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Abstract: On-board sensory systems in autonomous vehicles make it possible to acquire
information about the vehicle itself and about its relevant surroundings. With this information
the vehicle actuators are able to follow the corresponding control commands and behave accordingly.
Localization is thus a critical feature in autonomous driving to define trajectories to follow and
enable maneuvers. Localization approaches using sensor data are mainly based on Bayes filters.
Whitebox models that are used to this end use kinematics and vehicle parameters, such as wheel
radii, to interfere the vehicle’s movement. As a consequence, faulty vehicle parameters lead to
poor localization results. On the other hand, blackbox models use motion data to model vehicle
behavior without relying on vehicle parameters. Due to their high non-linearity, blackbox approaches
outperform whitebox models but faulty behaviour such as overfitting is hardly identifiable without
intensive experiments. In this paper, we extend blackbox models using kinematics, by inferring
vehicle parameters and then transforming blackbox models into whitebox models. The probabilistic
perspective of vehicle movement is extended using random variables representing vehicle parameters.
We validated our approach, acquiring and analyzing simulated noisy movement data from mobile
robots and vehicles. Results show that it is possible to estimate vehicle parameters with few kinematic
assumptions.

Keywords: vehicle parameter estimation; variational bayes; probabilistic robotics

1. Introduction

The behavior of autonomous vehicles is strongly reliant on their sensors’ data and the
interpretation of the environment [1]. Internal sensors can be used to estimate the vehicle’s own
movement and assist in their control. However, due to sensor noise, external information needs to be
used from perception approaches. These data enable the correction of assumptions based solely on
internal sensors, increasing the accuracy and reliability of the active safety systems through knowledge
of the vehicle’s surroundings (e.g., through object recognition and tracking).

One of the main characteristics of an autonomous vehicle is the ability to localize itself. To make
localization possible a function f : ∆Φ 7→ X is needed (see Equation (1)) which maps for m wheels
the angular rotation ∆Φ =

{
∆φ0, ∆φ1, . . . , ∆φm

}
and vehicle parameters Θ to a new vehicle pose.

In this study, we summarize wheel radii, and distances between wheels used for kinematic models as
“vehicle parameters”.
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To estimate movement for a two-wheeled vehicle on a two dimensional surface at time t,
following general notation can be used:∆x

∆y
∆θ


t

= f (∆φl , ∆φr, Θ) (1)

Equation (1) calculates pose changes based on the left wheel motion ∆φl , the right wheel motion
∆φr and vehicle parameter Θ. Since a vehicle is a machine that transports people or goods from
one place to another [2] and a robot is a machine capable of carrying out a complex series of actions
automatically [3], we can define autonomous vehicles as vehicular robots. From a mathematical
perspective, both terminologies are equivalently described using f , since both models are fully
described by analyzing the wheel motion. The function f is also known as motion model. Motion models
are crucial for autonomous vehicles since they are utilized in control, perception and planning [4].
The most commonly used motion models are based on either constant turn rate, constant acceleration,
constant velocity or on a combination of these [5].

The angular movement of the wheels and the vehicle parameters Θ (wheel radii and distance
between wheels) are used to calculate the pose of the vehicle. This use of data from the movement
of actuators to estimate changes in position over time is defined as odometry. A well documented
issue with odometry is imprecision/inaccuracy, since wheels tend to slip on the road’s surface [6].
Therefore the previously defined f function is not adequate to estimate these changes.

To alleviate uncertainty (noise) and unknown effects that disturb rather theoretical kinematic
models and produce errors [7], probabilistic approaches have been developed to enable localization
under uncertainty in real environments. Some of them are summarized in [1].

Applying a probabilistic approach, the function in Equation (1) is able to map the wheel rotation
to the pose changes and to merge vehicle parameters, such as wheel radii, as unknown parameters
using black box approaches [8,9].

Probabilistic models are used to determine coherences and marginal distributions [10] and can be
described using graphical representations [11]. As a special instantiation, hidden Markov models [12]
are the base for Bayes filters [1], which are the main models used for vehicle localization. The goal of
a Bayes filter is to fuse information, where a movement model p(~xt|~xt−1,~ut), a measurement model
p(~zt|~xt), the vehicle’s last state ~xt−1 at the time slot t− 1, as well as the so-called command value ~ut

and measurements~zt to the latest vehicle pose ~xt at the time step t.
Compared to simple odometry, Bayes filters have the advantage of being able to represent

the uncertainty along a predicted trajectory. To better understand the complexity of Bayes filters,
probabilistic graphical models can describe the localization approach [11,13] as shown for example in
Figure 1, in which the arrows represent the conditional (in)dependency and conditional probabilities.
Note that the Bayes filter does not define the vehicle parameters, sensor technology or control input.

Figure 1. Graphical probabilistic model describing the Bayes filter. Each node describes a random
variable. xj describes the vehicle’s state at time j, zj describes a measurement and uj a control state.
Note that due to readability, we skipped the vector arrow in the figure.
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The most common choice of Bayes filter implementation is the Kalman filter (KF) [14,15]. The
KF is based on linear movement and measurement models. Since this is a strong restriction for real
applications, several extensions exists. Generic algorithms and non-linear KF [16,17] were previously
implemented to overcome this restriction. A methodology for federated KF in order to implement a
self-adaptive navigation system was implemented in [18]. The unscented transformation was proposed
in [19] for non-linear function approximation.

However, in order to learn non-linear and non-parametric movement models from real data,
Bayes filters based on advanced statistical models rather than linear movement models which are used
in Kalman filters were implemented [8,9].

Unfortunately, due to their high non-linearity, those models tend to become blackbox models
that deliver the expected outputs without having any in-depth knowledge of the internal processes
structure. Intensive experiments are needed to analyze the system behavior, which is not a trivial
task [10,20].

This work is motivated by the need for explainable machine learning solutions for safety
critical systems. The importance of a fundamental understanding of any artificial intelligence based
system has been highlighted in [21]. The authors argued that this can only be achieved by the
identification of underlying explanatory factors. Several machine learning models such as artificial
neuronal networks cannot identify causal relations in data and thus cannot fully understand the
environment [20]. To identify causality more appropriate approaches exist that rely on Bayesian
methodologies, as described in [10]. Approaches that are based on Bayesian methods have some
similarities with Gaussian processes (GP). For example, specific families of Bayesian artificial neuronal
networks with an infinite number of neurons converge to Gaussian processes [22].

Relying on this information, the study presented in this work is based on GPs due to the
non-parametric nature of the model. This means that GP models are able to perform predictions
without requiring user-based definitions, contrary for example to other machine learning models that
base on neuronal network architectures and affect the model performance significantly.

Therefore, since user-based definitions would critically limit the explanatory power of the
presented methodology, parametric models such as artificial neuronal networks will not be the focus
of this work.

p(~xt|~xt−1,~ut) and p(~zt|~xt) were previously implemented in [8,23,24] using Gaussian processes
[25]. Those GP-based localization approaches [8,23,24] tackle the problem of modelling movement
and measurement models based on data and machine learning. The resulting models are called
blackbox models, since they deliver the outputs without having any in-depth knowledge of the
internal processes structure. In general, these GPs are based on a dataset of n examples described
by D = {(y0,~x0), . . . , (yn,~xn)}. Prediction and subsequent integration in localization applications is
achieved using data similarity, which is implemented using kernels [26]. The prediction of the vehicle
movement y∗ can be calculated using wheel movement ~x∗. The noise-free prediction of y∗ is depicted
by f ∗ and is estimated using the following Equation (2), which has been previously discussed in [25].(

~y
f ∗

)
∼ N

(
~0,

[
K + σ2

nI ~kT
∗

~k∗ k∗∗

])
. (2)

In the equation K is an elementwise similarity measurement, ~k∗ describes the similarity of a
new input (e.g., wheel movement) to the stored values and k∗∗ describes the similarity of the new
input to itself. σn is the variance of noise and I is the identity matrix. Thus a prediction is based
on the estimation of p( f∗|~f , X,~x∗) and is done rearranging Equation (2). For GP-based localization,
two GP are used to model p(~xt|~xt−1,~ut) and p(~zt|~xt). To describe those models a compact notation of
Equation (2) is used:
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p(~xt|~xt−1,~ut) = N
(

GPµ(~xt−1,~ut,Dp), GPΣ(~xt−1,~ut,Dp)
)

(3)

p(~zt|~xt) = N
(

GPµ(~xt,Do), GPΣ(~xt,Do)
)

(4)

where the functions GPµ(.) =~k∗(K+σ2
nI)−1~y and GPΣ(.) = K−~k∗(K+σ2

nI)−1~k∗ are the GP prediction
functions [26].

However, even if GP-based localization can outperform classic approaches, physics-based motion
models (e.g., whitebox models) remain the most reliable movement models for trajectory prediction
and collision risk estimation for road safety. Their reliability as well as the fact that they rely solely on
movement properties and do not include any inertial properties has led to their widespread use [27].
Physics-based trajectory prediction algorithms can only be used in low speed situations and are limited
to short-term forecasting [27,28]. Therefore, one of the big challenges of these algorithms is to identify
and quantify the potential and limitations of their agents in order to integrate this knowledge into
their maneuvers and trajectories [29] for the sake of road safety.

To contribute to the field of research, we define the following null hypothesis:

H0: sGP-based motion models are not able to learn movement based on wheel motion.

that we will test by converting blackbox models (e.g., GP motion models) to whitebox models,
in which the internal processes can be viewed by using simple kinematic models.

We estimate the kinematic parameters wheel baseline B, radii r and distance between rear and
front wheels T which need to be derived from the GP models. The model performance in terms of
motion accuracy (X, Y and θ) is not focus of this study.

We contribute to the state of the art through the extension of a Gaussian process-based [25]
localization approach [8] that estimates movement models without vehicle parameters. Based on the
movement model, we derive wheel radii and distances and are thereby able to analyze the model
behavior using physical plausibility. Thus, we evaluate our approach by comparing the derived vehicle
parameters to simulated ground truth data vehicle parameter. To this end, we (i) introduce a Bayesian
perspective of a motion model using approximate GP inference and (ii) then deduct the correspondent
vehicle parameters as random variables.

The non-parametric GP model learns movement models based on data. Explanatory factors such
as wheel radii are learned implicitly. Thus, the explanatory factors must be derived from GP models
afterwards. To implement this derivation, we extend existing approaches such as [30] by introducing
a kinematic model to our derivation. Additionally, as an alternative to approaches based on classic
control-theory such as [31], we use recent non-linear methodologies as motion models.

Our approach is summarized in Figure 2 for a mobile robot. We use on-board sensor data (green
variables) and global movement data to estimate a GP based movement model. For this study, wheel
encoder and global vehicle pose were used. Based on the GP models, we derive kinematic vehicle
parameters (red variables) such as wheel radii and distances. The method proposed in this work
intends to estimate the pertinent vehicle parameters resulting from machine learning algorithms
and validate them using simulated ground truth data. For the purpose of this study, we chose
two different kinematic models, namely the Ackermann steering and the differential-driven vehicle
to prove our approach. We chose those kinematic models due to existing autonomous cars (e.g.,
Waymo https://waymo.com/), AGV (e.g., Mir (see https://www.mobile-industrial-robots.com/de/
solutions/robots/mir100/) or SALLY (see https://www.ds-automotion.com/en/solutions/ats-agv/
sally-courier/?L%5B0%5D=title%3DOffre)) or scientific/educational plattforms (e.g., Turtlebot (see
https://www.turtlebot.com/)). The implemented methodology in the presented work contributes to
the state of the art by adding new insights to motion models based on sGP. The presented approach for

https://waymo.com/
https://www.mobile-industrial-robots.com/de/solutions/robots/mir100/
https://www.mobile-industrial-robots.com/de/solutions/robots/mir100/
https://www.ds-automotion.com/en/solutions/ats-agv/sally-courier/?L%5B0%5D=title%3DOffre
https://www.ds-automotion.com/en/solutions/ats-agv/sally-courier/?L%5B0%5D=title%3DOffre
https://www.turtlebot.com/
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explanatory factor extraction of blackbox motion models has not been implemented until the present
day.

This work is structured as follows: The next chapter discusses several Bayes filter implementations
and novel approaches in the context of autonomous driving. The methodological approach through the
introduction of additional vehicle parameters for a fully Bayesian perspective, the validation approach
and the comparison of blackbox and whitebox models are presented in Section 3. Section 4 presents
the results from the applied methodology. Finally, in Section 5 we conclude the paper and indicate
future research.

Z

Y

X 𝜙𝑙,𝑡𝜙𝑟,𝑡

𝑓 ∆𝜙𝑙 , ∆𝜙𝑙 , Θ =

= 𝑓 𝜙𝑙,𝑡+1 − 𝜙𝑙,𝑡, 𝜙𝑙+1 − 𝜙𝑙+1, Θ

B

𝑟𝑙𝑟𝑟

𝜙𝑙,𝑡+1𝜙𝑟,𝑡+1

Figure 2. Proposed approach of this study for vehicle parameter estimation. The on-board sensory
systems measure the wheel movement (∆φr and ∆φl). Based on simulated global vehicle poses
(gray arrows), we derive hidden vehicle parameters (Θ = (rr, rl , B)).

2. State of the Art

One of the main challenges in complex system modelling is the explainability of the methods and
processes that are internally executed and determining which elements serve as the basis for a later
analyzis of the model behavior. Several works have been dedicated to solving the problem of retracing
the algorithmic behaviour. For example, the authors in [32] proposed methods for visualizing the
behavior of deep neural nets. Additionally, the work in [33,34] used statistical optimization criteria for
variational Bayes [35] based approaches. In the same line of research, in [10,11] the authors introduced
approaches for causal inference in Bayes networks. Despite these efforts, the physical interpretation is
still difficult and typically not performed in the related literature. Therefore, we contribute to the state
of the art by introducing a novel kinematic-based approach that makes it possible to relate the learning
data to the behavior of machine learning-based motion models. The approach presented in this work
relies on classic approaches for localization, novel machine learning algorithms and non-parametric
statistics. Therefore, we initially discuss classic localization approaches and focus then on progress in
Gaussian process modeling.

2.1. Bayesian State Estimation Approaches

To define the likelihood function required for Bayes filters, several implementations have been
proposed in the literature. For example, the authors in [36] developed a Kalman filter framework that
provided accurate estimates of vehicle position, velocity and altitude (5–10 centimeter root mean square
(RMS)). The approach was evaluated using a dataset containing over 60 km of highway and dynamic
urban scenes in which the global navigation satellite system (GNSS) reception ranged from good to
weak/none. The developed multi-sensor fusion algorithm adaptively utilized diverse localization
approaches based on inertial measurement unit (IMU), real time kinematic (RTK) and light detection
and ranging (LIDAR) sensors.
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An Extended Kalman Filter Dead Reckoning (EKFDR) approach to tackle the ego-localization
problem in areas of weak GPS reception was presented in [37]. The developed EKFDR corrects both
deterministic (e.g., production-related) and stochastic (e.g., slip due to wet road) errors based on a
novel Map Matching (MM) algorithm that reduces both the cross- and along track errors. This new
MM approach is used in the correction step of the EKFDR to update the state propagation. Doing so
they achieved a maximum error of 15.4 m and an average error of 5.2 m during a 43 km long test drive,
thus outperforming low-cost GPS systems. EKF can also be used to localize multiple robots at the
same time.

A recursive Interim Master Decentralized Cooperative Localization (D-CL) localization approach
for a swarm or robots was presented in [38]. Here the state prediction is completely decoupled, thus
no communication between the robots is needed during this step. Intra-network communication is
only needed in the update step of the EKF if a relative measurement between two robots is made.
The robot that produced the relative measurement is declared as the interim master and utilizes the
data provided by the landmark robot to calculate the update variables for the other robots.

Another novel approach for the bayesian state estimator Particle Filter (PF) was introduced in [39].
The authors of this work proposed a map-relative PF based localization for autonomous unmanned air
vehicles (UAV) with a downward facing camera. Similarity calculation using the Pearson Correlation
Coefficient, between map and aerial images that were converted to probability distributions using
image similarity to likelihood conversion function, were used as input for the PF. Evaluation on a
simulated dataset showed that the proposed method outperformed state of the art ORB-SLAM2 with
an 2.6 times higher average precision.

A further work [40] introduced a novel approach for PF based localization by combining road
intensity (e.g., road markings) and vertical (e.g., trees, street poles or houses) information. The authors
assumed that each feature in a previously built map might partially change. Accordingly, they used
different measurement models by estimating weights for each particle using an entropy-based
cost function. By doing so they adaptively changed the contribution of the intensity and vertical
features thus creating a robust localization PF for environments that exhibited changes in its structure.
The approach was validated by utilizing a 6 months old high definition map, of a 19 km long urban
area, and a survey vehicle and it was compared against several reference localization algorithms
and ground truth data. The results showed that the proposed algorithm could outperform other
localization algorithms.

A comparison of EKF and PF for simulated GPS and inertial navigation system data can be found
in [41].

As the Bayes filter does not define model capabilities, limitations are encoded in the likelihood
functions. Since classic approaches such as Kalman Filters use strong assumptions such as Gaussian
noise or linear movement models, the work [8] introduces a Gaussian-process (GP) [26] extended
Kalman filter and a particle filter for highly nonlinear and accurate Bayes filters using machine learning.
Our approach is based on this implementation. Since both the movement and measurement models are
used in each timestep in the Bayes filter, the matrix multiplication with K ∈ Rn×n must be performed.
Since each GP prediction is based on the whole dataset, GPs are typically not useful for real-time
applications. Thus, the GP models are “sparsed” or approximated for real time applications.

2.2. Advances in Gaussian-Process Models

Sparsed GP (sGP) approaches tackle the approximation of the full GP using auxiliary variables
instead of the similarity measurement K. This can be done using a subset of the training data [42] or
pseudo inputs [43,44]. Both approaches aim to identify m variables which can be used instead of n
original data points. In the research work in [43] the authors use variational Bayes (VB) [35] as the
current state-of-the-art approach for statistical models such as deep GPs [33] or GP latent variable
models [34].
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This VB-based approximation converts the mean GP prediction procedure to GPµ(.) =~kxmK−1
mm~µ,

where ~µ is the result of the approximation procedure and Kmm is a similarity matrix of the auxiliary
variables. Similar to~k∗,~kxm ∈ R1xm links the input to the kernel matrix. The number of auxiliary
variables needed for the application can be estimated based on the evaluation of the lower bound [35].
Due to the reduction of the training set, where m� n, the prediction is accelerated.

For autonomous vehicles, sGP can easily be implemented in Bayes filters [8] for movement and
measurement models. As we previously mentioned, this results in a black box approach. To overcome
this problem, we contribute to the field of research and present in this work a method that combines
sGP-based Bayes filters and kinematics to derive vehicle parameters, thereby providing insights on the
functionality of sGP in autonomous driving. Our method makes it possible to follow and reproduce
the internal processes so that the model behavior can be analyzed later.

3. SGP Motion Model Implementation

To develop the proposed approach of fitting a kinematic model to the sGP motion model, we need
to consider the following cases.

• If the derived kinematic model is in accordance with real measurements, the machine learning
model will be able to represent the corresponding physical behavior.

• However, if the kinematic model does not rely on data acquired from real-life measurements,
the machine learning model might identify incoherences on the sample data that would prevent
it from making the appropriate decisions.

Taking this into account, we relied on the work presented in [8] and derived an sGP-based
movement model from a data sample. To this end, we used wheel joint movement and simulated
ground truth data (X, Y and θ values). To fit the movement models we used sGP regression to estimate

a probabilistic function f : ∆Φt 7→ ∆~xt+1 where ∆Φj =
(

∆φl,1 . . . ∆φr,n

)T
includes the wheel joint

movements from the time slot j− 1 to j, describing ∆~xj as the state change from j− 1 to j.

In addition, the vehicle states are described using ~xj =
(

x y θ
)T

j
. x and y describe the position

in a 2D map and θ denotes the orientation of the vehicle at time j.
Considering that in this work we focus on estimating vehicle parameters instead of improving

localization, we decided to use a simplified model as opposed to the one defined above. With the
simplified model each movement prediction is based on independent sGP (see Equation (5))

N (µx, σ2
x)

N (µy, σ2
y )

N (µθ , σ2
θ )


t

=

sGPx

sGPy

sGPθ


t

(5)

where each sGPj is a sparsed Gaussian process, mapping wheel movement and current pose to the
new vehicle pose. Note that the vehicle parameters are latent variables in the sGP models and affect
each state prediction. To explicitly model the parameters, an additional node can be added to the
graphical model (see Θ in Figure 3).

To perform the analysis, we need to measure the effect of the vehicle parameters rather than the
drift. Thus, we perform a virtual vehicle movement using the sGP models, starting from the known

vehicle pose ~x0 =
(

0 0 0
)T

. Since ~x0 is no more a random variable, we can be sure that we measure
Θ rather than the drift or noise. In this procedure (known as clamping), ~xt becomes independent from
the vehicle parameters (Figure 3b).
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Figure 3. Graphical model including the vehicle parameters (a). Since we perform simulation from a
known pose using the movement model, the connections to xt disappear (b).

3.1. SGP Model Training

To train the motion in the sGP models a dataset is used that is based on the following Equation (6).

D =





∆φ1

. . .
∆φm

θ


0

,

∆x
∆y
∆θ


0

 , . . . ,




∆φ1

. . .
∆φm

θ


n

,

∆x
∆y
∆θ


n


 . (6)

We then estimate the vehicle parameters for a differential driven mobile robot and a car.
The kinematic models used for this calculation are depicted in Figure 4 and described in [45]. Note
that we use a virtual wheel for the Ackermann kinematics. This approach is similar to the bicycle
simplification described in [46].

(a) (b)

Figure 4. Visualization of the kinematic models used for the performed mobile robot (a) and car
experiments (b). For both models, we assumed a rigid frame. For the car model, we used a simplified
version of Ackermann steering using a virtual wheel. The doted lines are the zero-motion lines of the
wheels and thus represent kinematic constrains of the wheels.

Both models use the instantaneous center of rotation (ICR), sometimes known as instantaneous
center of curvature (ICC).

The movement of the mobile robot refers to the center of the baseline P. The kinematic model is
described using the vehicle parameters r̄ (mean wheel radius) and B (distance between wheels), the
simulated ground truth data and wheel movement ∆φt,{r,l} at time t as denoted in Equation (7):
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∆x
∆y
∆θ


t

=


(∆φt,r+∆φt,l)·r̄

2 · cos(θt−1 + ∆θt−1)
(∆φt,r+∆φt,l)·r̄

2 · sin(θt−1 + ∆θt−1)
(∆φt,r−∆φt,l)·r̄

b

 . (7)

Note that this representation is similar to the data set that we used for the sGP formulation
in Equation (6).

To develop our model for evaluation we relied on the approach described in [43] and implemented
in [47]. The parameter estimation and data pre-processing was done in R. We divided the data into 25%

for training and 75% for testing. For each element in the state vector ~xt =
(

xt yt θt

)T
, we trained an

sGP model using an RBF kernel without automatic relevance determination. We estimated the models
for the following {1, 2, 5, 10, 20, 30, 50, 100, 200, 500} auxiliary points. For each model, we analyzed the
log likelihood log(p(X)) = L(q) + KL(q||p) [35]. L(q) is known as the lower bound and KL(q||p) is
the Kullback–Leibler divergence [35]. We selected the number of auxiliary points when the model
seemed to be converged.

3.2. Vehicle Parameter Estimation

Throughout this paper a few assumptions have been made to derive the explanatory factors
from the GP models, namely the car consists of a rigid body construction, the constant speed of the
Ackerman vehicle and the sliding and rolling constraints. Where the rigid body assumption is one
of the fundamental theories for kinematic models, which were used for wheel radii and distance
estimation. Since physical characteristics of the vehicle must be described, this assumption has to be
made.

The speed of the car was set to a constant speed for the purpose of simplicity to generate data.
Since this assumption was not done in mobile robot experiments, we do not assume that variance in
speed effects the parameter estimation. Finally, the sliding and rolling constraints are used to derive
the kinematic equations which are the fundamental building stone of the GP algorithm.

Initially, we estimate r̄ by rearranging Equation (8).

ρ =
√

∆X2 + ∆Y2 =
(∆φt,r + ∆φt,l) · r̄

2
. (8)

The baseline is estimated using ∆θ but it is affected by singularities that are related to a straight
movement. As with the mobile robot kinematic, the car movement refers to the center of the rear
baseline P. Thus, we can use the same procedure for back wheel radius and baseline estimation.
The radius of the virtual front wheel r̄v can be calculated easily using the wheel movement. Finally,
T (distance between front and rear axles) is determined using the ICR and basic kinematics, where we
assume a stiff chassis and wheel motion. This estimation is done using R (distance/radius to ICR) and
the baseline B.

In the approach presented in this paper we used a simulation set up that included noise for both
vehicle models. Therefore we had to face multiple challenges, including difficulty estimating the
baseline values for both models in a straightforward maneuver. This is due to the fact that the ∆θ

becomes zero, and unrealistically large baselines arise due to computational problems. Based on this
and due to the fact that the distance to the ICR is significantly affected by noise, we assume a noisy
and hard to estimate T. Furthermore, we currently use a point estimate of B and the mean wheel radii.
Since we do not assume a Gaussian distribution for B, this will disturb the T calculation.

For mean wheel radius r̄ estimation of the mobile robot, we performed a single prediction for GPx,
GPy and GPθ using the mean value of the input (wheel movement ∆φr,l). The sGP models estimate the
inherent ∆X, ∆Y and ∆θ. Since both ∆X and ∆Y are normally distributed according to sGP prediction
and ∆φr,l are constants, we assume that r̄ is also Gaussian.
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Due to singularities for the baseline estimation (see ∆θ calculation in Equation (7)), we used the
whole test dataset of the sGP prediction. We excluded the motion data that fulfilled (∆φr − ∆φl) <

0.1[rad] to exclude straightforward movement. We also deleted unrealistic baseline values by excluding
estimated baselines that were smaller than 5 cm and larger than 0.5 m, where the ground truth is 16 cm.

For each resulting motion, we estimated a possible baseline length. We applied a histogram-based
approach including kernel density estimation [48] to estimate the baseline value. For Ackermann
steering, we followed the same procedure for the estimation of both the rear wheel radius r̄b and
the baseline B. We applied additional data filtering for faulty time stamps, where samples with a
time differences above 0.1 seconds were deleted. As in the process applied with the mobile robot,
we filtered the estimated baselines excluding the data for the motion of the rear wheels, in which
(∆φr−∆φl) < 0.1[rad], describing ∆φb,r and ∆φb,l the rear wheel movement. Additionally, we removed
unrealistic baselines that ranged above 110% and below 90% of the baseline median. Due to a higher
noise level in the baseline values, absolute thresholding was not applicable.

For the virtual front wheel radii estimation, we used test input data from the simulation,
having previously defined a driving scenario with a straight road so that the back wheels and front
wheels could rotate in a comparable manner similarly to the virtual front wheel. Based on this we
defined the following Equations (9) and (10).

∆φvrv =
(∆φ f ,r + ∆φ f ,l) · r̄ f

2
= ρ =

(∆φr + ∆φl) · r̄b
2

(9)

rv =
(∆φr + ∆φl) · r̄b

2∆φv
=

(∆φr + ∆φl) · r̄b

2
(∆φ f ,r+∆φ f ,l)

2

∼ N (10)

in which we used the rear wheel movement ∆φr,l , the front wheel movement ∆φ f ,l and ∆φ f ,r including
the front wheel radius r̄ f and the estimated rear wheel radius r̄b ∼ N . Note that the front and rear
wheel mean radii are not equal. For each element in the test input, we performed the radii estimation
for the radius from Equation (10). The resulting set of Gaussian distributions are combined using the
basic properties of Gaussian distributions.

Since the sGP models estimate the movement of the vehicle for P, the complete description of
the rear kinematics of the Ackermann steering is enough to estimate the vehicle’s behavior. Since the
kinematic constraints connect the virtual wheels and rear wheels through the ICR, we could implement
a motion model for a Bayes filter without estimating T. This is different to the bicycle model described
in [46], where the kinematic model is reduced to a virtual rear as well as a front wheel. Since all
the motion parameters refer to the center of the rear baseline value, we can estimate ∆X, ∆Y and
∆θ without T. However, we estimate T in order to have a more complete insight into the models.
We calculated T using the test wheel motion, estimated baseline B and the distance R to the ICR.
We estimated T through ~vt = ~ωt ×~k, where~k describes distances and includes T. This calculation
includes the factor r̄b

rv
.

3.3. Comparison of the Presented Approach with Blackbox and Whitebox Models

To compare the presented methodology to blackbox and whitebox models we implemented the
movement model p(~xt|~xt−1,~ut) with additional approaches.

We selected as blackbox models Bayesian neuronal networks and defined a single hidden layer
and output neurons for X, Y and θ. Fifteen hidden neurons and 60 epochs were used for mobile robot
experiments. This architecture results in 204 trainable parameters. For Ackermann steering, 40 hidden
neurons and 200 epochs were used. Five hundred and twenty-nine trainable parameters were used to
implement this architecture. Both models were implemented in Tensorflow Probability, an extension of
Tensorflow for probabilistic deep learning.

To compare the presented methodology to whitebox models, Bayesian linear regression was
implemented. The Bayesian linear regression model was implemented in [49].
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4. Results

As previously mentioned, we evaluated the proposed approach in a laboratory-controlled
environment using a simulator framework that included a differential drive mobile robot and an
Ackermann steered vehicle.

4.1. Ground Truth Data Generation

For the mobile robot simulation we used a Turtlebot version 3 model (See: https://www.turtlebot.
com/) integrated in a ROS-Gazebo [50] (See: http://gazebosim.org/tutorials?tut=ros_overview)
simulation. This mobile robot is based on a differential drive setup consisting of wheels with a radius
of 3.3 cm and a baseline of 16 cm. We simulated a mobile robot task where the autonomous vehicle
moves between stations in a factory or storage depot as a potential use case for transport logistics.
To this end we used the test factory model described in [51]. The model for our use case is depicted
in Figure 5a.

The Ackermann steering simulation was based on a model of a Toyota Prius (See: https://
github.com/osrf/car_demo) integrated in a ROS-Gazebo simulation. With this model we carried
out simulations with the baseline of 1.586 m and the distance between the front and back wheels
of 2.860 m (T). The wheel radii were set to 31.265 cm. The environment and test track is shown in
Figure 5b. Both of these simulation setups provide simulated ground truth data (See: http://docs.ros.
org/electric/api/gazebo_plugins/html/group__GazeboRosP3D.html) (x, y, θ) as well as the rotation
of the wheel joints (See: http://wiki.ros.org/joint_state_controller) of the vehicular robots. Further,
since the focus of our work is on vehicle parameter estimation rather than autonomous vehicle control,
other road users, such as pedestrians or other cars, where not included in the simulation.

Furthermore, we would like to state that the linear velocity of the Ackermann simulation is
constant except for the initial acceleration. The mobile robot was controlled using the ROS navigation
stack. (See: http://wiki.ros.org/navigation)

(a) (b)

Figure 5. Overview of the setup of the simulation environments, namely the test factory (a) and the car
environment (b).

4.2. Motion Model and Vehicle Parameter Estimation

For the purpose of this study, our experiments are divided into two parts:

1. Motion Model: We need to fit the sGP motion model to the data. In doing so, we need to optimize
parameters and to ensure that the model represents the simulated movement.

2. Kinematic Parameter Estimation: The kinematic parameter estimation is based on the result of
the motion model and simplified vehicle kinematics.

https://www.turtlebot.com/
https://www.turtlebot.com/
http://gazebosim.org/tutorials?tut=ros_overview
https://github.com/osrf/car_demo
https://github.com/osrf/car_demo
http://docs.ros.org/electric/api/gazebo_plugins/html/group__GazeboRosP3D.html
http://docs.ros.org/electric/api/gazebo_plugins/html/group__GazeboRosP3D.html
http://wiki.ros.org/joint_state_controller
http://wiki.ros.org/navigation
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The result of the sGP modelling is shown in Figure 6a for the mobile robot and Figure 6b for Ackermann
steering. Based on the methodology proposed in [43], we chose the number of inducing points visually.
This is in contrast to VB applications such as [52], where a marginal likelihood maximum occurs. One
hundred auxiliary variables were determined, which were used by the model to create 100 pseudo
vehicle movements and thereby estimate overall robot behavior.

(a) (b)

Figure 6. Visualization of implemented sparsed Gaussian processe (sGP) models. We select 100
auxiliary points for the mobile robot (a). After analyzing the R2 value of the Ackermann motion
models, we chose 20 auxiliary points for the car simulation (b).

The Ackermann steering model log likelihood for GPx and GPy increases significantly after initial
convergence. Due to the R2 analyzis of the test data, we assume that 20 auxiliary variables are sufficient
to represent the physical system (see Figure 6b). The R2 analyzis is shown in Figure 7. Since there is no
significant improvement after 20 auxiliary points, we chose this configuration.

0 100 200 300 400 500
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00
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R
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Figure 7. Visualization of the R2 values of the sGP model estimation.
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Based on Equation (8), we defined the probability density function of the mobile robot and
Ackermann steering wheel radii (see Equations (11) and (12)).

Mobile robot wheel radii: r̄ ∼ N (µr, σ2
r ) = N (0.03329, 1.327× 10−8) (11)

Ackermann steering read wheel radii: r̄b ∼ N (µr, σ2
r ) = N (0.30797, 2.680× 10−5) (12)

In both cases, the uncertainty (variance) is low. We assume that uncertainty will increase in
real applications. The mobile robot simulation is based on a real wheel radius of 0.033 m (See
http://wiki.ros.org/turtlebot3) for robot simulation details , and therefore the error is ∼2.7 % or 0.029
mm. Similar to that, the simulated ground truth of the Ackermann steering simulation is 0.31265 m
(see Section 4.1), leading to an error of ∼5.6 % or 0.46 mm.

The baseline histogram and kernel density estimation of the filtered baseline values B for both
models is shown in Figure 8. For the mobile robot simulation, the peak of the kernel density estimation
is at approximately 0.1596 m, the simulation being based on the baseline of 0.16 m (see Section 4.2).
This is an error of 0.25 % or 0.04 mm. Similar to that, the baseline value for the Ackermann steering
was estimated at 1.5616 m, resulting in an error of ∼1.5 % or 2.4 cm. The simulated ground truth is
1.586 (see Section 4.1).

(a) (b)

Figure 8. Baseline estimation for both kinematic models using kernel density estimation and maximum
(red line). The used bin sizes are 0.002 m for mobile robot baseline (a) and 0.001 m for Ackermann
steering (b).

Additionally, the estimation of the virtual front wheel probability density function rv resulted in
the same probability density function as the mean rear wheel radii r̄b (see Equation (13))

rv ∼ N (µr, σ2
r ) = N (0.30797, 2.680× 10−5). (13)

We assumed that the radii are equal and thus slipping and rolling constraints apply to motion.
Finally, the estimated T values are depicted in Figure 9. We estimated the peak of the kernel

density at ∼2.7579 m, the simulated ground truth measuring 2.86 m (see Section 4.1). It results in
an error of ∼3.5% or 10.21 cm. The estimated parameters, including simulated ground truth values,
are summarized in Table 1.

http://wiki.ros.org/turtlebot3
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Figure 9. Estimation of T using the instantaneous center of rotation (ICR). The used bin size is 0.05 m.

Table 1. Summarized results of derived vehicle parameters from the sGP motion models (M) and
simulated ground truth (GT).

r̄(b) B r̄v T

M GT M GT M GT M GT

Mobile Robot 3.329 cm 3.300 cm 15.96 cm 16 cm - - - -

Ackermann Steering 30.79 cm 31.26 cm 1.561 m 1.586 m 30.797 cm 31.265 cm 2.757 m 2.86 m

To analyse real-time capability of the presented methodology, time measurements for sGP
prediction were done. For 100 inducing points of the mobile robot model, 15.425 ms were measured
for a single prediction. For Ackermann steering, 0.284 ms were measured for the 20 inducing
point model. Both experiments were performed on an Intel i9-7900X CPU. However, the used sGP
implementation [47] is a CPU implementation. Similar to GPU optimized software for artificial
neuronal networks such as [53], software for GPU based GP acceleration is under development [54].

We performed additional simulation for the Ackermann kinematic model using different wheel
radii for front and rear. Furthermore, we changed the friction coefficient. We used 20 inducing points
for the simulations AM2 and AM3 and 200 inducing points for the simulation AM1 (we chose a
friction coefficient for rubber and wet concrete based on https://hypertextbook.com/facts/2006/
MatthewMichaels.shtml). The results are summarized in Table 2.

Table 2. Summarized results additional simulation results for Ackermann (AM) steering. AM 1 and
AM 2 are based on the standard friction of 0.9 for dry concrete. For AM 3, we changed the friction
coefficient to 0.45. The histograms for AM 1–AM 3 can be found in the Supplementary Materials.

r̄(b) B r̄v T

M GT M GT M GT M GT

AM 1 26.890 cm 26.265 cm 1.629 m 1.586 m 35.428 cm 36.270 cm 2.522 m 2.860 m

AM 2 29.105 cm 30.000 cm 1.534 m 1.586 m 23.142 cm 25.000 cm 2.437 m 2.860 m

AM 3 29.872 cm 30.000 cm 1.581 m 1.586 m 26.890 cm 25.000 cm 2.443 m 2.860 m

https://hypertextbook.com/facts/2006/MatthewMichaels.shtml
https://hypertextbook.com/facts/2006/MatthewMichaels.shtml
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The results based on additional simulation show, that the presented methodology is able to
estimate vehicle parameters with different front and read wheel radii. Similar to the initial results
(see Table 1), our approach estimates T not as accurate as the wheel radii and B.

4.3. Comparison of Whitebox and Blackbox Models

The presented work based on sGP models was compared to whitebox (Bayesian linear regression)
and blackbox (Bayesian artificial neuronal networks) models. Results from this comparison of the
Bayesian neuronal networks are summarized in Table 3.

Table 3. Summarized results based on the blackbox model Bayesian neuronal networks of vehicle
parameters from the sGP motion models (M) and simulated ground truth (GT). For mobile robot
experiments, 15 hidden neurons were used in the hidden layer. For Ackermann steering experiments,
40 hidden neurons were used.

r̄(b) B r̄v T

M GT M GT M GT M GT

Mobile Robot 3.683 cm 3.300 cm 17.866 cm 16 cm - - - -

Ackermann Steering 28.429 cm 31.26 cm 1.436 m 1.586 m 28.429 cm 31.265 cm 2.582 m 2.86 m

The Bayesian neuronal network performs inferior to the sGP methodology.
As for the whitebox model example through Bayesian linear regression, the data was analysed

using R2 values. For mobile robot movement, R2 values of 0.168 for X, 0.735 for Y and 0.884 for θ were
estimated. R2 values of 0.445 for X, 0.423 for Y and 0.982 for θ for the Ackermann steered vehicle were
estimated. Due to the low R2 values, no parameter estimation was performed.

5. Conclusion and Future Work

We rejected the Null hypothesis and accept therefore the alternative hypothesis:

H1: sGP-based motion models are able to learn movement based on wheel motion.

by converting blackbox motion models to models that describe the model behavior using vehicle
kinematics. For the implementation, we chose a sGP-based modelling approach, where we modeled
p(~xt|~xt−1,~ut) using wheel motion as command input ~ut. Since the input to our parameter estimation
is wheel motion and Gaussian distributed motion (see Equations (8) and (10)), any model can be
used to produce these data. We selected sGP instead of other models, such as Bayesian neuronal
networks [22], due to the non-parametric nature of the defined problem, which decreases user-based
bias. Nevertheless, experiments using Bayesian neuronal networks (blackbox model) and Bayesian
linear regression (whitebox model) were performed. Both models performed inferior in comparison to
sGP models.

For sGP motion models, we used the lower bound and Kullback–Leibler divergence to derive
the number of auxiliary points for the GP approximation. This approach results in a probabilistic
motion model for vehicle behavior. To get insight into the blackbox motion model, we simulated
vehicle movement starting from a known position. This movement was used to parameterize
the kinematic model, where we used basic properties of probability density functions and kernel
density estimation to calculate the vehicle parameters. Using minor additional physical assumptions,
we estimated the vehicle’s (rear) wheel radii and (read) baseline. It is possible to estimate those
parameters between 0.25% and 5.6% prediction accuracy. Our additional simulation results showed
that our methodology can estimate vehicle parameters with different front and rear wheel radii.
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Using additional assumptions, namely possible ICR positions and reasonable values, we estimated a T
value close to the simulated ground truth.

The results show, that the sGP based motion model is able to learn movement based on wheel
motion, being thus able to reject the null hypothesis. The presented methodology proves, that the sGP
learns vehicle parameters implicitly. In contrast to that, the major shortcoming of sGP models is the
limited real-time applicability. Our results show, that sGP models still has real-time issues and the
real-time capability strongly depends on the number of auxiliary points. However, novel software
packages such as [54] may solve this shortcoming by GPU acceleration.

We assume that real movement data will result in significantly higher variance values. Therefore,
future work will address the analysis of real vehicle data as opposed to simulated models and also
the evaluation of the derived motion model compared to classic physics-based models as well as
dynamical models. The assumptions defined in this study, namely the rigid body assumption and
rolling/sliding constraints, were used to derive the vehicle parameters from the sGP models. For real
vehicles, those assumptions are typically violated on a small level between the timeslots t and t + 1.
This violation results in additional movement noise. However, as long as this violation is random,
the applicability of the presented methodology to real data is not restricted. We do not assume
systematic errors based on the assumptions during low speed maneuver. Furthermore, the presented
methodology currently assumes equal wheel radii in front and rear. This limits the applicability to
vehicles, where similar wheels are used and the mean radii is a reasonable approximation.

Additionally to noise introduced by assumption violation, real sensor signals can also introduce
noise to the sGP estimation and thus to the vehicle parameter estimation. We assume that this noise will
increase the estimation uncertainty but not the expected values as long as the disturbances are random
and not systematic. Furthermore, since we can already describe the vehicle parameters in the graphical
model of the Bayes filter, we will use VB approaches to derive the vehicle parameters in future work
instead of relying on kinematic-based approaches to automate the process of parameters estimation.

Finally, future work will also integrate other kinematic models (e.g., four wheel drive or mecanum
wheels) state-of-the-art motion models such as deep GP [33] and the integration of the estimated
vehicle parameter probability density functions to a localization approach. Afterwards we will be able
to compare our localization approach to existing methodologies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/10/18/6317/
s1, CSV files for car and mobile robot simulation including additional experiment data based on different friction
coefficients and wheel radii. A description textfile for each CSV file is provided.
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Abbreviations

The following abbreviations are used in this manuscript:

CAD computer-aided design
EKF Extended Kalman Filter
EKFDR Extended Kalman Filter Dead Reckoning
GNSS Global navigation satellite system
GP Gaussian process
ICC instantaneous center of curvature
ICR Instantaneous center of rotation
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IMU Inertial measurement unit
KF Kalman Filter
LIDAR light detection and ranging
MCMC Makrov chain monte carlo
M m Map Matching
PF Particle Filter
RMS Root mean square
RTK Real time kinematic
sGP Sparsed Gaussian processes
UAV autonomous unmanned air vehicles
VB Variational Bayes
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