equal sign that can be made by additive manufacturing. The 3D texture
mapping method proposed by Chen is based on mapping a unit cell structure into a design space to
generate a customized lattice structure, which makes the design of lattice structure easy.Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 35 
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3.2. Unit Cell Design Based on Mathematical Algorithm

It is an accurate method to describe lattice structures by using mathematical algorithm to design
unit cell. Triply periodic minimal surface (TPMS) is one of the mathematical methods that can
successfully transform the theoretical mathematical model into the actual lattice structures. TPMS can
be generated in multiple ways including Weistreass formula evaluations, nodal approximations of
the Weistreass formula, and numerical generation [74]. TPMS is a smooth infinite minimal surface,
the minimal surface is defined as a surface in hyperbolic space which possesses a mean curvature or
zero. TMPS divides the space into two mazes without self-intersection and has periodicity in three
independent directions [166,167]. It can also be considered that an important subclass of TPMS is
to divide the space into two disjoint but continuous interlaced regions. TPMS has two key features:
(1) The average curvature on the surface is zero everywhere; (2) they are perimeter in all three
coordinate directions (i.e., they extend infinitely in all directions and have the symmetry of one of the
crystal-space groups).

Yang et al. [167] designed Schoen Gyroid unit cell to form lattice structure based on TPMS.
The experimental results showed that Schoen Gyroid lattice structure had the characteristics of
self-supporting and high manufacturability. Schoen Gyroid lattice structure made of titanium alloy
showed good strength. Maskery et al. [168] pointed out that lattice structure designed by TPMS
has a good combination of specific stiffness and axisymmetric stiffness, high surface volume ratio,
and pore connectivity. TPMS method reduced the need for surface skin. Therefore, scholars use
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TPMS method to design the uniform lattice structures [98,169–178]. Al-Ketan et al. [178] reviewed
multifunctional mechanical-metamaterials lattice structures based on TPMS. They summarized the
TPMS mathematical formulas for generating different unit cell shapes. Figure 14 shows the different
unit cell based on TMPS.
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Schwarz Primitive Φp:
cosx + cosy + cosz = c (1)

Schoen-Gyroid ΦG:
sinx × cosy + siny × cosz + sinz × cosx = c (2)

Schwarz-Diamond ΦD:

cosx × cosy × cosz − sinx × siny × sinz = c (3)

Schoen-I-WP ΦIWP:

2(cosx × cosy + cosy × cosz + cosz × cosx) − (cos2x + cos2y + cos2z) = c (4)

Fischer-Koch S ΦS:

cos2x × siny × cosz + cosx × cos2y × sinz + sinx × cosy cos2z = c (5)

Schoen-FRD ΦFRD:

4(cosx × cosy × cosz) − (cos2x × cos2y + cos2y × cos2z + cos2z × cos2x) = c (6)

where x = 2πX/Lx, y = 2πY/Ly, z = 2πZ/Lz, and Lx, Ly and Lz are the unit cell sizes in the X, Y,
and Z directions.

Based on TPMS, Hao and Hussein [175] used implicit surfaces with unit cells of Diamond and
Gyroid. Implicit surfaces provide a compact representation for potentially complex surfaces, and also
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offer a number of advantages such as flexibility and well-defined Boolean operation. First, the implicit
surface was defined as an iso-surface of some function f. In three dimensions, the surface consists of a
set of points P ЄR3, and satisfies the Equation (7):

f (x, y, z) = 0 (f : R3R) (7)

Therefore, when the points produced in CAD meet the conditions in Table 3, it could be determined
whether the points were on the surface, outside the surface, or inside the surface.

Table 3. Implicit surface in/out convention.

Condition Interpretation

f (x, y, z) = 0 On surface
f (x, y, z) < 0 Inside
f (x, y, z) > 0 Outside

In the two lattice structures designed, each unit cell structure included an empty sphere and an
annular connecting rod, which were surrounded by the annular connecting rod to form an empty
sphere, as shown in Figure 15. Therefore, the implicit formulation of a unit sphere is given:

f (x, y, z) ≡ x2 + y2 + z2
− 1 (8)

After generating the surface, using the trigonometric function Formula (9) to generate the
periodic surface:

3∑
i=1

∏n

j=1

cos(xi) + k = 0 (9)
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In a word, TPMS is suitable for the design of uniform lattice structure. A TPMS surface is infinite
and periodic in three independent directions in space, which provides convenience for the uniform
distribution of cell structure in space. The lattice structures based on TPMS not only have similar
excellent performance compared with the lattice structures designed by other methods, such as light
weight, high strength ratio, energy absorption, heat insulation, and sound insulation performance,
but also inherits the smooth surface of TPMS, uniform curvature radius, and other characteristics [172].

3.3. Unit Cell Design Based on Topology Optimization

Academic literatures show that topology optimization is one of the methods to obtain uniform
lattice structures [86,108,140,151,176,179,180]. By optimizing unit-cell struts’ sizes (i.e., thickness,
length and diameter, etc.) and geometries, topology optimization effectively obtains lattice structures



Appl. Sci. 2020, 10, 6374 18 of 36

with specific performance, that is under condition of the specific constraints, the unit cells can be
optimized to obtain specific performance requirements, and then unit cells can be arranged periodically
to get the uniform lattice structures. Clausen et al. [180] created a new kind of programmable uniform
lattice structure material with Poisson’s ratio between −0.8 and 0.8 by optimizing the unit cells. In large
deformation up to 20% even more, the Poisson’s ratio of lattice structure was almost constant.

Homogenization method is one of the methods of topology optimization, and refers to a way to
replace the composite with a kind of equivalent material model. Using homogenization to optimize
lattice structures can be divided into two steps [23]. First, the local problem based on a unit cell
is solved to get the effective material properties. Second, periodic materials are used to replace
homogeneous materials with equivalent properties to solve the overall problem. Rodrigues [181] used
homogenization method to optimize the topology structures of unit cells, and obtained uniform lattice
structure. Rodrigues applied constraint load to the structure within the design domain, and optimized
the topology structure of unit cells under the constraint conditions. Finally, the uniform lattice structure
was formed, as shown in Figure 16. Although there were load constraints in different directions in
the design domain, the uniform lattice structure had almost the same isotropic equivalent behavior
as expected.
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Wang and Sigmund have made valuable research on topology optimization of unit cells [182,183].
The team carried out a detailed experimental study on the lattice structure with uniform negative
Poisson’s ratio. Through the tensile test, the unit cell structure with negative Poisson’s ratio could
be obtained by topology optimization. Figure 9 was one of topology structures of unit cells with
negative Poisson ratio (Figure 17a), and the uniform lattice structure formed by arranging the unit cell
(Figure 17b).
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4. Design and Optimization of Non-Uniform Lattices

In this part of the paper, the design and optimization of non-uniform lattice structures are mainly
discussed from two aspects: gradient lattice structures design, and structure optimization. Compared
with uniform lattice structures, non-uniform lattice structures make the designer realize more free
design. Through the design of non-uniform lattice structures, it can meet the needs of practical
application. For example, in the bio-medicine field, irregular lattice structures are similar to human
bone tissue, which is more suitable for the growth of bone tissue than regular lattice structures.
Therefore, scholars use Voronoi-tessellation method to design non-uniform lattice structures replacing
human bone tissue [184–187]. Consequently, it is an urgent need for clinical application to design
non-uniform lattice structures to replace diseased bones. By optimizing the distribution, shape,
and size of materials, the non-uniform lattice structures can reduce the material loss and processing
time, and reduce the cost. More importantly, the non-uniform lattice structures are more excellent in
performance. With the combination of Voronoi and additive manufacturing technology, fabricating
non-uniform lattice structures with different gradients are achieved [76,90,131,137,188–190]. In the
fourth part of this paper, the design and optimization of non-uniform lattice structures are mainly
discussed from two aspects: gradient method and structure optimization.

4.1. Non-Uniform Lattice Structures Based on Functional Gradient Design

Gradient structures are very common in nature, which have variable density and porosity, and can
combine a variety of unit cells with different topological structures. Compared with uniform lattice
structures, gradient structures show different mechanical properties. Various gradient properties can
be obtained to achieve different levels of functionalities and characteristics, by varying the design
parameters such as cell size, strut length, and strut diameter of the unit cells in lattice structures [73].
Additionally, Voronoi-tessellation is also one of the important methods to form gradient lattice
structures. Because Voronoi-tessellation is a method of space division, many points are distributed in a
specific Euclidean space. Using Voronoi-tessellation to design non-uniform lattice structure can realize
lightweight anisotropic lattice structure with gradient.

Wang [186] and team proposed a top-down design method based on Voronoi-tessellation,
which successfully obtained a special, multi-functional, gradient non-uniform lattice structure. Through
the quasi-static compression test, they showed that porosity and irregularity had huge influence on
the mechanical properties of materials. Figure 18 showed the gradient lattice structure formed by the
top-down Voronoi-tessellation method.
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Sienkiewicz et al. [190] investigated the mechanical response of gradient lattice structures
manufactured via SLM. They designed and manufactured gradient discrete lattice structure, gradient
increasing lattice structure, and gradient decreasing lattice structure respectively (as shown in Figure 19).
By comparing with regular lattice structure, they pointed out that the special mechanical behaviors of
lattice structures with gradient topologies made them attractive for energy absorption applications.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 20 of 35 

 

Figure 18. Gradient lattice structure generated by top-down Voronoi-tessellation method [186]. 

Sienkiewicz et al. [190] investigated the mechanical response of gradient lattice structures 
manufactured via SLM. They designed and manufactured gradient discrete lattice structure, gradient 
increasing lattice structure, and gradient decreasing lattice structure respectively (as shown in Figure 
19). By comparing with regular lattice structure, they pointed out that the special mechanical 
behaviors of lattice structures with gradient topologies made them attractive for energy absorption 
applications. 

   

(a) (b) (c) 

Figure 19. The gradient lattice structure topologies [190]: (a) gradient discrete; (b) gradient increasing; 
(c) gradient decreasing. 

4.2. Non-Uniform Lattice Structure Based on Structural Optimization 

The optimization method of non-uniform lattice structure usually includes two main steps: (1) 
defining an infrastructure in the design domain in advance; (2) optimizing single or multiple 
parameters of each unit cell according to the results of topology optimization, then the non-uniform 
lattice structure can be obtained. Structural optimization includes size optimization, shape 
optimization, and topology optimization [183]. By using the structure optimization method, a large 
number of scholars have optimized the lattice structure. Scholars optimize the strength of the lattice 
structures by imposing specific constraints such as stress, strain, or load on the lattice structures. Or 
the researchers optimize the size and shape of the unit cell structure, and obtain the lattice structures 
with specific performance by studying the elasticity, heat dissipation, and other properties of the 
lattice structures [191–205]. 
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(c) gradient decreasing.

4.2. Non-Uniform Lattice Structure Based on Structural Optimization

The optimization method of non-uniform lattice structure usually includes two main steps:
(1) defining an infrastructure in the design domain in advance; (2) optimizing single or multiple
parameters of each unit cell according to the results of topology optimization, then the non-uniform
lattice structure can be obtained. Structural optimization includes size optimization, shape optimization,
and topology optimization [183]. By using the structure optimization method, a large number of scholars
have optimized the lattice structure. Scholars optimize the strength of the lattice structures by imposing
specific constraints such as stress, strain, or load on the lattice structures. Or the researchers optimize
the size and shape of the unit cell structure, and obtain the lattice structures with specific performance
by studying the elasticity, heat dissipation, and other properties of the lattice structures [191–205].

For gradient design of non-uniform lattice structures, Han and Lu [27] proposed a novel method
of designing non-uniform lattice structure based on additive manufacturing technology, namely size
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gradient method (SGM). Different from the relative density method, Han et al. took the distribution
of unit cell structure of different size as the optimization objective. The specific way was to locate
the unit cells in the area with similar unit Young’s modulus, replacing the “relative density model”
of topology optimization with the distribution of cells of different sizes. Then, by using the young’s
modulus as the transfer medium instead of the “relative density,” the mechanical properties of the
lattice structure were closer to the topological optimization results. In addition, in order to ensure that
the design domain was completely covered by the unit cell, each cell size needed to be discretized
into several gradients, and all the size gradients should be integral times of the minimum gradient.
Figure 20 is a non-uniform lattice structure generated based on the SGM.
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Nguyen et al. [191] proposed a heuristic method of lattice structure size optimization, i.e.,
size matching and scaling (SMS) method. In this optimization method, the optimization process
was simplified into two variables, i.e., the maximum and minimum diameter of the connecting rod.
In this method, first, the stress distribution of the lattice structure with intermediate scale similar to
the stress distribution of the solid structure was observed, and then based on the local stress state,
the cell structure was selected from the predefined cell library to complete the pre-designed lattice cell
structure. Then, by optimizing the element of the support structure, the size of the lattice structure was
adjusted to support the stress state. However, the load constraints of the lattice structure prepared by
this method were limited, i.e., there was only one load. Figure 21 was the fuselage of the micro air
vehicle with high strength, high rigidity and light weight designed by SMS method.
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Toman and Zhang [205] proposed a topology optimization method of variable density non-uniform
lattice structure. This method mainly adopted three key technologies: homogenization, optimization,
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and construction (HOC). By introducing the constitutive law of homogenized material, the equivalent
continuous solid was used to represent the lattice structure. The constitutive law of homogenized
material was a function of the characteristic parameters of the lattice microstructure, such as the
relative density and the orientation of the lattice. The direct result was to get a continuous solid model,
whose geometry can be optimized quickly by using the continuous topology optimization theory.
Therefore, the optimized distribution of characteristic parameters (such as average density) of lattice
microstructure was obtained. Finally, mapping the obtained characteristic parameters of microstructure
to a single unit cell could construct a non-uniform lattice structure, as shown in Figure 22. The HOC
method avoided the topology optimization of the explicit lattice structure, but it could still maintain
the accuracy and reliability by establishing the appropriate micro-mechanical model.
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5. Summary and Overview

This paper reviews the lattice structures by retrieving a lot of appropriate literature. First, the lattice
structures are distinguished and compared with foams and honeycombs, and the definition and
classification of lattice structures are explained. Second, the properties of lattice structures are analyzed
in detail, and the wide applications of lattice structures are introduced. The primary work of this paper
is to review methods of designing and optimizing of uniform lattice structures and non-uniform lattice
structures. It is clear in the article that the outstanding properties of lattice structures are closely related
to the topology structures of unit cells. As for the design of lattice structures, it is mainly based on the
design of unit cells.

Through the review of lattice structure literature, some problems in the design of lattice structures
are found. If these problems are not solved in time, the development of lattice structures will be limited
as following:

(1) In the current researches of lattice structures, the design of cell topological shape is insufficient,
and most of the literature are still studying the existing cell structures. The performance of cell
structure is directly related to lattice structure, so it is necessary to design cell topology with
special performance. Leonardi et al. [206] made a preliminary exploration of the potentialities of
H-C and H-C+D lattice structures.

(2) In the topology optimization of lattice structures, most researcher are still focused on the strut’s
sizes. The single optimization is not conducive to the design of lattice structures. Only from the
point of view of optimizing struts, the lattice structures cannot meet the specific requirements.
Kazemi et al. [179] proposed the geometry projection method, to optimizing the multi-material
lattice structures. This is a new method to optimize lattice structure, which enriches the method
of lattice topology optimization.

However, as the applications of lattice structures are more and more extensive, the design methods
are more and more diverse. At present, the investigations of lattice structures are not limited to regular,
and irregular structures. The application of materials with uniform Poisson’s ratio and non-uniform
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Poisson’s ratio enriches the lattice structures. Moreover, the performance requirements of lattice
structures are different in various fields. In addition to lightweight, high strength, and other perfect
properties, lattice structures with multiple properties are the most popular material in the future.
It has become the basic requirements of the application field to develop lattice structures to meet
specific requirements. Additionally, the materials used in lattice structures are more and more diverse.
Metal materials, ceramic materials, rubber materials, composite materials and other materials are
widely used to design lattice structure.

In a word, lattice structures are hot materials in the future development of various industries.
Because of the outstanding performance and different characteristics, lattice structures will be widely
used in biological tissue engineering, aerospace, automation manufacturing, and other fields that need
lightweight and high-strength structure in the future. With the development of processing technology,
such as additive manufacturing technology, the processing methods of lattice structures have also
made a breakthrough. Additive manufacturing technology not only provides good opportunities for
researchers to design lattice structure, but also brings great challenges. Therefore, with the development
of multi-disciplinary interaction and based on the advantages of additive manufacturing technology,
the development trend of lattice structure is predicted in the following directions:

(1) Multi-material lattice structures. Because additive manufacturing technology adopts the
manufacturing method of material layer printing, different materials can be used to manufacture
lattice structure in order to meet the demand of using performance. For example, with the wide
application of composite materials, a variety of composite materials can be mixed for designing
lattice structures.

(2) Multi-structure lattice structures. At present, the research of Poisson’s ratio structure has changed
from uniform Poisson’s ratio to non-uniform Poisson’s ratio. From the former positive Poisson’s
ratio structure to the present negative Poisson’s ratio structure, the design and optimization of
multiple structures in lattice structures are bound to be the future research trend.

(3) Multi-method to design the lattice structures. With the development of CAD technology and
programming language, the design of lattice structures in the future will rely heavily on computer
technology to develop lattice structure databases with different topology of unit cells. At the same
time, equipped with detailed performance parameters using standards for various industries.

(4) Micro-scale lattice structures. Because of different design methods and fabricating methods
(such as additive manufacturing technology) of lattice structures, the scales of lattice structures
are divided into macro size (>0.5 mm), micro size (0.1 mm–5 mm), micro size (micron level:
100 nm–100 um; nano level: <100 nm) [74,207]. Micro-nano scale lattice structures can be realized
in the future, and will be a hot spot in research field.

In brief, lattice structures will become a kind of material with special properties, which combines
multi-material, multi-structure, multi-method, and micro-scale. In the future work, scientists should
establish a huge lattice structure database, which contains various forms of unit cell topology, and has
performance standards for researchers to choose.
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