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Featured Application: This research can be mainly used in the aircraft model support mechanism
in the supersonic wind tunnel. In addition, it provides a reference for investigating the stiffness
characteristics of hybrid and parallel machine tools.

Abstract: The hybrid aircraft model support mechanism is subjected to six directional forces in the
experiment, and high spatial stiffness requirement of the parallel part is the guarantee for the stability
of the aircraft model. The purpose of this paper is to obtain a planar parallel part with relatively
good spatial stiffness and to explore the influence of components on the stiffness characteristics.
We employed screw theory and virtual work principle to establish the spatial stiffness model of two
possible parallel parts for the support mechanism. The stiffness characteristics of the two parallel
mechanisms were evaluated by a desired trajectory sub-workspace deformation distribution and two
novel stiffness indexes. According to deformation distributions of the sub-workspace, the deformation
of typeI is smaller than that of type II. The proposed indexes indicate that the influence of the hydraulic
cylinder range on the stiffness of type II is more significant; RVR of ASI is 263.5%, RVR of CSI is 18.1%.
These reveal type I has better spatial stiffness than type II. The reason is that the guideway of type I
provides a part of the ability to resist external forces.

Keywords: spatial stiffness; planar parallel mechanism; stiffness index; screw theory; model support
mechanism; active stiffness; constraint stiffness

1. Introduction

The model support mechanism works under a complex load environment in the wind tunnel,
and stiffness is a vital index to guarantee the stability of the model during experiments [1,2]. Among the
existing model support technologies, cable and magnetic suspension can solve the airflow interference
problem. However, fundamentally difficult problems, such as precise control and high cost of technology,
are encountered [3–6]. Mechanical support technology has been the research hotspot in recent years;
nonetheless, the lack of flexibility and avoiding singularity are essential risks for the parallel support
mechanism [7–9]. Airflow interference and large moment of inertia are factors that restrict the extensive
development of the serial support mechanism [10,11]. Thus, the hybrid mechanism can avoid the
shortcomings of both factors effectively. Geng proposed a five-degrees-of-freedom (DoF) hybrid model
support mechanism [12]. However, it was only used in a low-speed wind tunnel, and the precision and
stability of the test could not be ensured when it worked in the supersonic wind tunnel. A cost-effective
and reliable technique is demanded to propose a hybrid support mechanism that is composed of a
parallel part and serial part, as shown in Figure 1.
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Figure 1. Aircraft model support system in the wind tunnel.

The parallel part of the support mechanism can realize three independent motions (two translations
in axes X,Y and one rotation about axis Z-yaw) in the X-Y plane. We set a 3-DoF planar mechanism with
actuation redundancy to improve the stiffness and enlarge the workspace. The serial part of the support
mechanism has the ability of two additional rotational movements (pitch and roll), which ensures the
flexibility of the model.

The aircraft model can produce six directions of deformation during the experiment because of the
complexity of the aerodynamic load. The stiffness of the planar parallel part determines the stability
and accuracy of the whole support mechanism. The research in this article was primarily motivated by
the need to make the parallel part have appreciable spatial stiffness characteristics. Therefore, further
investigation is necessary to explore the approach of calculation and evaluation for stiffness of the
planar parallel mechanism.

The stiffness of the 3-DoF planar mechanism has been investigated meticulously in the past
decades. Generally, most researchers obtained a 3 × 3 stiffness matrix from the kinematic Jacobian,
and they used stiffness as an optimal design index [13–16]. However, the end-effector needs to resist
the deformation in six directions (X, Y, Z, pitch, yaw, and roll). Most researchers focused on the active
stiffness in the plane movement without considering the constraint stiffness. Wu analyzed the spatial
stiffness of a 3-PPR (P stands for a prismatic joint and R denotes a rotation joint) planar mechanism by
using the eigen-screw decomposition to explore the effect of actuators of nonlinear stiffness on the
mobile platform (MP) [17].The stiffness model was established by virtual spring, which was not suitable
for analyzing the influence of the parameters of planar mechanism on the active and constraint stiffness.

Among the existing methods of stiffness analysis of parallel mechanisms, finite element analysis is
the most accurate and adaptable method for analyzing stiffness parallel mechanisms [18,19]. However,
it has limitations in building the relationship between the stiffness model and the geometric dimension
of the end-effector. In addition, it needs to re-mesh when the geometry of the end-effector changes.
The structural matrix approach is mostly based on the kineto-elasto dynamic method, which uses
substructure assembly to condense the stiffness matrix of the components (beam, shell, and entity)
into the assembly stiffness matrix. Nevertheless, this method is relatively complex, as exhibited in the
high dimensionality of the matrix that is suitable for the calculation of the stiffness of spatial parallel
mechanisms [20–23].The principle of the strain energy approach is to establish the function relationship
between force and displacement based on strain energy and Castigliano’s second theorem [24–27].
Notwithstanding, the applied wrench analysis of over-constrained parallel mechanisms involves the
statically indeterminate problem, whose solution requires first stiffness models.
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The Jacobian matrix of the mechanism is integrated by utilizing screw theory, which is widely used
for the stiffness analysis of parallel mechanisms at present [28–32]. Moreover, a 6 × 6 stiffness matrix is
established while considering the constraint stiffness. This method can separate active stiffness from
constraint stiffness so that the overall Jacobian can provide a more intuitive parameter relationship for
the stiffness optimization.

Regardless of what method is used to calculate the stiffness of a mechanism, a stiffness matrix will
always be obtained. In the design stage, the stiffness matrix should be refined into a stiffness index to
evaluate the stiffness performance of the mechanism quantitatively; this approach provides an intuitive
reference for the optimal design of the mechanism. The application of the eigenvalues of the stiffness
matrix [33–35] and stiffness ellipsoid [36,37] is the most common method for evaluating stiffness
performance, which reflects the isotropy of the mechanism. However, this approach has less effect on
assessing the stiffness characteristic of an asymmetric planar mechanism. The elastic behavior of the
mechanism can provide a physical interpretation by using the eigen-screw decomposition [29,38,39].
However, the fully coupled mechanism does not have an elastic center. Some researchers evaluated
the deformation under unit torque or unit force through the principle of virtual work and strain
energy theory [26–28]. Nevertheless, the index is changed with varying external loads. The linear and
angular stiffness are separated from a stiffness matrix to evaluate the explicit physical significance
of stiffness [40,41]. Notably, the variation of a component parameter may affect linear and angular
stiffness, and only some given directional stiffness changes. For instance, the parallel planar part
has movable ability in X, Y, and yaw directions, but it lacks the movable ability in Z, roll, and pitch
directions. We define X, Y, and yaw as movable directions and Z, roll, and pitch as non-movable
directions. Therefore, it is reasonable to expect that some of the component parameters may only
affect movable (active) stiffness or non-movable (constant) stiffness, or both of them. The existing
stiffness indexes have mainly indicated the isotropy of mechanism configuration or the ability to resist
comprehensive deformations. However, revealing the influence of component parameters on the
specific directional stiffness performance is challenging.

This study aims to achieve a considerable spatial stiffness of the 3-DoF parallel part of the support
mechanism. Furthermore, exploring the influence of a component parameter on the active and
constraint stiffness is purposeful for optimizing the structure.

The main contributions of this study are summarized as follows:

(1) Two types of 3-DoF planar parallel parts for a model support mechanism are proposed and the
stiffness models are established while considering constraint stiffness.

(2) Two novel stiffness indexes are proposed to conduct a quantitative evaluation of comprehensive
stiffness characteristics in the movable and non-movable directions.

(3) The effects of the variation of the actuator parameter on stiffness characteristics are investigated
on the basis of the proposed indexes.

The research steps are presented as follows. In Section 1, the types of parallel part are discussed
in the light of driving joint, and two possible types are obtained as the following research objects.
In Section 2, the overall Jacobian matrix of the two types of driving chains is constructed according to
screw theory. In Section 3, the stiffness model is calculated by deformation superposition principle
of the components relying on overall Jacobian. In Section 4, the inverse kinematics and reachable
workspaces of the two types of mechanism are established according to the geometric relations.
In Section 5, the spatial stiffness matrix is achieved through static analysis and integration with overall
Jacobian while considering the influence of gravity. In Section 6, the deformation distributions of
two parallel mechanisms that follow a desired trajectory are accessed, and the influence of the range
of hydraulic cylinder on active stiffness and constant stiffness is evaluated in light of the proposed
indexes. In Section 7, the discussion is presented.
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2. Discussion on the Types of Parallel Part

Analyzing the types of planar parallel part is a basic and essential procedure to obtain high
stiffness for the support mechanism. Ensuring that at least three kinematic chains must have three DoFs
and each kinematic chain must have an independent drive is a prerequisite. The planar kinematic joint
includes a prismatic joint and a rotation joint. Thus, the types of driving chain can be expressed as RRR,
PRR, RPR, PPR, PRP, RPP, and RRP without considering the suitable constraints. To increase stiffness
and dexterity, the configurations are designed as redundantly actuated mechanisms. According to the
types of driving chain, the parallel planar part can be composed as Figure 2 shows.

Figure 2. Types of 3-DoF planar parallel part. (a) 4-RRR planar parallel part; (b) 4-PRR planar parallel
part; (c) 4-RPR planar parallel part; (d) 4-PPR planar parallel part; (e) 4-PRP planar parallel part;
(f) 4-RPP planar parallel part; (g) 4-RRP planar parallel part.

Given that the joint motion must be independent, the PPP type should be omitted. When exchanging
the MP and fixed base of RRP, PRR, RPP, and PPR, an equivalent sequence should be considered.
The requirement of large motion and high stiffness in the Y-direction should be considered. Thus,
we select the P joint as the driving joint. Evidently, the RRR type should be omitted. The performance
criterion must be considered while selecting the driving joint:

(a) The driving joints must be distributed on each branch as evenly as possible.
(b) The driving joints must be set on or near the fixed base and they must be prioritized.
(c) The existence of a non-driving P joint should be avoided.

The criteria (a) and (b) are considered to reduce the moving mass and moment of inertia and to
improve the dynamic performance of the mechanism. The driving joint setting on the MP should
be avoided, and the RRP type may be omitted. In engineering, accuracy cannot be guaranteed
when setting the non-driving of the P joint, and unless the noble guideway is used, the PPR, PRP,
and RPP types can be omitted. On the basis of the aforementioned discussion, the PRR and RPR types
are retained.

To further select the appropriate configuration for the parallel part with high stiffness, more
attention must be paid to the remainder of the article to compare the two kinds of branch chain in
terms of spatial stiffness.
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3. Overall Jacobian Matrix

By using the closed vector method, achieving the spatial stiffness of a planar parallel mechanism
is no longer satisfied. In this section, screw theory is used to calculate the overall Jacobian of the
mechanism by analyzing the form of the active and constraint screws of each driving chain, which is
the foundation of building the spatial stiffness model. We can obtain the joint instantaneous screws
according to geometric relation of driving chains as shown in Figure 3.

Figure 3. Two types of driving chain. (a) PRR-type driving chain; (b) RPR-type driving chain.

The instantaneous velocity of MP can be represented as
^
Sp =

[
vT ωT

]T
; v andω indicate the

vector of translational velocity and vector of rotational velocity, respectively; the instantaneous screw
of the MP can be represented through three linear un-correlation joint instantaneous screws.

Ŝp =
.
d1i$̂ta,1,i +

.
θ2i$̂ta,2,i +

.
θ3i$̂3,ta,i, (1)

where $̂ta,k,i denotes the kth joint instantaneous screw of the ith limb, k = 1−3, i indicates the driving
chain number,

.
θki is the kth joint instantaneous rotational velocity of the ith limb,

.
dki represents the kth

joint instantaneous translational velocity of the ith limb, $̂ta is expressed in the Plücker ray coordinate,

$̂
1

is the screw of each joint for PRR-type driving chain, $̂
2

is the screw of each joint for RPR-type
driving chain, 0 represents a 3 × 1 zero vector, s1,i is a unit vector along the P joint, qi is a unit vector
along the

−→
BC, L0,i is the length of BC, s2,i and s3,i are the unit vectors along the axis of R joints, bi is the

vector along
−→
PB, “×” denotes cross-product.

$̂
1
ta,1,i =

(
s1,i
0

)
, $̂

1
ta,2,i =

(
(bi + qiL0,i) × s2,i

s2,i

)
, $̂

1
ta,3,i =

(
bi × s3,i

s3,i

)
, (2)

$̂
2
ta,1,i =

(
(bi + qiL0,i) × s2,i

s2,i

)
, $̂

2
ta,2,i =

(
qi
0

)
, $̂

2
ta,3,i =

(
bi × s3,i

s3,i

)
, (3)

where $̂wc,k,i denotes the kth reciprocal basis screw of the ith limb; n is a unit vector perpendicular

to the P joint; the physical significance of $̂
1
wc,1,i and $̂

1
wc,2,i are constraint wrench around n and s1,i,

respectively; and $̂
1
wc,3,i represents the constraint force along s3,i.

$̂
1
wc,1,i =

(
0
ni

)
, $̂

1
wc,2,i =

(
0

s1,i

)
, $̂

1
wc,3,i =

(
s3,i

bi × s3,i

)
. (4)

The physical significance of $̂
2
wc,1,i and $̂

2
wc,2,i are the constraint wrench around mi and qi,

mi = qi × s1,i, and $̂
2
wc,3,i represents the constraint force along s3,i.
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$̂
2
wc,1,i =

(
0

mi

)
, $̂

2
wc,2,i =

(
0
qi

)
, $̂

2
wc,3,i =

(
s3,i

bi × s3,i

)
. (5)

The dot product of Formulas (1)–(3) can be represented as follows:

$̂
T
wc,k,iŜp = 0. (6)

Reorganized matrix form is given as follows:

JcŜp = 0, (7)

where, J1
c and J2

c are the constraint sub-matrixes of overall Jacobian.

J1
c =



0 nT
1

0 sT
1,1

sT
2,1 [bi × s3,1]

T

...
0 nT

i
0 sT

1,i
sT

2,i [bi × s3,i]
T


(3×i)×6

, J2
c =



0 mT
1

0 qT
1

sT
3,1 [bi × s3,1]

T

...
0 mT

i
0 qT

i
sT

3,i [bi × s3,i]
T


(3×i)×6

(8)

When the input driving joint of each limb is locked, a reciprocal screw, which is reciprocated with
other screws in a limb, $̂wa,1,i can be expressed in Equation (9),

$̂
1
wa,1,i =

(
qi

ri × qi

)
, $̂

2
wa,1,i =

(
qi

ri × qi

)
, (9)

where, ri = bi·
|bi×qi|

|bi|qi|
, ri is a vertical vector from origin P of the local reference frame to vector qi. Take dot

product of Equations (1) and (9),

$̂
T
wa,1,iSp =

.
di. (10)

Arranging Equation (9) into matrix form,

J1
a =

[
qT

i
qT

i s1

(ri×qi)
T

qT
i s1

]
i×6,

J2
a =

[
qT

i
qT

i s1

(ri×qi)
T

qT
i s1

]
i×6

(11)

Remarkably, the velocity overall Jacobian J of the mechanism is expressed as

J =
[

Ja
Jc

]
(12)

By observing the overall Jacobian matrix, the first three rows of the matrix are dimensionless,
and the last three rows are related to the position vector r. Unifying the dimensionless matrix is crucial,
and the unified overall Jacobian matrix is given as follows:

J1 =



qT
i

qT
i s1

(ri×qi)
T

qT
i s1

...
0 nT

i
0 sT

1,i

sT
2,i

[bi×s2,i]
T

|bi |
...


(3×i+i)×6

, J2 =



qT
i

qT
i s1

(ri×qi)
T

qT
i s1

...
0 mT

i
0 qT

i

sT
2,i

[bi×s2,i]
T

|bi |
...


(3×i+i)×6

(13)
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4. Stiffness Model

The hydraulic motor is more adaptable to be the actuator because of its variable types of load.
The PRR-type chain is shown in Figure 4a; the hydraulic motor only retains the DoF along the
movement direction of the piston. The piston rod pushes the slider in which five constraint stiffnesses
are provided by the guideway, as shown in Figure 4b. The RPR-type chain consists of one hydraulic
motor and two rotational joints.

Figure 4. Topology structure of driving chain. (a) Topology structure of PRR driving chain; (b) topology
structure of RPR driving chain.

4.1. Active Stiffness

According to the active Jacobian analyzed above, it can be concluded that the active stiffness of
each driving chain is the axial stiffness along

−→
BC. The active stiffness calculation methods of the two

types are similar, but the stiffness of the guideway should be taken into account when calculating the
active stiffness of PRR-type.

4.1.1. Active Stiffness of PRR Driving Chain

Actually, the active stiffness of the PRR type is along the direction of leg. In the process of force
transmission of the PRR type, the stiffness of the hinge is neglected, thus the joint is in the force
interaction position of the leg and slider shaft, as shown in Figure 5, and F is the axial force of the leg.
According to Hooke’s law [29] and static analysis, we can acquire the following equations:

Fx = Fcos(90− θ) = kx∆x,
Fy = Fsin(90− θ) = ky∆y,
∆ξ =

√
∆x2 + ∆y2,

where F is the unit force, ∆ξ is the total deformation.

Kv =
F

∆ξ
=

1√(
sin(90−θ)

ky

)2
+(

cos(90−θ)
kx

)2
, (14)

kt,i =
1√

(
sin(90−θ i)

ka,i
)

2
+ (

cos(90−θ i)
kgi,x

)
2

. (15)
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Figure 5. Static analysis at R1 joint.

The tensile stiffness of the leg can be calculated by kal,i = EAL
L0,i

, where E denotes the elastic
modulus [20], AL represents the cross-sectional area of the leg, and L0,i is the length of the leg. For the
stiffness of hydraulic, ka,i, see the details in Appendix A; the parameters of the hydraulic are presented
in Table A1 in Appendix C. For the stiffness of the guideway in the direction perpendicular to movement
of the slider, kgi,x, see the details in Appendix B. The parameters of the guideway are presented in
Table A2 in Appendix C. Therefore, active stiffness is a serial spring system which is denoted by k1

act,i,

k1
act,i = (k−1

al,i + k−1
t,i )
−1

. (16)

4.1.2. Active Stiffness of RPR Driving Chain

According to the above analysis, the active stiffness of the RPR-type chains is along the movement
of the piston rod. Thus, the active stiffness of RPR-type chains is the axial stiffness of the hydraulic motor.

k2
act,i= ka,i (17)

4.2. Constraint Stiffness

According to the constraint Jacobian analyzed above, the constraint stiffness of the two types of
mechanism is composed of two kinds of torsional stiffness and a kind of tensile stiffness. The calculation
method is to project the stiffness of the component on the corresponding vector direction in the constraint
Jacobian. It needs to follow the spring superposition principle when the stiffness is composed of the
different components.

4.2.1. Constraint Stiffness of PRR-Type Driving Chain

According to Jc, the constraint stiffness of the PRR type includes: the torsional stiffness around s1,i
the torsional stiffness around ni, and the tensile stiffness along s3,i [29].

The torsional stiffness around s1,i is defined as k1
con1,i, and ktay denotes the torsional stiffness

around s1,i of the guideway, klry, i is the torsional stiffness around qi of the leg at point C, Ip is a polar
moment of inertia of the section.

k1
con1,i = (k−1

tay+k−1
lry,i,)

−1
, (18)

klry,i =
GIp

L0,i · (sT
1,iqi)

, (19)

where k1
con2,i denotes the torsional stiffness around ni, ktax denotes the torsional stiffness around ni

of the guideway, klrx, i denotes the torsional stiffness around qv,i of the leg at point C, qv,i = qi× s3,i,
and Ix denotes the moment of inertia.

k1
con2,i = (k−1

tax + k−1
lrx,i)

−1
, (20)
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klrx,i =
EIx

L0,i · (nT
i qv,i)

. (21)

Tensile stiffness along s3,i denotes k1
con3,i, ktz is the torsional stiffness around s3,i of the guideway,

klz,i is the torsional stiffness around s3,i of the leg at point C, Iz denotes the moment of inertia.

k1
con3,i = (k−1

tz + k−1
lz,i)
−1

, (22)

klz,i =
3EIz

L3
0,i

(23)

4.2.2. Constraint Stiffness of RPR Driving Chain

In this research, we employ the mechanical model of a stepped cantilever beam to analyze the
deformation under constraint stiffness from the perspective of material mechanics. lcyl denotes length
of a cylinder, lrod is the piston rod sticking out of the cylinder part, and the constraint stiffness of type
of RPR-driving chain can be expressed as follows [20,29]:

Torsional stiffness around mi is defined as k2
con1,i,

k2
con1,i = E

(
lrod
Ix1

+
lcyl

Ix2

)
(24)

Torsional stiffness around qi is defined as k2
con2,i,

k2
con2,i = G

(
lrod
Ip1

+
lcyl

Ip2

)
(25)

Tensile stiffness along s3,i is defined as k2
con3,i,

k2
con3,i= 3E/

 l3rod
Iz1

+
l3cyl

Iz2

 (26)

5. Mechanism Description and Inverse Position Analysis

According to the type discussion in Section 2, the planar part is set as a redundantly actuated parallel
mechanism, and the purpose is to increase the active stiffness and enlarge the workspace. Besides,
the driving force will be reduced through the effective optimization of driving force distribution. In order
to increase constraint stiffness of the parallel part, each kinematic chain is set as an over-constrained
mechanism. The kinematic model of the 4-(2PRR) mechanism is shown in Figure 6a; MP has the
capability of x-direction translation, y-direction translation, and z-direction rotation in a planar
movement space. The mechanism is composed of four kinematic chains, and each kinematic chain
contains two driving chains. As shown in Figure 6b, each kinematic chain has two hydraulic motors
used as the driving actuator, and these hydraulic motors push a slider to achieve the translation in the
y-direction. The slider is connected with the leg through the hinge, and the two legs are also connected
with the MP through the hinge.

In Figure 6a, F1 and F2 are fixed bases. F1 is parallel to F2. A fixed Cartesian reference frame,
O-xyz, is assigned at the middle of the upper part of the F1 plate. Axis x, y, and z can be attached to
point O in the fixed base; x-axis is perpendicular to F1, and y-axis parallel to F1. A moving frame,
P-x′y′z′, is set at the centroid of the MP. In the x-y plane, A0,j is the middle point of the connecting line
between the two hydraulic motors of a kinematic chain, C0,j is the middle point of the connecting line
between the two rotating joints in a kinematic chain, and B0,j is the middle point of the connecting line
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between the hinge points of the MP in a kinematic chain. For the convenient calculation of stiffness,
we make the following agreements: ni = [1,0,0] T, s1,I = [0,1,0] T, s2,I = s3,I = [0,0,1] T.

Figure 6. Kinematic models of 4-(2PRR) parallel planar mechanism. (a) Kinematic model of the
4-(2PRR) redundant parallel manipulator; (b) topology structure of 4-(2PRR) kinematic chain.

Similarly, the kinematic model of the 4-(2RPR) mechanism is shown in Figure 7b. Only the form
of driving chain is different, that is, the position of the MP and fixed base, and the reference frame is
the same as those in the 4-(2RPR) mechanism. Hereinafter, we will use typeI to stand for the 4-(2PRR)
mechanism and type II to stand for the 4-(2RPR) mechanism.

Figure 7. Kinematic models of 4-(2RPR) parallel planar mechanism. (a) Kinematic model of the
4-(2RPR) redundant parallel manipulator; (b) topology structure of 4-(2RPR) kinematic chain.

In Figure 6a, the single kinematic chain closed vector of type I can be expressed as follows:

p + B0, j = h0, j + q0, jL0, j, B0, j = Rb0, j,
h0, j = a0, j + ν0, j,

q0, jL0, j = p0, j + Rb0, j − a0, j − v0, j, ( j = 1, 2, 3, 4). (27)

In Figure 7a, the single kinematic chain closed vector of type II can be expressed as:

q0, jL0, j = p0, j + Rb0, j − c0, j, ( j = 1, 2, 3, 4) (28)
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In Equations (27) and (28), L0,j is the length of the leg, j is the number of kinematic chain, q0,j is the
unit vector of the leg, R is the orientation matrix of the mobile platform, γ is the rotation angle of MP
around the z-axis.

R =


cγ −sγ 0
sγ cγ 0
0 0 1


The reachable workspace of the MP can be calculated according to the length of the leg,

the constraint of the rotational angle, and the interference condition.
The geometric constraints of the mechanism are given as follows:

(1) Stroke of active P joints. For each type of mechanism, the strokes of the hydraulic piston rod act
as the actuator, which defines the workspace.

(2) Rotational angle range of the R1 joint. To avoid the interference between links, the rotational
angle range of the R1 joint should be considered:

θ j = arccos
q j·s1∣∣∣∣q j

∣∣∣∣|s1|
, ( j = 1, 2, 3, 4). (29)

(3) Interferences of MP between fixed base. As for type I, due to the particularity of the fixed base
configuration and limitation for range of the P joint, the mobile platform will be restricted.
As expressed in Equation (30), d0 denotes the length of F1 and F2 in the y-direction, dmp,j denotes
the distance of MP to the fixed coordinate system in the y-direction.

d0 ≤ dmp, j, ( j = 1, 2, 3, 4) (30)

To satisfy the requirements of the actual work area x ∈ (−0.17m, 0.17m),y ∈ (−1.2m,−1.4m).
In Figure 8, the MP workspace of type II is larger than type I, and it contains the workspace of type I.
This is related to the swing length of the rotating components (leg or hydraulic), and their workspaces
are approximately x = 0 m symmetry.

Figure 8. Reachable workspace of MP.
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6. Static Analysis and Stiffness Matrix Generation

Assuming that the MP is loaded from an external wrench FW = [ fT wT ]
T

, and it is expressed

in the Plücker ray coordinate, f = [ fx fy fz ]
T

denotes the force vector, w = [ wx wy wz ]
T

is a
wrench vector. Let fa and fc represent the reaction forces/torques of the actuators and constraints:

FW = JT
a fa + JT

c fc, (31)

fa = ka∆xa, (32)

fc = kc∆xc, (33)

where ka and kc represent active and constraint stiffness, respectively; ∆xa and ∆xc are the displacements
caused by the driving and constraint reactions of the limb, respectively. According to the principle
of virtual work, we can achieve Equation (34), ∆xa = [∆x ∆y ∆z] denotes the linear displacement,
∆xc = [∆θx ∆θy ∆θz] denotes the angular displacement.

FT
W∆x = fT

a ∆xa + fT
c ∆xc. (34)

Gravity should be considered in external forces. FE denotes the applied external force and FG

denotes the gravity of components:
FW = FE + FG, (35)

F1
G = FG,S + FG,L + FG,M, F2

G = FG,H + FG,M. (36)

The applied external force FE =
[

FT
0 τT

0

]T
takes the position of the center of gravity as the

action point, FG,L is the gravity of the leg, FG,S is the gravity of the slider, FG,H is the gravity of the
hydraulic cylinder, and FG,M is the gravity of the MP.

FG,L =
8∑

i=1
mL,ig

[
s1

(Rai −
1
2 bi) × s1

]
, FG,S =

4∑
j=1

mSg
[

s1

(Ra j − b j) × s1

]
, FG,H =

8∑
i=1

mHg
[

s1

(Rai −
1
2 qiLi) × s1

]
,

FG,M = mMg
[

s1

0

]
,

where mL denotes the mass of the leg, mS denotes the mass of the slider, mH denotes the mass of the
hydraulic cylinder, mM denotes the mass of the manipulator, and g denotes the acceleration of gravity;
the parameters of mechanism are presented in Table A3 in Appendix C.

According to Hooke’s law [34], ∆X is the deformation in six directions, K is a 6 × 6 stiffness matrix.

FW = K∆X. (37)

Taking Equation (34) into Equation (37) to achieve Equation (38), where k= diag(ka, kc)

K = JTkJ, (38)

It should be noted that K is built in the moving frame, thereby transforming stiffness into the fixed
frame to analyze the stiffness performance in the workspace.

Kp = TTKT

T =

[
R −lop×

0 R

]
[lop×] is the skew symmetrical matrix relating to vector lop from point P to point O. During the

establishment of the stiffness matrix, the following assumptions are made:
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(1) No friction is observed between two contact joints.
(2) No preload is observed on the MP.
(3) The MP and the fixed platform are set as rigid bodies, and no deformation is observed.
(4) Regardless of the antagonistic stiffness, the overall Jacobian matrix does not change caused by

external force.

From Equation (38), we can obtain k which can be expressed in a matrix form as 32 × 32
diagonal matrix.

k = diag(k act,1, kact,2, kact,3, kact,4, kact,5, kact,6, kact,7, kact,8,
kcon1,1, kcon2,1, kcon3,1, kcon1,2, kcon2,2, kcon3,2, kcon1,3, kcon2,3, kcon3,3, kcon1,4, kcon2,4, kcon3,4,
kcon1,5, kcon2,5, kcon3,5, kcon1,6, kcon2,6, kcon3,6, kcon1,7, kcon2,7, kcon3,7, kcon1,8, kcon2,8, kcon3,8).

When the stiffness matrix of the parallel mechanism is achieved, the parallel mechanism should be
evaluated in a virtual way. The reachable workspace of the two mechanisms is large enough compared
with the actual work required. Thus, evaluating the stiffness along a specific trajectory is practical.
According to the air flow direction of the experiment, the mechanism is affected by the force in the
x-direction more strongly than in the other directions. Thus, the stiffness in the x-direction should be
prioritized. The given trajectory in the x-direction ought to go throughout two workspaces and the
trajectory equation is presented as follows:

x(t) = −0.15+0.15t
y(t) = 1.338sin(0.3957t− 1.9897)
θ(t) = 0 t ∈ [0, 2]

(39)

To obtain the stiffness in all directions, the external FE is applied to point P, and FE is the unit
force [1N, 1N, 1N, 1N·m, 1N·m, 1N·m] T. The deformation in all directions can be achieved from

∆Xp = K−1
P FW =

[
∆ρx, ∆ρy, ∆ρz, ∆ax, ∆ay, ∆az

]T
. In order to evaluate two types of mechanisms in the

actual workspace, we use trajectory Equation (39) as the sub-workspace.
We used ∆ρx, ∆ρy, and ∆ρz to denote the linear deformation along the x, y, and z directions in

frame O-xyz, respectively, and employed ∆ax, ∆ay, and ∆az to represent the angular deformations
around the x, y, and z directions in frame O-xyz, respectively.

Figure 9 illustrates all directional deformation distributions of type I in frame O-xyz. By carefully
observing the cloud figure: (1) the maximum deformation occurred at the boundary position of
the desired trajectory, and the minimum deformation occurred nearby x = 0 m, in which the linear
deformation value has symmetrical distribution at approximately x = 0 m; (2) the variations of ∆ρy and
∆ρz, are associated with the y-axis, and the variations of ∆ax, ∆ay, and ∆az mainly have relationship
with the x-axis.

Figure 10 demonstrates all directional deformation distributions of type II in frame O-xyz.
Evidently, the symmetrical characteristic of the linear deformation distributions are similar to type
I. Notably, the increased levels of ∆ρy, ∆ρz, ∆ay, and ∆az have been associated with the decrease in
the y-direction.

Generally, through the comparison of deformation value, we can find the stiffness of type I is
higher than that of type II, except in the y-direction. ∆ρy numerical value of the two types is relatively
close. The reason has two aspects: (1) as for type I, the active stiffness consists of axial stiffness of the
leg and hydraulic; actually, the stiffness of the leg is an order of magnitude larger than the hydraulic,
according to Equations (16) and (17), k1

act,i is close to k2
act,i; (2) slider-guideway offers constraint stiffness

for the driving chain instead of the hydraulic cylinder. As for type II, the constraint stiffness depended
on the hydraulic cylinder. From the deformation distribution values in each direction, we can find that
type I has a better stiffness characteristic.
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Figure 9. Deformation distributions of the mechanism in the sub-workspace of type I. (a) Linear
deformation distribution in x direction of type I; (b) Linear deformation distribution in y direction of
type I; (c) Linear deformation distribution in z direction of type I; (d) Angular deformation distribution
in x direction of type I; (e) Angular deformation distribution in y direction of type I; (f) Angular
deformation distribution in z direction of type I.

The cloud figures can reflect the stiffness in six directions. From the overall Jacobian, we can find
that the stiffness in the active directions are highly coupled, and the stiffness in the constraint directions
are highly coupled, too. However, the active and constraint stiffnesses are fully decoupled. Therefore,
investigating the influence of a certain parameter on active and constraint stiffness in the process of
parameter optimization is beneficial.



Appl. Sci. 2020, 10, 6342 15 of 22

Figure 10. Deformation distributions of the mechanism in the sub-workspace of type II. (a) Linear
deformation distribution in x direction of type II; (b) Linear deformation distribution in y direction of
type II; (c) Linear deformation distribution in z direction of type II; (d) Angular deformation distribution
in x direction of type II; (e) Angular deformation distribution in y direction of type II; (f) Angular
deformation distribution in z direction of type II.

Extracting the active and constraint stiffness from the overall stiffness is the essence of proposing
the suitable indexes. For the convenience of stiffness expression, we use a compliance matrix instead
of the stiffness matrix, in which K−1

p = Cp, Γ and Φ denote the selection matrix.

Cp =



c11 c12 0 0 0 c16

c21 c22 0 0 0 c26

0 0 c33 c34 c35 0
0 0 c43 c44 c45 0
0 0 c53 c54 c55 0

c61 c62 0 0 0 c66


, (40)



Appl. Sci. 2020, 10, 6342 16 of 22

Γ =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

, Φ =


0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0


Cact = ΓCpΓT, Ccon = ΦCpΦT.

To eliminate dimensional effect, the characteristic length dc is regarded as a constant, dc is
multiplied by the column of stiffness around the z-direction, and divided by the column of stiffness
along the z-direction.

Cact =


c11 c12 c16dc

c21 c22 c26dc

c61 c62 c66dc

, Ccon =


c33/dc c34 c35

c43/dc c44 c45

c53/dc c54 c55


The active stiffness index (ASI) can be defined in Equation (41), in which a higher value of ASI

indicates a lower active stiffness characteristic, and W is a sub-workspace that is determined by the
desired trajectory.

ASI =

∫
W

3
√

det(Cact)dW∫
W dW

(41)

The constraint stiffness index (CSI) can be defined in Equation (42), in which a higher value of CSI
indicates a lower constraint stiffness characteristic.

CSI =

∫
W

3
√

det(Ccon)dW∫
W dW

(42)

To move a step further to explore the parameter of actuator influence on active and constraint
stiffness, we obtain the ASI and CSI varying curve through the range of hydraulic cylinder changes.
From the index value of Figure 11, we can find that the active and constraint stiffnesses of typeI is
higher than those of type II. When the range of hydraulic cylinder increases, the active stiffness of both
types is decreased. We define the relative variation ratio of ASI and CSI as RVR, Max is the maximum
value of indexes, Min is the minimum value of indexes. As for type I, RVR of ASI is 23.5%, RVR of CSI
is 9.4%. As for type II, RVR of ASI is 263.5%, RVR of CSI is 18.1%. We can find that active stiffness is
more affected than constraint stiffness, and type I is less affected by the range of the hydraulic cylinder,
especially on active stiffness.

RVR =
Max−Min

Min
× 100% (43)

Figure 11. ASI and CSI variation caused by a range of hydraulic cylinder. (a) ASI index variation of
two type mechanisms; (b) CSI index variation of two type mechanisms; The blue solid line stands for
index of type I mechanism, the red dashed line stands for index of type II mechanism.
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7. Discussion

This paper has calculated the spatial stiffness of the planar parallel mechanism and presented
two novel stiffness indexes based on overall Jacobian. Compared with the previous research methods,
it has the following advantages:

• Most studies only consider the stiffness in plane movement when analyzing the stiffness of the
planar parallel mechanism. For example, the work [14] researched performance of three planar
parallel manipulators, and finally a 3 × 3 stiffness matrix was achieved. However, the mechanism
bears the force in six directions in the actual work. We build a stiffness model considering the
constraint stiffness, which can reflect the actual stiffness characteristic of the mechanism.

• Most of the existing stiffness indexes are focused on evaluating the isotropic characteristics of
the mechanism and the ability to resist deformations. The total linear stiffness index (TLSI) and
the total angular stiffness index (TASI) are separated to evaluate the ability of the mechanism
to resist deformation in [40,41]. As shown in Equation (44), ctt is the linear compliance element
matrix, crr is the angular compliance element matrix. It can be found from Figure 12 that, with the
increase of the hydraulic cylinder range, TLSI and TASI of the two types of mechanisms have the
same decreasing trend. However, it is difficult to analyze the phenomenon from the theoretical
formulas, and it brings obstacles for subsequent optimization of the component size. The stiffness
index KSI was proposed in [34], which is a traditional mechanism stiffness evaluation method.
As shown in Equation (45), λmax, λmin are the maximum and minimum eigenvalues of the stiffness
matrix Kp, respectively This index reflects the isotropy of the mechanism geometry. From index
values in Figure 13, we can find the hydraulic cylinder range has less effect on the KSI of the two
mechanisms. This method lacks effective output parameter support for evaluating the dimensional
characteristics of planar asymmetric mechanisms. When investigating the effect of the parameters
on the stiffness in given directions, the proposed indexes are more clear explanations.

Cp =

[
ctt ctr

cT
tr crr

]
,

TLSI =
1

3
√

det(ctt)
, TASI =

1
3
√

det(crr)
. (44)

KSI =

√
λmin

λmax
(45)

Figure 12. TLSI and TASI variation caused by a range of hydraulic cylinder. (a) TLSI index variation of
two type mechanisms; (b) TASI index variation of two type mechanisms; The blue solid line stands for
index of typeI mechanism, the red dashed line stands for index of type II mechanism.
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Figure 13. KSI variation caused by a range of hydraulic cylinder. The blue solid line stands for index of
type I mechanism, the red dashed line stands for index of type II mechanism.

The application to two types of parallel planar part for a hybrid mechanism and some interesting
results have been illustrated. We can find the type I has better stiffness characteristics according to
deformation distributions of the sub-workspace. In the constraint directions, the reason is that in
the establishment of the constraint stiffness model, the guideway of type I provides a part of the
constrained stiffness. It can also be concluded from the ASI and CSI that type has better stiffness
characteristics. It is worth noting that the influence of the hydraulic cylinder range on the active
stiffness of type II is more significant, and there exists a turning point when the length of the rod that
sticks out of the hydraulic cylinder is 0.485 m. This may be a noteworthy research direction for stiffness
optimization in future work.

In future work, the proposed indexes will be applied to the spatial parallel mechanism,
and multi-objective optimization may be researched based on ASI and CSI.
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Appendix A

As shown in Figure A1, the inlet and outlet cavities can be expressed as two springs [42], namely,
K1(xpos) and K2(xpos); and the stiffness model of the hydraulic cylinder is simplified as a serial connection
spring system, which is expressed as ka.

ka = (K−1
ar + K−1

ac + K−1
oil (xpos))

−1
, (A1)

where Kar is the axial stiffness of piston rod; E is the modulus of elasticity; AAB and ABC denote the
cross-sectional areas of segments AB and BC of piston link, respectively. lAB and lBC are the length of
segment AB and BC of the piston rod, respectively. Kac is the axial stiffness of the cylinder. A1 and A2

indicate the inside wall and bottom areas of the hydraulic cylinder, respectively; and t1 and t2 represent
the inside wall thickness and bottom thickness of the hydraulic cylinder, respectively. Koil(xpos) denotes
the stiffness of hydraulic oil, which can be regarded as parallel connections.

Kar =
EAAB

lAB
+

EABC

lBC
, Kac =

EA1

t1
+

EA2

t2
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Koil(xpos) = K1(xpos) + K2(xpos), (A2)

K1(x0)= K2(x0) =
p0A0

x0
,βe =

p0V0

dV0
=

p0V0

A0x0
, p0 =

βeA0x0

V0
,

where p0 denotes pressure, A0 denotes area, and x0 denotes the displacement. However, V0 denotes
the volume, βe denotes elastic modulus of hydraulic oil, and x is the displacement of the piston.

K1(x) =
βeA2

1
V1

=
βeA2

1
A1(L1+xpos)+V1l

, K2(x) =
βeA2

2
V2

=
βeA2

2
A2(Lx−L1−xpos)+V2l

,

Koil(xpos) = K1(xpos) + K2(xpos) =
βeA2

1
A1(L1+xpos)+V1l

+
βeA2

2
A2(Lx−L1−xpos)+V2l

.

V1l and V2l are the volumes of hydraulic oil in the pipe which connects the valve and
hydraulic cylinder.

Figure A1. Stiffness model of hydraulic cylinder. (a) Stiffness model of hydraulic oil; (b) model of
hydraulic cylinder.

Appendix B

In this research, we select the quartet isotropic linear cylindrical guideway, which has remarkable
stiffness characteristics. The relationship between the load and displacement of the roller linear
guideway under vertical load is presented in Reference [43].

F0x = 2Z0Qn cosα = 74.6L8/9
e δ10/9(cosα)19/9Z0 (A3)

where Qn denotes the normal force, and Z0 is the number of rollers per row.

F0x = ktxδ
10/9
≈ ktxδ = ktzδ

Qn =
Fx

2Z0cosα

My = 17.3[(pz + px)cosα]19/9L8/9
e Z0θ

10/9
y (A4)

The guideway joint has the characteristic of four equal directions of load. This finding means the
stiffness in each direction is approximately equal within the limit, and the torsional stiffness around
y-direction can be expressed as kmy.

My = ktayθ
10/9
y ≈ ktayθy

The same as kmy, torsional stiffness kmx around x-direction can be expressed in Equation (A2):

Mx =
34.5ltL8/9

e cos19/9 α

n2
0

(lt −DW)10/9
θ10/9

x

n∑
u=1

u2, (A5)
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Mx = ktax · θ
10/9
x ≈ ktax · θx. Mx = ktaxθ

10/9
x ≈ ktaxθx

Le denotes the effective contact length of the roller, Lb denotes the length of the roller, bd denotes
the diameter of the roller, lt denotes the effective length of the slider, DW denotes the roller spacing,
D denotes the diameter of the ball.

In this research, we have chosen the type of guideway as THK SGR_20A. According to
Equations (A3)–(A5), we can obtain the following:

ktx = 2.02× 103(N/m), ktax = 8.5× 105(N ·m/rad), ktay = 3.26× 105(N ·m/rad),

The stiffness of the guideway joint can be expressed as Kgi,

Kgi = diag( 2.02N/m 0 2.02N/m 850N ·m/rad 326N ·m/rad 850N ·m/rad ) × 103

Appendix C

Table A1. Physical parameters of hydraulic motor.

Parameter Value Parameter Value

lab 0.450 m E 2.1 × 105 N/m2

lbc 0.05 m V1L 1.9 × 10−4 m3

R 0.014 m V2L 1 × 10−4 m3

AAB 0.6154 m b 0.032 m
ABC 1.9625 m βe 1.8 × 109 N/m2

L1 0.026 m A1 1.96 × 10−3 m2

L 0.38 m A2 2.8 × 10−4 m2

Table A2. Physical parameters of guideway.

Parameter Value Parameter Value

Le 0.0024 m D 0.002 m
Lb 0.003 m DW 0.004 m
bd 0.002 m lt 0.058 m
Ls 0.126 m Pz 0.00562 m
α 45◦ Px 0.0172 m
Z0 26 n0 13

Table A3. Physical parameters of mechanism

Parameter Value Parameter Value

mM 284 kg mH 28.3 kg
mS 43.3 kg L0,1/L0,2 0.392 m

mL,1 2.9 kg L0,3/L0,4 0.443 m
mL,2 3.3 kg L0,5/L0,6 0.482 m
mL,3 3.3 kg L0,7/L0,8 0.4 m
mL,4 2.9 kg g 9.8 m/s2

References

1. Pereira, J.D. Wind Tunnels: Aerodynamics, Model and Experiments; Nova Science Publishers, Inc.: Hauppauge,
NY, USA, 2011; ISBN 9781619423299.

2. Portman, V.; Sandler, B.Z.; Chapsky, V.; Zilberman, I. A 6-DOF isotropic measuring system for force and
torque components of drag for use in wind tunnels: IIInnovative design. Int. J. Mech. Mater. Des. 2009, 5,
337–352. [CrossRef]

http://dx.doi.org/10.1007/s10999-009-9106-6


Appl. Sci. 2020, 10, 6342 21 of 22

3. Lafourcade, P.; Llibre, M. First steps toward a sketch-based design methodology for wire-driven manipulators.
In Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Kobe,
Japan, 20–24 July 2003; AIM: Townsville, Australia, 2003; Volume 1, pp. 143–148.

4. Yangwen, X.; Qi, L.; Yaqing, Z.; Bin, L. Model aerodynamic tests with a wire-driven parallel suspension
system in low-speed wind tunnel. Chin. J. Aeronaut. 2010, 23, 393–400. [CrossRef]

5. Johnson, W.G.; Dress, D.A. 13-Inch Magnetic Suspension and Balance System Wind Tunnel; NASA Technical
Memorandum; NASA: Hampton, VA, USA, 1989.

6. Rein, M.; Höhler, G.; Schütte, A.; Bergmann, A.; Löser, T. Ground-based simulation of complex maneuvers of
a delta-wing aircraft. In Proceedings of the AIAA Aerodynamic Measurement Technology & Ground Testing
Conference, San Francisco, CA, USA, 5–8 June 2006; DLR: Oberpfaffenhofen, Germany, 2006; pp. 2–6.

7. Bergmann, A.; Huebner, A.; Loeser, T. Experimental and numerical 1research on the aerodynamics of
unsteady moving aircraft. Prog. Aerosp. Sci. 2008, 44, 121–137. [CrossRef]

8. Honegger, M.; Codourey, A.; Burdet, E. Adaptive control of the hexaglide, a 6 dof parallel manipulator.
In Proceedings of the IEEE International Conference on Robotics and Automation, Albuquerque, NM, USA,
25 April 1997; Volume 1, pp. 543–548.

9. Guigue, A.; Ahmadi, M.; Tang, F.C. On the kinematic analysis and design of a redundant manipulator for a
Captive Trajectory Simulation system (CTS). In Proceedings of the 2006 Canadian Conference on Electrical
and Computer Engineering, Ottawa, ON, Canada, 7–10 May 2006; pp. 1514–1517. [CrossRef]

10. Jiang, L.Y.; Tang, F.C.; Benmeddour, A.; Fortin, F. Sting effects on store captive loads. In Proceedings of the
39th Aerospace Sciences Meeting and Exhibit, Ottawa, QC, Canada, 8–11 January 2001; AIAA: Reno, NV,
USA, 2001; pp. 6–8.

11. Bergmann, A. Modern wind tunnel techniques for unsteady testing-Development of dynamic test rigs. Notes
Numer. Fluid Mech. Multidiscip. Des. 2009, 102, 59–77. [CrossRef]

12. Geng, X.; Shi, Z.; Cheng, K.; Li, L. A new hybrid mechanism for dynamic wind tunnel test of high
maneuverable air vehicle. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2016, 230, 1964–1974. [CrossRef]

13. Zhang, D.; Xu, Y.; Yao, J.; Hu, B.; Zhao, Y. Kinematics, dynamics and stiffness analysis of a novel 3-DOF
kinematically/actuation redundant planar parallel mechanism. Mech. Mach. Theory 2017, 116, 203–219.
[CrossRef]

14. Wu, J.; Wang, J.; Wang, L.; You, Z. Performance comparison of three planar 3-DOF parallel manipulators
with 4-RRR, 3-RRR and 2-RRR structures. Mechatronics 2010, 20, 510–517. [CrossRef]

15. Arsenault, M.; Boudreau, R. Synthesis of planar parallel mechanisms while considering workspace, dexterity,
stiffness and singularity avoidance. J. Mech. Des. Trans. ASME 2006, 128, 69–78. [CrossRef]

16. Gallant, M.; Boudreau, R. The synthesis of planar parallel manipulators with prismatic joints for an optimal,
singularity-free workspace. J. Robot. Syst. 2002, 19, 13–24. [CrossRef]

17. Wu, G.; Bai, S.; Kepler, J. Stiffness characterization of a 3-PPR planar parallel manipulator with actuation
compliance. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2015, 229, 2291–2302. [CrossRef]

18. Klimchik, A.; Chablat, D.; Pashkevich, A. Stiffness modeling for perfect and non-perfect parallel manipulators
under internal and external loadings. Mech. Mach. Theory 2014, 79, 1–28. [CrossRef]

19. Pashkevich, A.; Klimchik, A.; Chablat, D. Enhanced stiffness modeling of manipulators with passive joints.
Mech. Mach. Theory 2011, 46, 662–679. [CrossRef]

20. Pashkevich, A.; Chablat, D.; Wenger, P. Stiffness analysis of overconstrained parallel manipulators.
Mech. Mach. Theory 2009, 44, 966–982. [CrossRef]

21. Deblaise, D.; Hernot, X.; Maurine, P. Asystematic analytical method for PKM Stiffness Matrix Calculation.
In Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, FL, USA,
15–19 May 2006; pp. 4213–4219.

22. Wu, J.; Wang, J.; Wang, L.; Li, T.; You, Z. Study on the stiffness of a 5-DOF hybrid machine tool with actuation
redundancy. Mech. Mach. Theory 2009, 44, 289–305. [CrossRef]

23. Zhang, J.; Zhao, Y.; Jin, Y. Kinetostatic-model-based stiffness analysis of Exechon PKM. Robot. Comput.
Integr. Manuf. 2016, 37, 208–220. [CrossRef]

24. Cao, W.A.; Ding, H. A method for stiffness modeling of 3R2T overconstrained parallel robotic mechanisms
based on screw theory and strain energy. Precis. Eng. 2018, 51, 10–29. [CrossRef]

25. Yang, C.; Li, Q.; Chen, Q.; Xu, L. Elastostatic stiffness modeling of overconstrained parallel manipulators.
Mech. Mach. Theory 2018, 122, 58–74. [CrossRef]

http://dx.doi.org/10.1016/S1000-9361(09)60233-8
http://dx.doi.org/10.1016/j.paerosci.2007.10.006
http://dx.doi.org/10.1109/CCECE.2006.277725
http://dx.doi.org/10.1007/978-3-540-95998-4_5
http://dx.doi.org/10.1177/0954410015620448
http://dx.doi.org/10.1016/j.mechmachtheory.2017.04.011
http://dx.doi.org/10.1016/j.mechatronics.2010.04.012
http://dx.doi.org/10.1115/1.2121747
http://dx.doi.org/10.1002/rob.8118
http://dx.doi.org/10.1177/0954406214557341
http://dx.doi.org/10.1016/j.mechmachtheory.2014.04.002
http://dx.doi.org/10.1016/j.mechmachtheory.2010.12.008
http://dx.doi.org/10.1016/j.mechmachtheory.2008.05.017
http://dx.doi.org/10.1016/j.mechmachtheory.2008.10.001
http://dx.doi.org/10.1016/j.rcim.2015.04.008
http://dx.doi.org/10.1016/j.precisioneng.2017.07.002
http://dx.doi.org/10.1016/j.mechmachtheory.2017.12.011


Appl. Sci. 2020, 10, 6342 22 of 22

26. Cao, W.A.; Yang, D.; Ding, H. A method for stiffness analysis of overconstrained parallel robotic mechanisms
with Scara motion. Robot. Comput. Integr. Manuf. 2018, 49, 426–435. [CrossRef]

27. Raoofian, A.; Taghvaeipour, A.; Kamali, A. On the stiffness analysis of robotic manipulators and calculation
of stiffness indices. Mech. Mach. Theory 2018, 130, 382–402. [CrossRef]

28. Yan, S.J.; Ong, S.K.; Nee, A.Y.C. Stiffness analysis of parallelogram-type parallel manipulators using a strain
energy method. Robot. Comput. Integr. Manuf. 2016, 37, 13–22. [CrossRef]

29. Li, Y.; Xu, Q. Stiffness analysis for a 3-PUU parallel kinematic machine. Mech. Mach. Theory 2008, 43, 186–200.
[CrossRef]

30. Lian, B.; Sun, T.; Song, Y.; Jin, Y.; Price, M. Stiffness analysis and experiment of a novel 5-DoF parallel
kinematic machine considering gravitational effects. Int. J. Mach. Tools Manuf. 2015, 95, 82–96. [CrossRef]

31. Sun, T.; Lian, B.; Song, Y. Stiffness analysis of a 2-DoF over-constrained RPM with an articulated traveling
platform. Mech. Mach. Theory 2016, 96, 165–178. [CrossRef]

32. Joshi, S.A.; Tsai, L.W. Jacobian analysis of limited-DOF parallel manipulators. J. Mech. Des. Trans. ASME
2002, 124, 254–258. [CrossRef]

33. Ding, J.; Wang, C.; Wu, H. Accuracy analysis of redundantly actuated and overconstrained parallel
mechanisms with actuation errors. J. Mech. Robot. 2018, 10, 1–7. [CrossRef]

34. Gosselin, C. Stiffness mapping for parallel manipulators. IEEE Trans. Robot. Autom. 1990, 6, 377–382. [CrossRef]
35. Bhattacharya, S.; Hatwal, H.; Ghosh, A. On the Optimum Design of Stewart Platform Type Parallel

Manipulators. Robotica 1995, 13, 133–140. [CrossRef]
36. Chiacchio, P.; Chiaverini, S.; Sciavicco, L.; Siciliano, B. Global Task Space Manipulability Ellipsoids for

Multiple-Arm Systems. IEEE Trans. Robot. Autom. 1991, 7, 678–685. [CrossRef]
37. Asada, H. A geometrical representation of manipulator dynamics and its application to arm design. J. Dyn.

Syst. Meas. Control. Trans. ASME 1983, 105, 131–142. [CrossRef]
38. Huang, S.; Schimmels, J.M. The bounds and realization of spatial stiffnesses achieved with simple springs

connected in parallel. IEEE Trans. Robot. Autom. 1998, 14, 466–475. [CrossRef]
39. Huang, S.; Schimmels, J.M. The eigenscrew decomposition of spatial stiffness matrices. IEEE Trans.

Robot. Autom. 2000, 16, 146–156. [CrossRef]
40. Chen, C.; Peng, F.; Yan, R.; Li, Y.; Wei, D.; Fan, Z.; Tang, X.; Zhu, Z. Stiffness performance index based posture

and feed orientation optimization in robotic milling process. Robot. Comput. Integr. Manuf. 2019, 55, 29–40.
[CrossRef]

41. Guo, Y.; Dong, H.; Ke, Y. Stiffness-oriented posture optimization in robotic machining applications. Robot.
Comput. Integr. Manuf. 2015, 35, 69–76. [CrossRef]

42. Li, M.; Wu, H.; Handroos, H. Static stiffness modeling of a novel hybrid redundant robot machine. Fusion
Eng. Des. 2011, 86, 1838–1842. [CrossRef]

43. Liu, S. The Mechanical Analysis of Roller Linear Guideway; Huazhong University of Science and Technology:
Wuhan, China, 2011.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.rcim.2017.08.014
http://dx.doi.org/10.1016/j.mechmachtheory.2018.08.025
http://dx.doi.org/10.1016/j.rcim.2015.05.004
http://dx.doi.org/10.1016/j.mechmachtheory.2007.02.002
http://dx.doi.org/10.1016/j.ijmachtools.2015.04.012
http://dx.doi.org/10.1016/j.mechmachtheory.2015.09.008
http://dx.doi.org/10.1115/1.1469549
http://dx.doi.org/10.1115/1.4041212
http://dx.doi.org/10.1109/70.56657
http://dx.doi.org/10.1017/S026357470001763X
http://dx.doi.org/10.1109/70.97880
http://dx.doi.org/10.1115/1.3140644
http://dx.doi.org/10.1109/70.678455
http://dx.doi.org/10.1109/70.843170
http://dx.doi.org/10.1016/j.rcim.2018.07.003
http://dx.doi.org/10.1016/j.rcim.2015.02.006
http://dx.doi.org/10.1016/j.fusengdes.2011.01.018
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Discussion on the Types of Parallel Part 
	Overall Jacobian Matrix 
	Stiffness Model 
	Active Stiffness 
	Active Stiffness of PRR Driving Chain 
	Active Stiffness of RPR Driving Chain 

	Constraint Stiffness 
	Constraint Stiffness of PRR-Type Driving Chain 
	Constraint Stiffness of RPR Driving Chain 


	Mechanism Description and Inverse Position Analysis 
	Static Analysis and Stiffness Matrix Generation 
	Discussion 
	
	
	
	References

