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Abstract: Fluid simulation can be automatically interpolated by using data-driven fluid simulations
based on a space-time deformation. In this paper, we propose a novel data-driven fluid simulation
scheme with the L0 based optical flow deformation method by matching two fluid surfaces rather
than the L2 regularization. The L0 gradient smooth regularization can result in prominent structure
of the fluid in a sparsity-control manner, thus the misalignment of the deformation can be suppressed.
We adopt the objective function using an alternating minimization with a half-quadratic splitting
for solving the L0 based optical flow deformation model. Experiment results demonstrate that our
proposed method can generate more realistic fluid surface with the optimal space-time deformation
under the L0 gradient smooth constraint than the L2 one, and outperform the state-of-the-art methods
in terms of both objective and subjective quality.
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1. Introduction

Fluid simulations are increasingly important in computer graphics and have made an impact in
real-time games. The simulation algorithms typically include physics-based methods and data-driven
approaches. The physics-based fluid solvers [1–4] for working with the large amounts of simulation
data are challenging, as the simulation data is typically just passed on to a rendering stage and any
required change means re-starting a new simulation from scratch [5]. A category of data-driven fluid
simulations [6] interpolates between two existing fluid animations based on a space-time deformation.
Once the matches of two 4D shapes are computed, a user can freely choose any version in between the
two extremes efficiently, without starting a new simulation.

Matching two fluid surfaces means finding the corresponding points between the source surface
and the target surface, and this procedure needs to deform the source onto the target. To choose
the suitable overall match, the deformation should be regularized with some constraints. A novel
optical flow approach [5] is to register deforming space-time source surfaces and target surfaces for
the robust registration and blend the complex volumetric phenomena by minimizing energy function
with the L2 norm smoothness regularizer and the Tikhonov regularizer, which is inherently based on
closest distances in four-dimensional Euclidean space. The L2 norm based smoothness regularization
in [5] can be enforced on the gradient of the deformations to suppress the differences of the neighbors,
however, this method can not always require an ideal deformation for the large differences of the
source and target surfaces. An example of this is demonstrated in Figure 1, where the droplets of water
with different shapes are released at different positions. As the errors of the deformation run into the
registration procedure, the inaccurate matching caused by the sub-optimal deformation will create
ambiguous corresponding points between the surface of the pool and and that of the droplet, which
brings out the artifacts in the interpolated results.
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Figure 1. This image illustrates the blending result with the L2 based method [5]. While final output
retrieves large scale motions, the artifacts between the droplet and surface are noticeable.

We propose an L0 based optical flow deformation optimization framework to reduce the
undesirable artifacts by employing sparse smoothness constraint, and then to match the appropriate
points of each shape. Because some large differences between source and target shapes have non-zero
deformation gradient values while other regions keep zero, which indicates the sparse property, we
present a new measure via L0 norm as smoothness regularization constraint. The sparse gradient
counting measure can confine the number of deformation gradient changes, which allows large
gradient magnitude by nature. In addition, to retrieve the motion optimally, this sparse property
shows that different degrees of smoothness deformation priors should be introduced to different
regions. As a consequence, our proposed L0 based method can retrieve an optimal deformation to
yield better motion than the L2 based method [5] and avoid suffering from the error accumulation.

A preliminary version of this work appears in [7]. In this paper, we have made efforts to improve
our paper in terms of the approach, theoretical analysis, and performance evaluation. We add more
scenarios for evaluation and discuss the convergence, execution time, limitation of our proposed
method. We demonstrate that our proposed L0 based optical flow deformation method can robustly
and automatically match the surfaces of the fluid simulation data produced by semi-Lagrangian
advection method than the L2 ones [5,6]. Our proposed method with the sparsity measure can
outperform both the user guidance registration and the third data-point support in terms of accuracy
with small details and moderate correspondences. Our proposed method can generate more realistic
fluid surface with the optimal space-time deformation under the L0 gradient smooth constraint than the
L2 one, and outperform the state-of-the-art methods in terms of both objective and subjective quality.

The rest of this paper is organized as follows. Section 2 provides a brief survey of related work.
Section 3 introduces the background of the fluid flow and the optical flow solve. Section 4 presents
the proposed fluid simulation method with the L0 based optical flow deformation. In Section 5,
experiments are conducted for our proposed method in comparison with the state-of-the-art methods.
The conclusion is given in Section 6.

2. Related Work

In this section, we briefly introduce the related work about the fluid simulation method and the
motion reconstruction method with sparse constraints.

Fluid simulation has a long history in computer graphics research. One of the influential works
in this area is published in Foster and Metaxas [4], and the stable advection approach introduced
by [3] has made a significant progress of fluid simulation for visual effects. The FLIP method [8] which
combines the particle and the grid data, and the purely particle based SPH approach [9] have been
widely used in movie productions. Numerous extensions and improvements have been proposed,
e.g., to introduce small-scale turbulent details [10], or to address the problem emerged in reality from
fluid–air and fluid–solid interactions with the surface tension force and the adhesion force [11].

Several works have used guide behaviors to make liquid surfaces follow a desired shape or
motion [12,13]. Unlike this modification approaches on existing fluid simulation, the work-flow
that concentrates on align pre-computed space-time surfaces and interpolates between them for
intermediate motions is mainly based on non-rigid ICP algorithms [6], and optical flow solve [5].

The non-rigid ICP algorithm has been applied to reconstruct the temporally coherent dynamic
objects from data captured by the multi-view acquisition system [14] or the monocular depth



Appl. Sci. 2020, 10, 6351 3 of 15

camera [15]. This registration technique has also been applied to the tracking of changing topology
shapes such as liquid surfaces [16]. These method will run into the problem of local minima
that is associated with non-rigid ICP. Raveendran et al. [6] roughly prevents the problem with
user-guided correspondences.

Regular optical flow aims at recovering the motion of dynamic objects, especially for consecutive
frames. Up to now, the Horn–Schunck algorithm [17] is extended to estimate high quality flow
field. The connection between the optical flow and fluid flow are established for typical flow
visualizations [18]. The optical flow techniques have also been used to acquire the fluid velocities
based on physical priors [19]. Optical flow estimation commonly minimizes an energy function to
obtain an optimal result, where the smoothness regularization is incorporated as a convex regularizer.
The optical flow deformation approach [5] is essentially similar to the non-rigid iterative closest
point algorithm that incorporates user guidance [6] in term of the registration process. Likewise,
this optical flow deformation approach robustly recovers a match among the inputs based on local
smoothness constraints and obtains a deformation field to align the surfaces. The L2 based smoothness
regularization [5] may cause the error propagation and the accumulated errors. In this paper, we
utilize a specific sparse regularization as a constraint to improve the results.

In fact, sparse representation [20] has successfully applied in field of image processing [21],
computer vision [22], and graphics [15]. Especially, the sparsity priors have been utilized in the optical
flow estimation and motion reconstruction. For example, a new sparsity prior of the flow field in certain
domains is introduced to estimate dense flow fields, and a stronger additional sparsity constraint on
the flow gradients is incorporated into the model to cope the measurement noises [22]. While [23]
decomposes the motion field into sparse and non-sparse components to restrain the over-sparsity. In the
motion tracking [15], the L0 based motion regularizer is incorporated into the non-rigid deformation
to propose the L0-L2 non-rigid motion tracking method to efficiency stop the error propagation.

As we know, the points on the same surface part mostly share similar motion transformations,
thus, the gradient field of the deformation exhibits the sparse property. The straightforward solution
to exploit the sparsity is integrated the L0 norm regularization to the energy function. However,
the optimization problem with the L0 norm minimization is non-convex problem, which can not be
easily solved. In image smoothing problems [21], an L0 gradient minimization method is proposed
to solve the similar issue, where an alternating optimization strategy with half-quadratic splitting
is utilized. In this paper, we propose an L0 based optical flow deformation model and present an
effective approach by adopting a similar alternating optimization strategy with half quadratic splitting.
In addition, we conduct experiments on the fluid droplets and dam break scenarios to evaluate our
proposed method.

3. Background

For brevity, we will give a brief overview of fluid flow, and then introduce the previous method
of optical flow solve [5]. Throughout this paper we will use symbol (e.g., u) to denote continuous
value, and bold symbol (e.g., u) to denote the discrete counterpart. The symbol with subscript (e.g., φr)
is usually used to represent the derivative of the corresponding variable. Thus, a subscript will not
denote the component of a vector except for the special statement.

Fluid Flow. The fluid flow is governed by incompressible Navier–Stokes equations [24], and a
set of partial different equations that are supposed to hold throughout the fluid

∂v
∂t

+ v · ∇v = f − ∇P
ρ

+ γ∇2v and ∇ · v = 0 (1)

where v is used in fluid for the velocity of the fluid, ∂v
∂t is the commonly used material derivative w.r.t.

time t for advection, f is the external body forces(to make the fluid behave in some desired way),
the letter ρ stands for the fluid density, P is the force due to pressure that the fluid exerts on anything,
and γ is the “kinematic viscosity”.
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Following the description of [19], the observable concentration of a marker fluid is denoted
with φ and the advection of a scalar field φ based on a velocity field v can be expressed as
φt +∇ · (vφ)− γ∇2φ = s, where s is a source term, including internal and external sources. Assume
that the marker fluid and the ambient fluid have approximately the same mass density, the flow will
perform a pure advection when the negligible diffusivity (γ = 0), incompressibility (∇ · v = 0),
and s = 0, the standard form of advection is given by

φt + v · ∇φ = 0. (2)

Equation (2) is equivalent to the brightness-constancy constraint of optical flow as introduced by
Horn and Schunck algorithm [17].

Optical Flow solve. The work of [5] uses the L2 norm based optical flow solve to perform a
registration step. In this setting, two animations from different simulation setups are taken as the
inputs: a source and a target. Each animation is a sequence of surfaces over time, where the surfaces
can be concatenated as time slices of a 4D volume. The registration mainly transforms source to further
fit it into target through deformations u.

A flow simulations can be represented by 4D signed-distance values φ, and the parameter r is
an external control knob to modify the simulation from source to target. The regular optical flow
usually recovers the motion of dynamic object from two images taken at different times. Thuerey [5]
instead uses optical flow to recover the motion among surfaces of different simulations. The algorithm
employs the brightness-constancy assumption to recover the flow with motion discontinuities. Please
refer to [5] for further details.

Applying the optical flow alone is underdetermined because of the non-linearity, so that various
additional constraints or priors are imposed to regularize the problem. The Tikhonov regularizer term
restricts the deformation to be as small as possible. Esmooth defines a L2 regularizer which smoothes
the consistent motions along spatial as well as temporal dimensions. Given the optical flow constraint
and some common regularizers, the estimation of deformation field u is achieved by minimizing the
following energy

min
u

Edata(u) + βTETikhonov(u) + βSEsmooth(u) (3)

where βS and βT are the weights directly controlling the importance of each energy term. The energy
to be minimized in a least-squares sense is given by

Etotal(u) =
1
2

∫
Ω
|φr + u · ∇φ|2 + βT |u|2 + βS ∑

m
|∇um|2 dΩ (4)

where the data derivative φr corresponds to the time derivation φt for optical flow applications.
The deformation vector u of (4) is devoted to move a points to its corresponding position from the
source to the target, and is calculated over four dimensions (m = 4). The spatial gradient ∇φ is
computed with the target surface.

The minimization of Etotal is performed by an hierarchical scheme. The hierarchical procedure
is used to recursively re-sample and deform the simulation data on coarser resolutions. The first
deformation u1 calculated by optical flow deformation model transforms source inputs closer to target
inputs. Then another solve is performed for the remaining difference, yielding the second deformation
u2. The deformation is continually refined with residual iterations until the refinement does not yield
gains in quality anymore. We exactly follow [5] to align multiple consecutive Eulerian deformations so
that they can be merged into a single, smooth linear deformation from the source to the target.

4. Method

The 4D registrations and interpolation pipeline were processed automatically as illustrated in
Figure 2. The optical flow solve computed a dense field of four-component deformation vectors u,
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which mapped points of input A onto input B. The residual optical flow was performed until the
refinement did not yield gains in quality. Then the deformation sequences from each iteration were
aligned into a single deformation field. It was observed that the source surface should ideally deform
to end up on the target surface. Based on this goal, the projection step [16] was adopted to retrieve the
fine details at the surface that prevented by regularization. It is notable that the projection only gave
good results when a suitable overall match was obtained by optical flow step. After deformations were
calculated, the interpolation step [5] was further utilized to produce intermediate surface animations.
Given two input sequences ψ1, ψ2 with deformations u1→2 and u2→1, the linear interpolation could
significantly generate the final quality.

Figure 2. The pipeline of the registration and interpolation scheme. The inputs animation show two
crown splashes. Our proposed L0 based optimization is applied into the optical flow solve.

4.1. L0 Based Optical Flow Deformation

The goal of optical flow in this work is to compute deformations and to recover the discontinuous
fluid motions. In the following, a sparsity constraint on the deformation gradients is incorporated into
the optical flow estimation model to reduce the undesirable errors.

The L2 based optical flow solve [5] for the certain inputs produced by semi-Lagrangian advection
algorithm cannot robustly and accurately match surfaces in the nearest-neighbor fashion. Especially in
the inputs with little similarities because of the surface flickering, the deformations will try to match
pieces in proximity but not necessarily the whole target shape. We propose an L0 based deformation
regularizer over the existing optical flow solve to implicitly define the appropriate correspondences
and to prevent motion changes on other regions.

Specifically, the deformation is denoted by u to transform the source surface closer into the target
surface. We formulate the L0 based deformation by minimizing the following energy function

min
u

Edata(u) + βTETikhonov(u) + βSE
′
smooth(u) (5)

where a new smoothness regularizer E
′
smooth is introduced to the general optical flow solve to replace

the L2 norm smoothness term. E
′
smooth measures the deformation differences between all pairs of

neighboring points, and is given by
E
′
smooth = S(u) (6)

S(u) = #
{

p
∣∣|∂xup|+ |∂yup|+ |∂zup|+ |∂tup| 6= 0

}
(7)

where S(u) is the L0 norm for the deformation gradient ∇u. The gradient ∇up =

{∂xup, ∂yup, ∂zup, ∂tup} for each point p of the deformation field is calculated based on the two
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4D SDFs between neighboring points in space and time. The gradient magnitude |∂up| is defined
as the sum of gradient magnitudes over four dimensions. Our smoothness constraint with L0 norm
regularization is used to control the number of non-zero gradients globally and present the sparsity of
deformation gradients.

We estimated the optimized deformation by minimizing the energy function

min
u

{
∑
p
|ψp

r +∇ψp · up|2 + βT |up|2 + βSS(u)

}
(8)

The E
′
smooth term of L0 norm regularizer in (5) is a non-convex problem. Due to the

computationally intractability of the L0 norm, the half-quadratic splitting strategy utilized in image
smoothing achieves a high qualitative effect [21]. Inspired by the strategy described in [21], we split the
objective function (8) into two sub-problems by introducing auxiliary variables into the energy function.
We argue that this method found appropriate matches and retrieved the surface motions robustly.

4.2. Solver

We introduced an auxiliary variable vp, corresponding to ∇up, and reformulated the energy
function as

min
u,v

{
∑
p
|ψp

r +∇ψp · up|2 + βT |up|2 + βSS(v) + βA|∇up − vp|2
}

(9)

where S(v) = #
{

p
∣∣|∂xvp|+ |∂yvp|+ |∂zvp|+ |∂tvp| 6= 0

}
, and βA is an automatically adapting

parameter to control the similarity between the gradients ∇up and their corresponding variables
vp. To solve this problem, we alternatively fix variables up to solve vp and fix variables vp to solve up

in each iteration.

4.2.1. Minimizing v

The terms not involving vp in (9) are removed to estimate vp

min
v

{
∑
p
|∇up − vp|2 + βS

βA
S(v)

}
(10)

As ∇up is pre-fixed, (10) has a close form solution

vp =

{
(0, 0, 0, 0), (∂xup)2 +

(
∂yup)2

+ (∂zup)2 + (∂tup)2 ≤ βS
βA(

∂xup, ∂yup, ∂zup, ∂tup), otherwise
(11)

4.2.2. Minimizing u

As vp is pre-fixed, the up estimation can be represented in a quadratic function

min
u

E(u) = min
u

{
∑
p
|ψp

r +∇ψp · up|2 + βT |up|2 + βA|∇up − vp|2
}

(12)

(12) formulates a L2 based minimization. The solution is similar to the method of L2 based optical
flow [5]. Setting the gradient of E(u) to be zero gives a closed solution for (12), which can be expressed
as a linear equation

([∇ψ]T [∇ψ] + βTE + βA L) · u = βAv− [∇ψ]T ψr (13)
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The ψr was computed with ψ1 − ψ2, where the source and target inputs are denoted by ψ1
and ψ2 respectively. The spatial gradient ∇ψ is denoted with the target surface. L denotes the
discrete Laplacian.

The optical flow based on L0 regularizer is summarized in Algorithm 1. Initially, the algorithm
was performed with two SDF inputs ψ and a zero deformation field u = 0. The function deform(ψ, u, α)

applied the deformation u to input ψ with weight α ∈ [0...1]. A single, smooth linear deformation from
source to target was required rather than deformation sequences produced by the iteration runtime.
We followed [5] to align multiple deformations with the alignVelocity(u) function.

The reliable error metric [5] was adopted to quantitatively evaluate whether the current optical
flow solve led to an improvement. More emphasis was put on the surface region rather than the
volume itself. Given two inputs ψ1 and ψ2(which we define them in a discrete setting), the error metric
becomes

error(ψ1, ψ2) = ∑
x

h(ψ1(x), ψ2(x))V (14)

where V is the volume of a cell. The indicator function h detecting misalignment surfaces is defined as

h(s1, s2) =

{
0, i f sgn(s1) = sgn(s2)

min(1, |s1−s2|
∆x ), otherwise

(15)

where s1 and s2 represent two input SDFs ψ1 and ψ2.

Algorithm 1 Optical flow based on L0 regularizer
Input: inputs ψ1 and ψ2, u, smoothing weight βS, parameters

1 βT , βA, α, κ

Output: Optimized u
2 Initialization : βA ← 2βS, u(0) ← 0, v(0) ← ∇u(0)

3 for i = 1 : max do
4 ψ

′
1 = de f orm(ψ1, u(i−1), α);

5 v(i) ← minv(βS, βA, u(i−1))

6 utmp(i) ← minu(ψ
′
1, ψ2, v(i), βT , βA)

7 begin
8 utmp = u(i−1) + alignVelocity(utmp(i));
9 if error(de f orm(ψ1, u(i), α), ψ2) ≥ error(de f orm(ψ1, utmp, α), ψ2) then

10 u(i) = utmp;
11 βA = κ · βA

12 else
13 break;
14 end
15 end
16 end

In our proposed method, we also utilized the commonly used hierarchical procedure to recursively
re-sample and deform the data on coarser resolutions. The deformation was continually refined with
residual iterations until the refinement did not yield gains in quality anymore, e.g., the ratio of the
error of two consecutive iterations was greater than a given threshold for each resolution.

5. Experimental Results

We conducted the experiments on the fluid simulation of both the flying droplets and dam break
scenarios. The standard fluid simulation, surface matching process and the interpolation step were
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run on the extensible fluid simulation framework, called mantaflow [25]. The fluid surface sequences
of both the source and target inputs were generated by running the standard fluid simulation. When
the deformations were calculated, new fluid animations could be produced in the interpolation weight
range from 0 to 1. We utilized our proposed L0 based fluid simulation method and the state-of-the-art
method [5] to calculate the deformation and further generate the interpolation results as the outputs,
respectively. The interpolation step yielded a smooth transition between source inputs and target
inputs, and generated new outputs along a range of input positions. In the following, we compare our
L0 based refinement results with those of the state-of-the-art [5] to demonstrate the accuracy of our
proposed method.

5.1. Convergence Analysis

We took the flying droplets as an example to study the convergence property of our proposed
L0 based optical flow solve method in Figure 3. The error metric error in [5] was computed between
the target SDFs and the deformed one at different iterations. We observe that the errors descended
with the increase of iterations so that our proposed algorithm was convergent. In order to speed up
the convergence, we monotonically increased βA by multiplying the parameter κ = 2. In addition,
Figure 3 shows the influence of the error curves with different parameters κ. We let the parameter κ

varying from 1.2 to 2. From the convergence curve, we can observe that the best performance was
generally achieved at κ = 2. Thus, in our experiments with a resolution of 644, we set βA to be 1E− 3
in the first iteration and increase it by multiplying parameter κ = 2 after each iteration when error
was reduced.

Figure 3. The convergence analysis of flying dr oplets with variable parameter κ. X label means
iteration number, Y label means the error metric error.

5.2. Deformation Results

We evaluate the quality of the deformation through the visual quality of the interpolated results,
where the uni-directional nearest-neighbor interpolation is used, such as the deformation direction
from ψ1 to ψ2.

We consider two flying droplets with different initial shapes and different positions. They drop
in the pool at different times to create different water ripples. We try to deform the source one to
the target one by our proposed fluid simulation method and state-of-the-art method [5] respectively,
with the interpolation weight as 1. Figure 4 shows the interpolated results of the L2 based and the
L0 based deformation methods respectively. In order to easily observe, the sectional view images
at a fixed frame are shown along with the interpolated results. We can observe that our results are
closer to the target input ψ2 and with less artifacts than those of the L2 based method. In addition,
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the interpolated results of these two different methods with the deformation from the input ψ2 to
the input ψ1 are shown in Figure 5. The L2 based deformation method may create some ambiguous
correspondences between the input ψ1 to the input ψ2, and the undesired ripples appear at the surface
due to the suboptimal matching. Our proposed method can alleviate the artificial motions brought by
the L2 based method effectively.

Three examples of interpolated results at different frames for flying droplets are demonstrated
in Figure 6, where the droplets were falling into the pool and causing the varying splashes. Figure 7
demonstrates the interpolation results of the droplets falling into the pool and the varying splashes.
We observe that our interpolated results could preserve the large-scale structures and recover the
small-scale details. Our L0 based method could reduce the artificial motions brought by the L2 based
method, which demonstrates that our L0 based method could calculate moderate correspondences
and a good deformation field and could further reduce the undesired errors of complex surfaces of
the liquid.

We take the dam break as an example to demonstrate the accuracy of our optimization method.
In this set of animations, a block of water was released at one side of a pool, and this formed a wave that
swept the pool. As shown in Figure 8, we produced fluid animations for two different widths for this
block of water. The interpolated results were generated with the interpolation weight as 1 to compare
the generated surfaces with the target surfaces visually. We compared the results of our proposed L0

based method with those of [5]. As shown in the right columns of Figure 8, the L2 based method caused
the undesired ripples at the surface, and the L0 optimization method captured the accurate motions
of the waves. Therefore, the surface of our results based on the L0 regularization was closer to the
target one than that based on the L2 optimization. Figure 9 shows the whole range of the interpolation
results of dam break deformed from ψ1 to ψ2 with different interpolation weights. The inputs had
inconsistent behaviors in this static frame. Compared with the L2 based regularizer which restricted
the deformation locally across the surface region, the L0 based regularizer effectively recovered the
small-scale details. The animation simulation of all cases by using the L2 based method [5] and our L0

methods can be found in the supplemental video. The accompanying video shows a direct comparison
to illustrate the difference between the results of [5] and our method.

Figure 4. The visual quality comparison of flying droplets via different deformation methods based on
L2 and L0 smooth regularization. Left: the source input ψ1. Middle: the results of L2 based method [5]
and L0 based method, and the sectional view images correspond to the results. Right: the target
input ψ2.
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Figure 5. The results of flying droplets with the deformation from source to the target. Left: the
source input ψ2 and the target inputs ψ1 are as the input. Right: the interpolated results of [5] and our
proposed L0 based deformation method, respectively.

Figure 6. A visual comparison between the L2 based optical flow deformation, and our proposed L0

based optimization method. From top to bottom: the source fluid, the interpolated fluid results with
deformation solved by the L2 based method [5] as well as our L0 based optimization method, and the
target fluid respectively. The figure shows two drops falling into a pool, which causes the crown splash.

Figure 7. Some static frames of droplets falling into the pool. The target motions of the fluid animation
are shown as the input ψ1. The top and bottom rows show the results of [5] and our L0 based
method, respectively.
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Figure 8. A comparison of the L2 based optical flow against our L0 based optimization output for the
dam break scenario. Left: the input ψ1 and ψ2. Middle: the interpolated results generated by using the
L2 based method with two different directional deformations including ψ1 → ψ2 and ψ2 → ψ1 with
the interpolation weight 1, respectively. Right: the corresponding interpolated results by using the L0

based method.

Figure 9. The range of interpolation for the dambreak setup of inputs at a fixed point in time.
The numbers on bottom of each image indicate the interpolation weights. Direction of the deformation
is employed from ψ1 to ψ2.

5.3. Evaluation

The error metric mentioned in Section 4.2 could quantitatively and significantly detect the
differences between the deformed surface and the target surface. We utilized the error metric (14) to
calculate the errors between the target surfaces and the generated surfaces which were deformed with
the L2 based and the L0 based deformation methods respectively. The error values can be found in
Table 1, which includes two aforementioned scenarios (droplet, dam break). We show the results with
the deformation direction from ψ1 to ψ2 and the inverse one. We can observe that our proposed L0

based fluid simulation method could obtain less errors than the L2 based method [5], and generate the
desired correspondences.

Table 1. Errors between the deformed surface and the target surface.

Fluid Directions Initial The Error after Deformation

Example Error L2 L0

Flying ψ1 → ψ2 4.1207 1.1113 0.9440

Droplets ψ2 → ψ1 3.9823 1.9747 1.8369

Dam Break ψ1 → ψ2 4.0991 0.6768 0.6082

ψ2 → ψ1 5.0944 1.5366 1.3622
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Our experiments used data-sets with a resolution of 64× 64× 64× 64. We utilized the commonly
used hierarchical procedure to recursively re-sample and deform the data on coarser resolutions,
including the resolutions of 16 × 16 × 16 × 16, 32 × 32 × 32 × 32, and 64 × 64 × 64 × 64, denoted by
164, 324, and 644, respectively. The changes of resolution were very useful to reduce the inaccuracies
of the optical flow solve. Table 2 lists the error between the deformed surface and the target surface,
the factor (the ratio of the error of this iteration to that of last iteration), and the time to calculate the
deformation during each iteration. In our experiment, we stopped the iterations when the factors for
the resolution of 164, 324, and 644 were greater than 70%, 95%, and 95%, respectively. Particularly
for the resolution of 164, the iterations stopping criterion should exceed three times. Note that the
deformation was not refined if the gains in quality could not be yielded anymore. Thus, we did not
use the deformation obtained by the last iteration. From the Table 2, we can see the execution time of
the deformation by our L0 based optical flow method with the half quadratic splitting approach was
less than that of the L2 based optical flow method.

Table 2. Errors and timings for the registration step performed with two constraint methods.

Resolution Iteration L0 Based L2 Based

Error Factor Time Error Factor Time

16 × 16 × 16 × 16

0 4.1207 69.37% 0.073 s 4.1207 69.37% 0.076 s

1 3.0787 74.71% 0.084 s 3.1301 75.96% 0.077 s

2 1.9302 62.69% 0.067 s 2.0283 64.8% 0.073 s

3 1.3648 70.71% 0.068 s 1.5698 77.39% 0.097 s

32 × 32 × 32 × 32

0 1.9837 62.98% 3.793 s 1.8924 68.36% 3.78 s

1 1.3720 69.16% 3.436 s 1.4362 75.89% 4.434 s

2 0.8306 60.54% 2.829 s 0.8947 62.29% 4.486 s

3 0.6313 76.01% 2.979 s 0.7171 70.15% 4.484 s

4 0.5498 87.09% 3.199 s 0.6488 90.47% 4.257 s

5 0.5479 99.67% 3.236 s 0.6601 101.7% 4.331 s

64 × 64 × 64 × 64 0 0.9440 69.54% 81.41 s 1.1113 77.72% 87.496 s

1 1.0097 106.9% 75.616 s 1.1269 105.7% 91.247 s

total time - - 176.79 s - - 204.838 s

5.4. Limitation

We take an example to illustrate in which case the interpolation method yielded undesirable
results. Figure 10 shows the interpolation results of the water hitting different obstacles. The obstacle
in the pool led to different liquid motions for the splash near the obstacle. The surface of both
the L0 and the L2 based interpolation results demonstrate that part of the water was pushed into
the obstacle. Even though the L0 based result outperformed the L2 based result, both them were
undesirable results. Because the large differences of the source and the target surface had difficulty
finding the corresponding points between the source and target surface, the inaccuracy deformation
calculation led to incorrect matching and further resulted in undesirable results and artifacts. Through
our experiments, we observed that either the L0 or the L2 based interpolation method failed when
the fluid had relatively complex structures and large differences between the source and the target.
Therefore, there is still room to improve the fluid simulation approach.
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Figure 10. A failure case to yield undesirable interpolation results. Two inputs of water wave are
released to hit obstacles with different shapes.

6. Conclusions

In this paper, we proposed a L0-norm based deformation for fluid simulation to obtain a good
alignment of two inputs. The main contribution of our work is a L0-norm optimization approach to
align fluid simulation with changing topologies. The L0 based optical flow takes advantage of the
sparsity property of the fluid motion of neighboring frames to constrain the deformation. Moreover,
we propose a novel effective approach to solve the L0-based optimization problem by making use
of L0 gradient minimization, which can globally control the non-zero gradients to approximate
the deformation in a sparsity-control manner. Experimental results demonstrate that our method
outperforms the state-of-the-art L2 based optical flow [5] and accurately recovers motions between the
space-time surfaces of different simulations.

There are two different applications of the interpolation method. The time step of the input
data influences the continuity of the animations visually. We can make use of our proposed fluid
simulation scheme to produce a highly continuous behavior for arbitrary neighboring sequences with
a similar topology. Alternatively, we can utilize different scenarios to interpolate new fluid animations
frame-by-frame. Our proposed approach is a data-driven optical flow solve, however, the underlying
physics is ignored. In the future, we will incorporate with other physical optimization of the surface
motions, such as the constraints for mass conservation.
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