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Abstract: Readmissions after stroke are not only associated with greater levels of disability and a higher
risk of mortality but also increase overall medical costs. Predicting readmission risk and understanding
its causes are thus essential for healthcare resource allocation and quality improvement planning.
By using machine learning techniques on initial admission data, this study aimed to develop prediction
models for readmission or mortality after stroke. During model development, resampling methods
were implemented to balance the class distribution. Two-layer nested cross-validation was used
to build and evaluate the prediction models. A total of 3422 patients were included for analysis.
The 90-day rate of readmission or mortality was 17.6%. This study identified several important
predictive factors, including age, prior emergency department visits, pre-stroke functional status,
stroke severity, body mass index, consciousness level, and use of a nasogastric tube. The Naïve Bayes
model with class weighting to compensate for class imbalance achieved the highest discriminatory
capacity in terms of the area under the receiver operating characteristic curve (0.661). Despite having
room for improvement, the prediction models could be used for early risk assessment of patients
with stroke. Identification of patients at high risk for readmission or mortality immediately after
admission has the potential of enabling early discharge planning and transitional care interventions.
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1. Introduction

Stroke is a leading cause of mortality and adult disability worldwide [1,2]. It causes a huge
financial burden on the healthcare system [3]. Stroke survivors are prone to recurrence of stroke.
Approximately 7% to 12% of patients with a first ischemic stroke have stroke recurrence within one
year [4,5]. In addition, patients with stroke are likely to develop complications such as pneumonia,
urinary tract infection, falls, etc., which may have a deleterious effect on the outcome of stroke [6]. As a
result, a substantial proportion of stroke survivors are readmitted for various reasons after the initial
hospitalization. In Taiwan, the 30-day readmission rate in patients with stroke was around 10% [7,8],
and the 1-year readmission rate was between 30% and 43% [7–10]. Moreover, nearly 30% of the first-year
medical cost for patients with stroke was spent on readmission [9]. Therefore, readmission after stroke
is costly and needs more attention.
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Patients with stroke who are readmitted have greater levels of disability, a higher risk of
mortality, and more medical resource utilization than those not readmitted [11,12]. At the same time,
risk-standardized mortality and readmission rates are used as indicators for hospital performance [13].
Even though it is arguable to link these indicators to reimbursement [14], the US Centers for Medicare
& Medicaid Services (CMS) has implemented a program to reduce payments to hospitals with excess
readmissions [15]. Specifically, for stroke care, CMS uses a hospital-level 30-day risk-standardized
all-cause readmission measure to determine payments to hospitals [16]. Hospitals would thereby
be penalized if their risk-standardized readmission rates were higher than expected [17]. Similarly,
in Taiwan, the rate of unplanned 14-day readmission for the same or a related diagnosis and crude
mortality rate are among the continuous monitoring indicators of care quality of Taiwan’s hospital
accreditation system [18]. While the hospital level is determined based on the results of hospital
accreditation, it in turn determines the reimbursement a hospital will receive from the National Health
Insurance program in Taiwan.

Thorough knowledge of the risk and causes of readmission or mortality is thus essential for
both quality improvement planning and healthcare resource allocation. Because the occurrence
of medical complications increases the risk of readmission or mortality, aggressive management,
and treatment of complications that are potentially modifiable might be able to reduce readmissions or
mortality following stroke [6,8,19]. Furthermore, early risk assessment using information available
upon admission might help identify high-risk patients for targeted interventions, which could possibly
prevent avoidable readmissions, reduce mortality and improve functional outcomes, and even enhance
the financial health of hospitals.

Because machine learning (ML) techniques have been widely used in clinical decision support,
this study aimed to use ML-based techniques to explore the predictive factors and to develop prediction
models for readmission or mortality in patients hospitalized for stroke or transient ischemic attack
(TIA). Specifically, this study compared prediction models that were developed using various ML
techniques based on initial admission data from a large teaching hospital in Taiwan.

2. Materials and Methods

2.1. Study Population

The study hospital is a 1000-bed teaching hospital serving a city and its adjoining rural areas
of approximately 500,000 inhabitants. The study population was identified from the hospital stroke
registry, which enrolled consecutive patients hospitalized for ischemic stroke, hemorrhagic stroke,
or TIA within 10 days of symptom onset. Ischemic stroke, hemorrhagic stroke, and TIA were defined
in accordance with the criteria of the Taiwan Stroke Registry [20]. Adult patients admitted with the
principal diagnosis of stroke or TIA between October 2007 and January 2016 who were discharged
alive were identified. Only those who gave informed consent to participate in the stroke registry were
included. Patients who were lost to follow-up at 90 days were excluded. The earliest admission during
the study period was designated as the index hospitalization. The study protocol was approved by the
Ditmanson Medical Foundation Chia-Yi Christian Hospital Institutional Review Board (CYCH-IRB
No.104098).

2.2. Variables

The dependent variable of the dataset was a combined outcome of readmission or mortality within
90 days after discharge from the index hospitalization. While previous studies mainly focused on
30-day readmission models [21,22], around half of the first readmissions within one year after stroke
occurred within 90 days [8]. The prediction of 90-day readmission after stroke has gained attention in
recent years [23,24].

As a standard operating protocol for the stroke registry, each patient was interviewed in person
or by telephone at 90 days. Information was obtained from a proxy for patients who could not be
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interviewed because of neurological deficits or death. The reason to use a combined outcome was
to avoid underestimation of readmission rates. Patients who did not survive until hospitalization
because of critical illness or sudden death might be recorded as dead rather than readmission during
the telephone interview.

The independent variables included variables that were available upon admission, such as
demographic data, initial vital signs and laboratory results, past medical history and comorbidities,
treatment-seeking behavior, pre-stroke functional status as assessed using the modified Rankin Scale
(mRS), and initial stroke severity as assessed using the National Institutes of Health Stroke Scale
(NIHSS). Age, pre-stroke mRS, and initial NIHSS were treated as continuous variables. The frequency
of prior emergency department (ED) visits within one year was categorized into 0, 1, or ≥2 visits.
Prior hospitalizations within one year before the index hospitalization were categorized as yes or
no. Physiological measurements and laboratory values were categorized into meaningful groups to
align with clinical practice (Table S1). For example, the body mass index (BMI) status was categorized
according to the local standard as follows: underweight (<18.5 kg/m2), normal (18.5–23.9 kg/m2),
overweight (24–26.9 kg/m2), and obese (≥27 kg/m2) [25].

2.3. Machine Learning Techniques

Various ML algorithms, including C4.5, classification, and regression tree (CART),
k-nearest neighbor (kNN), logistic regression (LR), multilayer perceptron (MLP), Naïve Bayes (NB),
random forest (RF), and support vector machines (SVM) were used to build classifiers for prediction
of readmission or mortality. Specifically, the J48, SimpleCart, IBK, Logistic, MultilayerPerceptron,
NaiveBayes, RandomForest, and SMO modules of Weka 3.8.3 open-source data mining software
(Hamilton, New Zealand, www.cs.waikato.ac.nz/ml/weka) were used.

Class imbalance is common in health-related datasets and may distort the performance evaluation
of ML methods because of their preference towards the majority class. Therefore, cost-sensitive
learning and data resampling have been widely used to address this problem [26,27]. This study
implemented several resampling methods, including undersampling, oversampling, synthetic minority
oversampling technique (SMOTE), and class weighting, to investigate their effect on the performance
of classifiers. Specifically, the SpreadSubsample, Resample, SMOTE, and ClassBalancer filters in Weka
were used.

2.4. Experiments

Experiments were conducted using Python 3.7 with the python-weka-wrapper3 package version
0.1.7 running on the MacOS 10.15 operating system. The scripts can be downloaded from Supplementary
Material. Figure 1 illustrates the process of the classifier building. Two-layer nested cross-validation
was used to build and evaluate the classifiers. In the outer loop, the dataset was split into 10 folds
containing a training set and a holdout test set in a 9:1 ratio using stratified random sampling.
The process of data splitting was repeated three times by varying the random seed, thus generating
30 training and test set pairs. In the inner loop, the training set was used to build classifiers, for which
another 10-fold cross-validation was used to find the optimal hyperparameters (Table 1). The classifiers
with the optimal hyperparameters were tested on the holdout test set. Then the evaluation metrics from
the 30 training and test set pairs were averaged to estimate the generalization performance of classifiers.
This approach ensures that the training, validation, and evaluation data are completely separated.

www.cs.waikato.ac.nz/ml/weka
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Figure 1. The process of classifier building. In the outer loop, 10-fold cross-validation (CV) was used to
estimate the performance of the classifiers. In the inner loop, another 10-fold CV was used to find the
optimal hyperparameters.

Table 1. Machine learning (ML) techniques and hyperparameter tuning. NA = not applicable.

Techniques Hyperparameters Range Increment

NB NA NA NA
LR Ridge value Default NA
RF Number of trees 10–200 10

kNN Number of neighbors 1–20 1
SVM Complexity 0.5–1.0 0.5

Kernel PolyKernel, RBFKernel NA
C4.5 Confidence factor 0.20–0.45 0.05

Minimum of number of instances per leaf 2–20 1
CART Minimum number of instances per leaf 2–20 1
MLP Learning rate 0.1–0.5 0.2

Momentum 0.1–0.3 0.1

Feature selection is a common ML technique. It has the potential of improving training
efficiency, result comprehensibility, and prediction performance. Therefore, during the experiments,
feature selection was applied to the training sets mainly to filter out redundant and/or irrelevant
features from the original data to build a more explainable model. In this study, the correlation-based
feature subset selection (CfsSubsetEval module in Weka) with the BestFirst search method was used to
perform the feature selection procedure. A correlation-based feature selection method was used to
evaluate the correlations between feature subsets and the dependent variable. The optimal feature
subset contains features that are highly correlated with the dependent variable, but uncorrelated with
each other [28]. The best first search strategy was used to find an optimal feature subset from the
feature space. This approach does not specify a threshold to determine the most important features.
Instead, the search terminates when the limit of the number of fully expanded subsets that result in no
improvement is reached [28].
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2.5. Evaluation Metrics and Statistical Analysis

Several metrics were calculated to evaluate the performance of classifiers built using different
ML techniques and resampling methods. True positives (TP) indicate the number of patients correctly
classified as having the outcome whereas true negatives (TN) mean the number of patients correctly
classified as not having the outcome. False positives (FP) indicate the number of patients incorrectly
classified as having the outcome while false negatives (FN) mean the number of patients incorrectly
classified as not having the outcome. Accuracy is (TP + TN) / (TP + TN + FP + FN). Sensitivity is TP /

(TP + FN) whereas specificity is TN / (TN + FP). The receiver operating characteristic (ROC) curve
displays the full picture of the trade-off between sensitivity and specificity by plotting sensitivity as a
function of (1 − specificity) for all possible thresholds. The performance of classifiers was compared
according to the area under the ROC curve (AUC).

Continuous variables were reported with means and standard deviations or medians with
interquartile ranges, and categorical variables were reported with counts and percentages.
Clinical features between patient groups were compared by Chi-square tests for categorical variables
and t-tests or Mann–Whitney U tests for continuous variables. The average of the estimates from
the 30 dataset pairs were compared using paired t-tests. All statistical analyses were performed
using Stata 15.1 (StataCorp, College Station, Texas). Two-tailed p values < 0.05 were considered
statistically significant.

3. Results

A total of 5581 eligible patients were identified from the hospital stroke registry. After excluding
patients who did not give informed consent (n = 1384) and those who were lost to follow-up at 90 days
(n = 775), the remaining 3422 patients comprised the study population. The study population did
not differ statistically from those who were excluded in age (68.3 ± 12.6 versus 68.3 ± 12.9, p = 0.928),
sex (female 39.9% versus 41.3%, p = 0.317), and stroke severity (NIHSS median 4, interquartile range
[IQR] 2–9 versus 5, IQR 2–11, p = 0.056). Table 2 gives the demographics and characteristics of the stroke
of the study population. Patients with the combined outcome were older, more likely to be female,
and had greater stroke severity. The 90-day rate of readmission or mortality was 17.6% (602/3422).
Table S1 lists the independent variables considered to build the models. Most of the variables were
significantly different between groups.

Table 2. Demographics and characteristics of stroke of the study population. TIA = transient ischemic
attack. ICH = intracerebral hemorrhage. NIHSS = National Institute of Health Stroke Scale. SD = standard
deviation. IQR = Interquartile range.

Clinical Feature Total (n = 3422)
Readmission or Mortality

within 90 Days
(n = 602)

No Readmission or
Mortality within 90 Days

(n = 2820)
p

Age, years, mean (SD) 68.3 (12.6) 71.3 (12.3) 67.7 (12.6) <0.001
Female, n (%) 1366 (39.9) 264 (43.9) 1102 (39.1) 0.030

Stroke type, n (%) 0.924
Ischemic stroke 2622 (76.6) 465 (77.2) 2157 (76.5)

TIA 467 (13.7) 80 (13.3) 387 (13.7)
ICH 333 (9.7) 57 (9.5) 276 (9.8)

NIHSS, median (IQR) 4 (2–9) 6 (3–14) 4 (2–8) <0.001

3.1. Important Features

Correlation-based feature selection was applied to the 30 training sets to find the optimal feature
subset. Table 3 lists the features and the times that each feature was selected from the training sets.
Among them, age, prior ED visits within one year, pre-stroke functional status as assessed by the mRS,
initial stroke severity as assessed by the NIHSS, BMI, consciousness level as assessed by the Glasgow
Coma Scale, and use of nasogastric tube were the most important features that predict readmission
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or mortality at 90 days after stroke. These features were constantly selected by the feature selection
algorithm from the 30 different training sets. In addition, failed dysphagia screening test, coronary
artery disease, cancer, heart failure, atrial fibrillation, recent infection, prior hospitalization within one
year, the stage of renal dysfunction as assessed by the estimated creatinine clearance rate, and use of
Foley catheter, which were selected in more than 20 out of the 30 feature selection processes, were also
key features.

Table 3. Features selected among 30 training sets. BMI = body mass index. CAD = coronary artery
disease. eCCr = estimated creatinine clearance rate. ED = emergency department. ESRD = end-stage
renal disease. GCS = Glasgow Coma Scale. mRS = modified Rankin Scale. NIHSS = National Institutes
of Health Stroke Scale.

Features Selection Times (out of 30)

Age 30
Prior ED visits within one year 30

Pre-stroke mRS 30
NIHSS 30

BMI group 30
GCS group 30

Use of nasogastric tube 30
Failed dysphagia screening test 29

CAD 29
Cancer 29

Heart failure 28
Atrial fibrillation 27
Recent infection 25

Prior hospitalization within one year 23
eCCr stage 22

Use of Foley catheter 22
Hematocrit 18

ESRD 18
Hemoglobin 18

Diabetes mellitus 7
ED arrival mode 4

Occupation 2
Cared by attendant 2

Education 1
Use of birth control pill 1

3.2. Evaluation Results

Table 4 gives the average AUC, sensitivity, specificity, and accuracy of various prediction models.
The average AUC values across the ML techniques and resampling methods are displayed as a heatmap
in Figure 2. In general, the AUC values of NB (0.602–0.661) and LR models (0.539–0.659) were higher
than those of the other ML techniques, whereas MLP models (0.545–0.563) had the lowest AUC
values. Among the data resampling methods, the undersampling method improved the performance
of prediction for most of the ML techniques. On the contrary, the SMOTE method resulted in lower
performance for all the ML techniques. Figure 3 shows the average AUC values ordered from the
highest to the lowest. NB models with class weighting, undersampling, imbalanced, and oversampling,
and LR with class weighting ranked the top five. The AUC values between the top five models were
not significantly different according to paired t-tests.



Appl. Sci. 2020, 10, 6337 7 of 13

Table 4. The average performance of various models. AUC = area under the receiver operating characteristic curve.

AUC Sensitivity Specificity Accuracy

Imbalanced
C4.5 0.583 0.097 0.960 0.808

CART 0.568 0.071 0.965 0.808
kNN 0.585 0.044 0.980 0.815
LR 0.649 0.075 0.983 0.823

MLP 0.547 0.188 0.884 0.762
NB 0.660 0.328 0.868 0.773
RF 0.607 0.070 0.956 0.800

SVM 0.500 0.000 1.000 0.824
Undersampling

C4.5 0.600 0.531 0.642 0.623
CART 0.599 0.526 0.657 0.634
kNN 0.611 0.434 0.740 0.686
LR 0.653 0.553 0.680 0.657

MLP 0.563 0.494 0.621 0.599
NB 0.660 0.503 0.742 0.700
RF 0.599 0.578 0.575 0.575

SVM 0.614 0.465 0.763 0.711
Oversampling

C4.5 0.581 0.472 0.656 0.624
CART 0.588 0.516 0.643 0.620
kNN 0.587 0.482 0.646 0.617
LR 0.652 0.550 0.688 0.663

MLP 0.552 0.395 0.708 0.653
NB 0.659 0.511 0.739 0.699
RF 0.598 0.346 0.772 0.697

SVM 0.616 0.484 0.748 0.701
SMOTE

C4.5 0.542 0.238 0.796 0.698
CART 0.544 0.263 0.780 0.689
kNN 0.532 0.313 0.724 0.652
LR 0.539 0.369 0.696 0.638

MLP 0.545 0.291 0.774 0.689
NB 0.602 0.431 0.740 0.686
RF 0.588 0.162 0.870 0.745

SVM 0.540 0.397 0.682 0.632
Class weighting

C4.5 0.584 0.486 0.657 0.627
CART 0.586 0.502 0.636 0.613
kNN 0.598 0.488 0.660 0.630
LR 0.659 0.558 0.693 0.669

MLP 0.550 0.364 0.738 0.673
NB 0.661 0.499 0.744 0.701
RF 0.603 0.239 0.844 0.737

SVM 0.618 0.486 0.751 0.704
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Figure 3. Performance of various ML models in predicting 90-day readmission or mortality in patients
hospitalized for stroke or transient ischemic attack. Prediction models are ordered according to the
area under the receiver operating characteristic curve (AUC).

4. Discussion

4.1. Principal Findings

By analyzing a hospital stroke registry, this study found a rate of readmission or mortality of
17.6% at 90 days after stroke or TIA. The most important features that predict readmission or mortality
included age, prior ED visits within one year, pre-stroke functional status, initial stroke severity,
BMI, consciousness level, and use of nasogastric tube. Several ML techniques were applied to build
prediction models. NB and LR models performed better than the other models in terms of AUC.
The best model, i.e., the NB model with class weighting, achieved an AUC of 0.661. Although data
resampling was expected to improve the performance of prediction, not all resampling methods
performed equally well. Among them, the undersampling method improved prediction performance
for most of the ML techniques.

4.2. Comparisons with Past Studies

Previous studies that examined 90-day readmissions after stroke have found readmission rates
ranging from around 18% to 26% [12,24,29,30] even though the inclusion criteria and outcome measures
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varied slightly across studies. The rate of readmission or mortality in this study was similar to those in
previous reports. However, this study differed from previous readmission models in that only the
variables available upon stroke admission were used to build the prediction models.

Several prior studies have investigated readmissions in patients with stroke admitted to
post-acute-care or inpatient rehabilitation facilities [21,22,31]. Even though their predictor variables
were more informative and generally included past medical history, comorbidities, complications during
acute care, and factors related to post-acute care [21,22,31], their values of AUC were not much different
from those in this study. For example, a large retrospective study of 803,124 patients with stroke using
inpatient rehabilitation facility functional outcome data achieved AUC values ranging from 0.553 to
0.694 in predicting 30-day readmissions [21]. In other words, the prediction of readmission after stroke
is not a trivial task. This is probably because various patient clinical and social characteristics are
associated with readmission and these characteristics are not always routinely collected in clinical
databases [32].

In addition to readmission models for stroke, a systematic review found that readmission models
for various disease populations based on administrative data, clinical data, or both generally performed
inadequately [33]. Those tested in large populations had a particularly poor discriminative ability
with AUCs between 0.55 and 0.65. A study that developed readmission models for heart failure
also reported that the use of ML algorithms did not improve prediction performance compared with
traditional statistical models [34].

4.3. Clinical Implications and Applications in Real-World Settings

The mechanisms underlying readmission are complex and remain incompletely understood.
In addition to physiological factors and medical conditions, a variety of psychological, social,
and economical factors may intertwine with each other to cause readmission. As shown in Table 3,
variables related to socioeconomic statuses such as education and occupation, and variables regarding
social support such as ED arrival mode and patient’s main caregiver, were more or less associated
with the risk of readmission. Moreover, without adequate hospital discharge planning and transitional
care interventions, patients may be readmitted after discharge from acute stroke care even though
their medical conditions have been properly treated. For example, family members may lack the
training, skills, and support services to provide caregiving for disabled stroke survivors, and therefore,
bring patients back to the hospital. Adequate preparation and support for transition from acute stroke
care to home may be required to reduce readmissions [24].

Previous studies have shown that a substantial proportion (up to 12.9%) of readmissions were
potentially preventable [16,35]. Even though hospital discharge planning has the potential of preventing
readmissions [36], one of the key steps is to identify patients at risk of readmission, preferably in the
early stage of admission. The prediction models in this study were developed using only variables
available upon admission and, therefore, can be used to estimate the probability of readmission
soon after patients are admitted to the hospital. A clinical decision support system employing the
ML prediction models developed in this study can facilitate clinicians to identify patients likely to
experience readmission upon hospital admission. In this way, early targeted interventions for patients
at high risk of readmission can be enabled. Certainly, these predischarge interventions should be
tailored to the individual patient according to the estimated risk of readmission and may include patient
needs assessment, patient education, medication reconciliation, the arrangement of early outpatient
follow-up, and referrals to home health rehabilitation [37–39]. Furthermore, after hospital discharge,
at-risk patients identified by the prediction models can be closely monitored to detect in time whether
they are having problems and about to bounce back [40].

4.4. Future Directions

Several approaches may be attempted to improve the performance of prediction models for
readmission. First, high-dimensional information in administrative claims data may be used to
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supplement clinical information in the development of prediction models. Readmission models for
patients with chronic pancreatitis using standardized billing codes and basic patient characteristics
were found to perform reasonably with AUCs ranging from 0.65 to 0.73 [41]. Second, in addition to
structured clinical information, significant determinants of readmission, such as social factors, can be
extracted from clinical notes through natural language processing [42], and in turn, used to build
prediction models. Third, other ML algorithms can be explored. For example, extreme gradient
boosting models were shown to have higher AUCs than traditional statistical models in predicting
90-day readmissions due to recurrent ischemic events in patients with ischemic stroke [23].

4.5. Limitations

First, this is a single-hospital study and the generalizability of the study findings should therefore
be made with caution. Second, about 39% (2159/5581) of patients were excluded from the analysis
because of declining informed consent or missing 3-month data. However, the possibility of selection
bias might not be a concern because the study population did not differ from excluded patients in
age, sex, and stroke severity. Third, the dependent variable of interest, i.e., readmission or mortality,
was obtained through interviews with patients or their proxies. Therefore, recall bias might cause
underestimation of the dependent variable. Fourth, this study did not use variables related to the
process of acute care or post-acute care hospitalizations to develop prediction models, thus possibly
undermining the prediction performance. On the other hand, prediction models using only information
available upon admission might be advantageous in delivering the early targeted intervention to
patients at high risk of readmission or mortality.

5. Conclusions

This study developed ML-based models to predict readmission or mortality in patients hospitalized
for stroke or TIA. Several important predictive factors that increase the risk of readmission or mortality
were identified, including age, prior ED visits within one year, pre-stroke functional status, initial stroke
severity, BMI, consciousness level, and use of nasogastric tube. Various resampling methods were
implemented to balance the class distribution. Nevertheless, they did not always improve predictive
performance. The NB model with class weighting to compensate for class imbalance achieved the
highest prediction performance in terms of the AUC. Even though the prediction models did not
have a high discriminatory capacity, these models could be useful for identifying patients at high risk
for readmission or mortality immediately after admission and enable early discharge planning and
transitional care interventions. Future studies may explore previously unrecognized predictive factors
in clinical text or high-dimensional electronic medical records.
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