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Abstract: The formation process of surface coatings fabricated with laser cladding is very complicated
and coating quality is closely related to laser cladding process parameters. Generally, the optimization
and control of process parameters play key roles when preparing high-quality ceramic coating. In this
paper, three reasonable parameters were selected for each process parameter based on the preliminary
experiment. The experiment of Ti(C, N) ceramic coating prepared with laser cladding was designed
via the Taguchi method. The laser power, spot diameter, overlapping ratio, and scanning velocity
were selected as the main process parameters, and their effects on coating micro-hardness were
analyzed using the signal-to-noise (S/N) ratio and analysis of variance (ANOVA). Then, based on
the back-propagation neural network (BPNN) and quantum-behaved particle swarm optimization
(QPSO) algorithm, we created the prediction model of BPNN-QPSO neural network for laser cladding
Ti(C, N) ceramic coating. The mapping of process parameters to the micro-hardness of the coating
was obtained according to the model and we analyzed the influence of process parameters that
interacted with the coating’s micro-hardness. The results showed that the interaction of laser cladding
process parameters had a significant effect on the micro-hardness of the coating. The established
BPNN-QPSO neural network model was able to map the relationship between laser cladding process
parameters and coating micro-hardness. The process parameters optimized by this model had similar
results with ANOVA. This research provides guidance for the selection and control of ceramic coating
process parameters Ti(C, N) prepared via laser cladding.

Keywords: laser cladding; Taguchi method; back-propagation neural network; particle swarm
optimization algorithm; prediction model; process optimization

1. Introduction

Laser cladding is an important surface modification technique that uses a high power density laser
beam to melt powder material and form a coating bonded metallurgically to the substrate surface. It can
significantly improve the wear-resistance [1,2], corrosion resistance [3,4], and oxidation resistance [5,6]
of a material surface. In our previous research [7], Ti(C, N) ceramic coating was prepared on a Ti6Al4V
titanium alloy surface using a laser cladding process, which significantly improved the hardness and
wear resistance of the titanium alloy surface. However, the formation process of surface coatings
fabricated with laser cladding is very complicated and there are many process parameters that affect
coating quality, such as laser power, spot diameter, scanning velocity, preplaced powder thickness,
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and overlapping ratio [8–10]. At the same time, the interactions of process parameters also have a
great impact on coating quality [11]. Therefore, it is necessary to establish a mapping relationship
between process parameters and coating quality to analyze the mapping rule for laser cladding process
parameters to coating quality.

As a computational intelligence technology, a neural network provides a simple and effective tool
for mapping the relationship between process parameters and quality characteristics [12]. At present,
some researchers have applied a back-propagation neural network (BPNN) to the parameter prediction
of laser cutting [13,14], laser welding [15,16], and other laser processing fields, and have achieved
abundant research results. For example, Ciurana et al. [17] combined the BPNN and particle swarm
optimization (PSO) algorithm to predict the quality of laser micromachining. Guo et al. [18] applied
BPNN to optimize the process parameters of laser cladding cobalt-base alloy. Liu et al. [19] combined
BPNN and genetic algorithm (GA) to predict the quality of laser welding. The results showed that
BPNN could predict processing quality according to laser processing parameters. However, the initial
weights and thresholds of BPNN were randomly selected, which was easy to fall into the local optimal
solution, resulting in poor prediction performance of BPNN [20]. Therefore, it is necessary to optimize
the initial weights and thresholds of BPNN.

In recent years, researchers have studied the effects of laser cladding process parameters on coating
quality and found that the optimization of process parameters was also a difficult problem [21,22].
The optimization of process parameters was usually based on a large number of process experiments
that gradually accumulated processing experience, which had a heavy workload and high cost.
Sun et al. [23], Marzban et al. [24], and Chen et al. [25] designed orthogonal experiments using the
Taguchi method, and optimized laser cladding process parameters using response surface nethodology
(RSM), the technique for order preference by similarity to an ideal solution (TOPSIS), and analysis of
variance (ANOVA), respectively, to improve cladding coating quality. However, when there are many
factors involved in orthogonal experiments, it is difficult to determine the change rule of experimental
data and the optimal result is usually a combination of experimental parameters that can neither
predict the coating quality nor obtain the best process parameters. In order to solve these problems,
some researchers used optimization algorithms to optimize process parameters on the basis of design
of the orthogonal experiment using the Taguchi method. Mozaffari et al. [26] used the PSO algorithm
to predict the geometry of the molten pool and optimize the process parameters. Sun [27,28] improved
PSO algorithm and proposed the quantum-behaved particle swarm optimization (QPSO) algorithm,
which quickly replaced the PSO algorithm for single-objective optimization problems due to its strong
global search capability, easy implementation, and fewer parameters [29,30]. The above results show
that the optimization algorithm is a powerful tool to solve the optimization problem of laser cladding
process parameters.

Based on the above analysis, this paper mainly created an analysis model (i.e., BPNN-QPSO
model) that combined the BP neural and quantum-behaved particle swarm optimization algorithm
to study the effects of laser cladding process parameters on the micro-hardness of ceramic coating.
Firstly, the orthogonal experiment was designed using the Taguchi method to prepare the coating
under different laser cladding process parameters and its micro-hardness was tested. The effects of
process parameters on coating micro-hardness were analyzed by using signal-to-noise (S/N) ratio and
analysis of variance (ANOVA) and the optimal combination of process parameters were determined
according to the analysis results. Then, a BPNN-QPSO neural network prediction model between the
micro-hardness of the coating and process parameters such as laser power, spot diameter, overlapping
ratio, and scanning velocity were established by combining the BPNN and QPSO algorithms, which was
applied to the fabrication process of Ti(C, N) ceramic coating via laser cladding to realize the mapping of
laser cladding process parameters to the micro-hardness of the coating, as well as to analyze the influence
of process parameters interacting with the coating’s micro-hardness. Finally, the micro-hardness of the
coating predicted using the BPNN-QPSO model was taken as the fitness value and the laser cladding
process parameters were optimized using the QPSO algorithm.



Appl. Sci. 2020, 10, 6331 3 of 20

2. Experimental Procedures and Research Methods

2.1. Materials Used

Ti6Al4V titanium alloy plates (Baoji INT Titanium Medical Co., Ltd. Baoji, China) were used as the
substrate for laser cladding experiments. It was cut into specimens with dimensions of 30 × 30 × 6 mm3

using a wire electrical discharge machine tool. The oxide layer on the substrate surface was polished
with SiC sandpaper (120#) and then placed into ethanol solution and deionized water for ultrasonic
cleaning. The cladding powder material was a mixture of 80 wt.% TiCN powder (≥99.5% purity,
particle size 1–10 µm, Shanghai Naiou Nano technology Co., Ltd. Shanghai, China) and 20 wt.%
SiO2 powder (≥99.5% purity, particle size 30 ± 5 nm, Shanghai Keyan Industrial Co., Ltd. Shanghai,
China), and their micro morphology images are shown in Figure 1. Studies [31,32] have shown that
SiO2, as a sintering additive, appeared in a liquid phase at about 1378 ◦C, which improved particle
rearrangement and promoted ceramic densification. Therefore, SiO2 was added into the cladding
material system as a liquid phase to improve the fluidity of TiCN ceramic powder in the laser cladding
process. Each sample was pre-placed 0.45 g of mixed powder (TiCN: 80 wt.%, SiO2: 20 wt.%) on the
surfaces of the substrate, with a thickness of 0.4 mm.
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Figure 1. The micro morphology image of pre-placed cladding powder: (a) TiCN; (b) SiO2.

2.2. Design of Experiments

It is well known that the selection of laser cladding process parameters has a direct impact
on the forming quality and performance of the ceramic coating [33–35], among which laser power,
spot diameter, overlapping ratio, and scanning velocity have a significant impact. Therefore, laser
power (L), laser spot diameter (D), overlapping ratio (S), and scanning velocity (V) were selected
as experimental factors, and each experimental factor was set at 3 levels. According to the mainly
process characteristics of laser cladding, some preliminary experiments of coating preparation using
laser cladding were conducted. Based on the preliminary experimental results, three reasonable
experimental parameters were selected for each process factor, as shown in Table 1. Table 2 is the
L27-(313) orthogonal table designed using the Taguchi method, for the experiments of Ti(C, N) ceramic
coating prepared via laser cladding. The laser cladding system used in the experiments is shown in
Figure 2, which was described in detail in our previous paper [7].

Table 1. Experimental factors and levels.

Process Parameters Notations Unit
Level

1 2 3

Laser power L W 400 450 500
Spot diameter D mm 1 1.5 2

Overlapping ratio S % 20 30 40
Scanning velocity V mm/s 5 7 9
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Figure 2. Schematic diagram of the laser cladding system.

The micro-hardness of the coating is an important index to evaluate the wear resistance of the
material. Therefore, the micro-hardness of the coating is taken as the response of the experiment.
The micro-hardness measurement of the coating is shown in Figure 3. The micro-hardness value (HV0.2)
of the cross-section of the coating was measured using an automatic Vickers micro-hardness tester
(HVS-1000Z, Vegour, Shanghai, China). In the transverse direction of the cross-section, the coating was
divided into 6 sections on average, and the micro-hardness value was measured once on each section
of the coating, a total of 6 times, and the arithmetic mean value was taken as the micro-hardness value
of the coating.
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Table 2. L27-(313) orthogonal table for preparation of Ti(C, N) ceramic coating by laser cladding.

Sample No. L D (S × V)1 S (L × S)1 (L × S)2 (D × S)1 V (D × S)2 (S × V)2

#1 1 1 1 1 1 1 1 1 1 1 1 1 1
#2 1 1 1 1 2 2 2 2 2 2 2 2 2
#3 1 1 1 1 3 3 3 3 3 3 3 3 3
#4 1 2 2 2 1 1 1 2 2 2 3 3 3
#5 1 2 2 2 2 2 2 3 3 3 1 1 1
#6 1 2 2 2 3 3 3 1 1 1 2 2 2
#7 1 3 3 3 1 1 1 3 3 3 2 2 2
#8 1 3 3 3 2 2 2 1 1 1 3 3 3
#9 1 3 3 3 3 3 3 2 2 2 1 1 1

#10 2 1 2 3 1 2 3 1 2 3 1 2 3
#11 2 1 2 3 2 3 1 2 3 1 2 3 1
#12 2 1 2 3 3 1 2 3 1 2 3 1 2
#13 2 2 3 1 1 2 3 2 3 1 3 1 2
#14 2 2 3 1 2 3 1 3 1 2 1 2 3
#15 2 2 3 1 3 1 2 1 2 3 2 3 1
#16 2 3 1 2 1 2 3 3 1 2 2 3 1
#17 2 3 1 2 2 3 1 1 2 3 3 1 2
#18 2 3 1 2 3 1 2 2 3 1 1 2 3
#19 3 1 3 2 1 3 2 1 3 2 1 3 2
#20 3 1 3 2 2 1 3 2 1 3 2 1 3
#21 3 1 3 2 3 2 1 3 2 1 3 2 1
#22 3 2 1 3 1 3 2 2 1 3 3 2 1
#23 3 2 1 3 2 1 3 3 2 1 1 3 2
#24 3 2 1 3 3 2 1 1 3 2 2 1 3
#25 3 3 2 1 1 3 2 3 2 1 2 1 3
#26 3 3 2 1 2 1 3 1 3 2 3 2 1
#27 3 3 2 1 3 2 1 2 1 3 1 3 2

2.3. Analytical Methods

The signal-to-noise (S/N) ratio was used to evaluate the effects of each selected laser cladding
process parameter on the micro-hardness of the coating. The experimental response can be
converted into 3 types of S/N ratios, i.e., the higher-the-better (HB), the lower-the-better (LB), and the
nominal-the-better (NB) [36]. In this paper, the aim was to improve the wear resistance of Ti(C, N)
ceramic coatings and obtain optimal process parameters. Therefore, the micro-hardness of the coating
was evaluated using the higher-the-better (HB) criterion of the S/N ratio, as shown in Equation (1):

ηHB = −10lg

 1
N

N∑
i=1

 1
y2

i


 (1)

where ηHB is the HB S/N ratio value, N is the number of repetitions for experimental
combinations; yi is the experimental response, which is the micro-hardness of the coating from
the experimental measurements.

The analysis of variance (ANOVA) was used to evaluate the significance of each experimental
factor. The probability value (p-value) in ANOVA analysis was calculated using Minitab software,
which is an important index to evaluate the significance of factors. When the p-value of a factor is
less than 0.05, the factor is highly significant (HS), and when the p-value of a factor is greater than
0.05 and less than 0.1, the factor is significant (S). According to ANOVA analysis, the optimal process
parameters for the experimental response were determined.
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2.4. Design of the BPNN

Back-propagation neural network (BPNN) is a supervised learning algorithm. Its structure
includes one input layer, p hidden layers, and one output layer. BPNN can be used to establish the
mapping relationship between process parameters and coating micro-hardness. In order to describe
the structure of BPNN, the following definitions are given: the input layer is layer 0, the hidden layers
are from layer 1 to layer p, and the output layer is layer p + 1 after the last hidden layer. The number of
BPNN neurons in the hidden layer is determined by the empirical Equation (2) [37]:

h =
√

ni + no + c (2)

where h, ni, and no are the number of neurons in the hidden layer, input layer, and output layer,
respectively, and c is a constant between 1 and 10. The optimal number of BPNN neurons and network
structures are determined to be 4-6-6-1 by the trial-and-error method, so the number of hidden layers
in this paper is p = 2, and the structure of BPNN is shown in Figure 4. The training process of BPNN is
as follows:

• Step 1: The input and output training data is an m × n two-dimensional array, denoted as (xij)m×n,
which is normalized to between 0.1 and 0.9 by Equation (3):

Xi j =
xi j − x jmin

x jmax − x jmin
× 0.8 + 0.1 (3)

where (Xij)m×n is a normalized m × n two-dimensional array, and xjmax and xjmin are the maximum
and minimum values of the jth column of the two-dimensional array (xij)m×n, respectively.

• Step 2: The input layer neurons transfer the normalized data to the hidden layer neurons or the
value calculated by the neurons of the upper hidden layer is transferred to the neurons of the next
hidden layer. The input of the neurons in lth layer (netl

j) is calculated by Equation (4):

netl
j =


X j =

(
X1 j, X2 j, · · ·X3 j

)T
, l = 0

f
(

h∑
i=1

wl
i jnetl−1

i + θl
j

)
, l = 1, 2, 3 · · ·P

(4)

where Xj is the jth column vector of the above two-dimensional array (Xij)m× n, wl
i j is the connection

weight of the neuron (i) of the (l−1) layer to the neuron (j) of the l layer, netl−1
1i is the input of the

neuron (i) of the (l−1) layer, θl
j is the threshold of the neuron (j) in the l layer, and the transfer

function f is tansig function.
• Step 3: The output of neurons in the output layer (netk) can be calculated by Equation (5) below:

netk =
h∑

j=1

netP
j wP+1

jk + θP+1
k , k = 1, 2, 3 · · · no (5)

where wP
jk is the connection weight of the neuron (j) in p layer to the neuron (k) of the (p + 1) layer

and θP+1
k is the threshold of the neuron (k) of the (p + 1) layer.

• Step 4: The error of network training is the mean square error (MSE), which is calculated by
Equation (6). The weight correction amount of each layer is calculated according to the derivation
rule of the differential chain, as shown in Equation (7):

MSE =
1

Ns

Ns∑
k=1

1
2

∑
k∈{C}

(dk − netk)
2

 (6)
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∆wl
i j = −λ

∂MSE
∂yk

∂yk

∂netl
j

∂netl
j

wl
i j

(7)

where dk is the experimental response, Ns is the total number of samples, {C} is the set of output
data, and λ is the learning rate usually within the range [0, 1]. By repeating the parameter
adjustment, the optimal value of λ is taken as 0.001.
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2.5. Design of BPNN Optimized by QPSO

The initial weights and thresholds of BPNN training were randomly selected and easily fell into
the local optimal solution, resulting in poor prediction performance of BPNN. Therefore, the QPSO
algorithm was used to optimize the weights and thresholds of BPNN, which is called the BPNN-QPSO
neural network model. In the QPSO algorithm, the particle swarm is an ND × NP two-dimensional
array, denoted as (Oid,jp)ND×NP. The position vector and velocity vector of the id-dimensional particle
in the zth update are xz

id = (xz
id,1, xz

id,2, · · · xz
id,NP and vz

id = (vz
id,1, vz

id,2, · · · vz
id,NP), respectively. The optimal

value of the particle after the zth update is called the best personal position (Pbestz
id, jp). If the best

personal position is also the optimal value in the particle swarm, it is also called the best global position
(Gbestz

id, jp). The flow chart of the optimization algorithm is shown in Figure 5.

• Step 1: Extract the weight and threshold of BPNN, initialize the particle swarm, position vector
(xid), and velocity vector (vid).

• Step 2: Calculate the fitness of the initial particles (fitness) The standard error (σ) is selected
as fitness value (fitness), as shown in Equation (8), to evaluate the performance of BPNN with
different weights and thresholds, i.e., to evaluate the best personal position and the global position
of particles [37]. Where εk is the relative error.

σ =

√
ε2

1 + ε2
2 + ε2

3 + · · · · · · ε
2
k

N
, εk =

∣∣∣∣∣dk − netk
netk

∣∣∣∣∣× 100(%) (8)
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• Step 3: Compare the best personal position (Pbestz+1
id, jp) of the particle in the (z + 1)th update with

the best personal position (Pbestz
id, jp) of the zth update. If (z + 1)th fitness is better than zth fitness,

then (Pbestz
id, jp) is replaced by (Pbestz+1

id, jp).

• Step 4: Compare the best global position (Gbestz+1
id, jp) of the particle in the (z + 1)th update with

the best global position (Gbestz
id, jp) of the zth update. If (z + 1)th fitness is better than zth fitness,

then (Gbestz
id, jp) is replaced by (Gbestz+1

id, jp).

• Step 5: Update Mbestz
jp, vz

id and xz
id of particles. Mbestz

jp is the average value of Pbestz
id, jp of all

particles, which is the center of the best personal position of all particles, called the mean best
position, as shown in Equation (9). The particles update their velocity vector and position vector
according to Equations (10)–(12) in the QPSO algorithm:

Mbestz
jp =

 1
ND

ND∑
id=1

Pbestz
id,1,

1
ND

ND∑
id=1

Pbestz
id,2, · · ·

1
ND

ND∑
id=1

Pbestz
id,Np

 (9)


vz+1

id = ϕ · Pbestz
id + (1−ϕ)Gbestz

id
Pbestz

id =
(
Pbestz

id,1, Pbestz
id,2, · · ·Pbestz

id,NP

)
Gbestz

id =
(
Gbestz

id,1, Gbestz
id,2, · · ·Gbestz

id,NP

) (10)

xz+1
id = vz+1

id + rand(u) × α
∣∣∣∣Mbestz

jp − xz
id

∣∣∣∣ ln (
1
u
) (11)

rand(u) =
{

+1, u ≥ 0.5
−1, u < 0.5

(12)

where ϕ and u are a sequence of random numbers on the uniform distribution within (0,1), and α
is a contraction factor.

PSO algorithm updates the velocity vector and position of particles according to the following
Equations (13) and (14):

vz+1
id = w · vz

id + c1 · rang(u)
(
Pbestz

id − xz
id

)
+ c2 · rang(u)

(
Gbestz

id − xz
id

)
(13)

xz+1
id = xz

id + vz+1
id (14)

where w is the weight and c1 and c2 are constants. By repeating the parameter adjustment, α is taken as
1, w as 1.4, and c1 and c2 as 1.49445.

• Step 6: If the set training goal is reached or the maximum number of cycles is reached, exit the loop,
and correlation coefficient (R2) expressed by Equation (15) is used to evaluate the performance of
the model; otherwise, return to Step 2.

R2 =

∑
k∈{C}

(
dk − dk

)(
netk − netk

)
√∑

k∈{C}

(
dk − dk

)2(
netk − netk

)2
(15)

where dk is the average value of the experimental response and netk is the average value of the
output of the neural network.
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2.6. Process Optimization Design of Higher-the-Better Micro-Hardness of the Coating

Based on the established BPNN-QPSO prediction model, the input process parameters were taken
as particles in the QPSO algorithm and the predicted micro-hardness was taken as the fitness value.
Then, the QPSO algorithm was used to find the process parameters when the micro-hardness of the
coating reached the maximum. According to a previous report [38,39], it is known that the particle’s
flight velocity boundary ([vmin, vmax]) is usually equal to the position boundary ([xmin, xmax]) multiplied
by a coefficient (β). The value of β with the best convergence performance is taken as 1 when the value
of β is within the range [0, 2]. It should be noted that the flight space of the particle should contain the
experimental sample space during optimizing the design. Based on the above analysis, β is taken as 1.
Therefore, the optimization of the process parameters of laser cladding Ti(C, N) ceramic coating can be
transformed into a constrained optimization problem aiming at the maximum micro-hardness of the
coating, as described in Equation (16).

max[Micro− hardness = f itness(Xi)]

Xi = (Xi,1, Xi,2, Xi,3, Xi,4) = (L, D, S, V)

s.t. − 500 ≤ L ≤ 500
−2 ≤ D ≤ 2
−40 ≤ S ≤ 40
−9 ≤ V ≤ 9

(16)
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3. Results and Discussion

Figure 6 shows a typical cross-section image of a multi-track laser cladding coating observed
by an ultra-depth-of-field 3D microscope and the thickness of the coating was about 0.4 mm.
The micro-hardness values of the coatings are listed in Table 3. The micro-hardness values of
the Ti(C, N) ceramic coatings were analyzed using the S/N ratio and ANOVA.
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Table 3. The micro-hardness of the coatings from experiments and models.

No. Sample No. L D S V
Micro-Hardness (HV0.2)

ExperimentBPNN BPNN-PSO BPNN-QPSO

Training group

1 1# 1 1 1 1 932.9 932.1 947.4 942.9
2 2# 1 1 2 2 971.4 970.3 960.3 965.2
3 3# 1 1 3 3 985.5 985.8 1001.1 987.2
4 4# 1 2 1 2 988.3 989.9 989.1 988.0
5 6# 1 2 3 1 991.5 992.6 988.9 990.0
6 7# 1 3 1 3 812.8 812.0 828.0 827.5
7 9# 1 3 3 2 889.0 887.6 889.7 886.8
8 10# 2 1 1 2 1134.6 1132.5 1107.0 1113.9
9 11# 2 1 2 3 919.9 919.5 920.3 923.8
10 12# 2 1 3 1 1089.5 1086.7 1086.6 1080.1
11 13# 2 2 1 3 955.9 956.3 952.0 950.1
12 14# 2 2 2 1 886.3 890.7 883.0 892.1
13 15# 2 2 3 2 969.6 953.1 971.9 968.5
14 17# 2 3 2 2 843.6 843.9 853.7 841.2
15 18# 2 3 3 3 887.8 887.1 878.3 890.7
16 19# 3 1 1 3 928.3 936.4 924.5 932.4
17 20# 3 1 2 1 856.6 858.3 855.4 860.5
18 22# 3 2 1 1 890.7 891.4 882.7 890.3
19 23# 3 2 2 2 860.0 856.0 871.6 862.8
20 24# 3 2 3 3 903.1 906.2 899.4 903.6
21 26# 3 3 2 3 1017.6 1014.6 1015.0 1012.6
22 27# 3 3 3 1 882.0 890.1 877.0 882.1

Prediction group

1 #5 1 2 2 3 979.8 852.2 1050.7 908.0
2 #8 1 3 2 1 1002.2 858.2 948.0 918.4
3 #16 2 3 1 1 892.2 763.1 840.7 854.3
4 #21 3 1 3 2 918.2 831.5 856.2 868.5
5 #25 3 3 1 2 1001.3 956.4 1005.2 946.3

3.1. The Effect of Process Parameters on the Micro-Hardness of the Coating

The effect of the process parameters on the coating’s micro-hardness was evaluated with the S/N
ratio and the results are shown in Table 4. The rank of the influence of each factor on the micro-hardness
is (S × V) > D > (L × S) > (D × S) > L > S > V. The analysis results of ANOVA are shown in Table 5.
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(L × S) and (S × V) were highly significant factors, while D and (D × S) were significant factors. Figure 7
shows the main effect diagram that analyzed the influence of factors on micro-hardness. According to
Figure 7a, the process parameters that are beneficial to improve the micro-hardness of the coating are
selected. L1 and L2 were selected for laser power, D1 for the spot diameter, S1 and S3 for the overlapping
ratio, and V2 for the scanning velocity. When there was a significant interaction between the two
factors, the optimal level of the factor was selected from the interaction of the factors, regardless of
whether the effect of the factor itself was significant [25]. Because (L × S), (S × V), and (D × S) were
significant factors, the optimal process parameter combination was confirmed from the interaction of
factors. According to Figure 7b–d, the combinations of factors were confirmed successively are L2S1,
D1S1, and S1V2. Therefore, the optimal combination of process parameters was L2D1S1V2, i.e., laser
power L2 = 450 W, spot diameter D1 = 1 mm, overlapping ratio S1 = 20%, and scanning velocity
V2 = 7 mm/s.

Table 4. Effect of laser cladding process parameters on the micro-hardness of the coatings (S/N ratio).

Level L D (S × V) S (L × S) V (D × S)

1 59.54 59.71 59.28 59.51 59.22 59.4 59.53
2 59.55 59.42 59.64 59.32 59.67 59.55 59.27
3 59.24 59.2 59.41 59.5 59.44 59.37 59.54

Delta 0.31 0.51 0.58 0.19 0.48 0.17 0.43
Rank 5 2 1 6 3 7 4

Table 5. ANOVA of the micro-hardness of the coatings.

Source DoF Adj SS Adj MS F-Value p-Value Significance

L 2 7092 3546 2.45 0.166
D 2 14604 7302 5.05 0.052 S
S 2 2676 1338 0.93 0.446
V 2 2169 1085 0.75 0.512

L × S 4 30172 7543 5.22 0.037 HS
D × S 4 22013 5503 3.81 0.071 S
S × V 4 54765 13691 9.47 0.009 HS
Error 6 8672 1445

Total 26 142163Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 20 
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Figure 7. Effect of laser cladding parameters on micro-hardness of coatings: (a) the influence of single
factors; (b) the interaction of S and L; (c) the interaction of S and D; (d) the interaction of V and S.
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3.2. BPNN-QPSO Network Model for Optimizing Laser Cladding Process Parameters

The BPNN-QPSO network model was created based on MatLab to optimize process parameters of
Ti(C, N) ceramic coating prepared via laser cladding. In total, 22 groups of data from the experimental
samples were randomly selected for training and the other 5 groups of data were used to verify the
predictive ability of the model, as shown in Table 3. BPNN-QPSO network model parameter settings
are shown in Table 6.

Table 6. Parameters setup for BPNN-QPSO.

Parameter Name Value

Dimensions of Particle Swarms (ND) 20
Number of iterations (QPSO) 30

Noise 0.01
contraction coefficient 1

Number of epochs (BPNN) 5000
Training goal 0.0005
Learning rate 0.001

Transfer function tansig
Training function trainbr

3.2.1. Analysis of Training Performance of BPNN-QPSO Model

According to the data from the 22 training groups listed in Table 3, the iteration of the fitness value
(σ) calculated by Equation (8) is shown in Figure 8a. It can be seen that the weights and thresholds
of BPNN optimized by PSO algorithm and QPSO algorithm reached the optimal solution after 15
iterations and 22 iterations, respectively. The obtained optimal weights and thresholds were used to
optimize the weights and thresholds of BPNN. The mean square error (MSE) calculated by Equation
(6) is shown in Figure 8b–d. It can be seen that the un-optimized BPNN training underwent 19 epochs,
the BPNN optimized by PSO training underwent 69 epochs, and the BPNN optimized by QPSO training
underwent 93 epochs, all of which converged to the set training goal of 0.0005. The experimental results
and training results of coating micro-hardness are listed in Table 3. As shown in Figure 9, it can be seen
that the maximum errors of BPNN, BPNN-PSO, and BPNN-QPSO training are 1.7%, 2.49%, and 1.86%,
respectively. The correlation coefficient calculated by Equation (13) is shown in Figure 10, indicating
that the training effects are highly correlated. The results show that the established BPNN-QPSO
network model had a strong training ability, the maximum error of training was small, and the number
of training epochs increased.
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Figure 8. Training performance of the network model: (a) fitness iteration of standard error; (b) BPNN
training process; (c) BPNN-PSO training process; (d) BPNN-QPSO training process.
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Figure 9. Comparison diagram of training values and experimental values of micro-hardness:
(a,b) BPNN; (c,d) BPNN-PSO; (e,f) BPNN-QPSO.
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Figure 10. Scatter plot of training values and experimental values of micro-hardness: (a) BPNN;
(b) BPNN-PSO; (c) BPNN-QPSO.

3.2.2. Analysis of the Predictive Performance of BPNN-QPSO Model

BPNN, BPNN-PSO, and BPNN-QPSO models predicted micro-hardness for the 5 coating groups,
as listed in Table 3. As shown in Figure 11, it can be seen that the maximum errors of BPNN,
BPNN-PSO, and BPNN-QPSO predictions were 14.47%, 7.24%, and 9.12%, respectively. The correlation
coefficients calculated by Equation (13) are shown in Figure 12. The correlation coefficients of BPNN,
BPNN-PSO, and BPNN-QPSO were 0.8179, 0.8363, and 0.9575, respectively. The results showed that
the established BPNN-QPSO network model had better prediction results and the prediction results
had a better correlation, which could be used to predict the micro-hardness of laser cladding Ti(C, N)
ceramic coatings.
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Figure 11. Comparison diagram predicted and experimental micro-hardness of coatings: (a,b) BPNN;
(c,d) BPNN-PSO; (e,f) BPNN-QPSO.
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(b) BPNN-PSO; (c) BPNN-QPSO.

3.3. Optimization Results of Laser Cladding Process Parameters

The optimization results of the process parameters aiming at the maximum micro-hardness of
coating are shown in Table 7. The optimal process parameter combination obtained using the Taguchi
method was L2D1S1V2, i.e., laser power 450 W, spot diameter 1 mm, overlapping ratio 20%, scanning
velocity 7 mm/s, and the micro-hardness of the coating tested by the hardmeter was 1134.6 HV0.2.
The process parameters optimized via the BPNN model were 457.69 W, 1 mm, 21%, 7 mm/s, and the
predicted micro-hardness was 1154.1 HV0.2. The process parameters optimized using the BPNN-PSO
model were 449.85 W, 1 mm, 20%, 6.3 mm/s, and the predicted micro-hardness was 1108.8 HV0.2.
The parameters optimized using the BPNN-QPSO model were 445.65 W, 1 mm, 20%, 6.33 mm/s, and the
predicted micro-hardness was 1118.2 HV0.2. The fitness value calculated by aiming at the maximum
micro-hardness value of coating is shown in Figure 13. It can be seen that BPNN-QPSO had a larger
optimization range than BPNN-PSO and less iteration times were required for convergence to obtain
the optimal solution than BPNN. The results showed that the probability of the BPNN-QPSO network
model falling into the local optimal solution was lower than that of the BPNN-PSO network model,
the convergence rate of the optimal solution was faster than that of BPNN, and the optimization result
was similar to that of the Taguchi method.

Table 7. Optimization results of process parameters.

Method L (W) D (mm) S (%) V (mm/s) Micro-Hardness (HV0.2)

Taguchi 450 1 20 7 1134.6
BPNN 457.69 1 21 7 1154.1

BPNN-PSO 449.85 1 20 6.3 1108.8
BPNN-QPSO 445.65 1 20 6.33 1118.2
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3.4. Effect of Interaction of Process Parameters on the Micro-Hardness of the Coating

In order to visually observe the effect of the interaction of laser cladding process parameters on
the micro-hardness of the coating in the orthogonal experiment, based on the established BPNN-QPSO
model, the laser power density is calculated by Equation (17) [40]. By using the controlled variable
method, the variation trend and the interaction of micro-hardness with process parameters are plotted
in Figures 14 and 15, respectively. It should be noted that the curvature of each contour map in
Figure 15 indicates whether the interaction between two independent process parameters is significant.
When the contour line tends to be an ellipse, it means that the two process parameters have a strong
interaction. When they tend to be circle, the interaction between these two process parameters is
small [41].

Q =
4L
πDV

(17)

By controlling the process parameters (D = 1 mm, S = (22%, 27%, 35%), V = 6.33 mm/s), the variation
trend of micro-hardness with laser power L is plotted in Figure 14a. It can be seen that the coating’s
micro-hardness increased first and then decreased with laser power L. By controlling the process
parameters (D = 1 mm, V = 6.33 mm/s), the interaction between laser power L and the overlapping
ratio S was plotted, as shown in Figure 15a. It can be directly seen that it was beneficial to obtain the
maximum micro-hardness of coating if the laser power density Q(L×S) ranged from 87 W·s·mm−2 to
92 W·s·mm−2 and the overlapping ratio S ranges from 20% to 25% in the interaction between L and S.
In addition, the contour lines of Figure 15a tend to be elliptic, indicating that the interaction between L
and S was highly significant (p-value = 0.031).

By controlling the process parameters (L = 445.65 W, S = (22%, 27%, 35%), V = 6.33 mm/s),
the variation trend of micro-hardness with spot diameter D was plotted in Figure 14b. It can be seen
that the micro-hardness of the coating decreased with the increase of spot diameter D. By controlling
the process parameters (L = 445.65 W, D = 1 mm), the interaction between spot diameter D and the
overlapping ratio S was plotted, as shown in Figure 15b. It can be observed that it was beneficial to
obtain the maximum micro-hardness of the coating when the laser power density Q(D×S) ranged from
80 W·s·mm−2 to 90 W·s·mm−2 and the overlapping ratio S ranged from 20% to 25% in the interaction
between D and S. In addition, the contour lines in Figure 15b are approximately elliptic, indicating that
the interaction between D and S was significant (p-value = 0.071).

By controlling the process parameters (L = 445.65 W, D = 1 mm, V = (6 mm/s, 7 mm/s, 8 mm/s)),
the variation trend of micro-hardness with overlapping ratio S is plotted in Figure 14c. It can be
known that the micro-hardness decreased with the increase of overlapping ratio S from 20% to
35%, while micro-hardness of coating increased when overlapping ratio S increased from 35% to
40%. By controlling the process parameters (L = 445.65 W, D = 1 mm), the interaction between the
overlapping ratio S and the scanning velocity V is plotted as shown in Figure 15c. It can be observed
that it was beneficial to obtain the maximum micro-hardness of coating when the laser power density
Q(S×V) ranged from 70 W·s·mm−2 to 110 W·s·mm−2 and the overlapping ratio S ranged from 20% to
25% in the interaction between S and V. In addition, the contour lines of Figure 15c tend to be an
elliptic, indicating that the interaction between S and V was highly significant. (p-value = 0.009).
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4. Conclusions

This orthogonal experiment was designed using the Taguchi method and the effect of process
parameters on the micro-hardness of the coating was analyzed via the S/N ratio and ANOVA. Moreover,
the optimal combination of process parameters was obtained. Based on the back-propagation neural
network (BPNN) and quantum-behaved particle swarm optimization (QPSO) algorithm, a BPNN-QPSO
neural network prediction model for laser cladding Ti(C, N) ceramic coating was established, and the
effects of the process parameters and their interactions on the micro-hardness of the coating were
analyzed. Then, the process parameters were optimized aiming to the maximum micro-hardness of
Ti(C, N) the ceramic coating. The main conclusions are summarized as follows:

(1). Through S/N ratio, ANOVA analysis and main effect plot, the combination of the optimal process
parameters were determined as L2D1S1V2, namely laser power 450 W, spot diameter 1 mm,
overlapping ratio 20%, and scanning velocity 7 mm/s. The micro-hardness of the coating was
1134.6 HV0.2.

(2). The BPNN-QPSO neural network model had strong training and prediction ability. The models
of BPNN and BPNN-QPSO were trained for 19 epochs and 93 epochs, respectively, to reach the
training goal. The maximum relative errors of BPNN and BPNN-QPSO prediction were 14.47%



Appl. Sci. 2020, 10, 6331 18 of 20

and 9.12%, respectively, and the correlation coefficients of the prediction results were 0.8179 and
0.9575, respectively.

(3). The BPNN-QPSO neural network model optimized the process parameters of Ti(C, N) ceramic
coating prepared by laser cladding and the optimized process parameters were laser power
445.65 W, spot diameter 1 mm, overlapping ratio 20%, and scanning velocity 6.33 mm/s.
The optimization results were similar to those obtained by ANOVA.

(4). The BPNN-QPSO neural network model predicted the optimal micro-hardness of Ti(C, N)
ceramic coating prepared by laser cladding and the optimal micro-hardness was 1118.2 HV0.2.
The interaction between laser power and overlapping ratio, the interaction between the spot
diameter, and the overlapping ratio, as well as the interaction between overlapping ratio and
scanning velocity had significant effect on the micro-hardness of Ti(C, N) the ceramic coatings.
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