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Abstract: Surface roughness and the material removal rate (MRR) are two important indicators during
the grinding process. The former determines the surface quality while the latter reflects the grinding
efficiency directly. In this paper, the two indicators are taken into consideration simultaneously and
differently by converting them into a comprehensive goal with using weighting objective method.
A prediction model was established for each comprehensive goal with each different combination of
surface roughness and MRR weighting coefficient. The optimal value of abrasive size, contact force,
belt linear speed, and feed speed were obtained under different grinding situations by using a
central composite design (CCD) combined with response surface analysis. The experimental results
showed that the comprehensive goal can be used effectively as an indicator to control the grinding
performance and improve the optimization process.
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1. Introduction

We commonly use 45 steel in the manufacture of various critical structural parts for its good
mechanical properties and cheap price. For instance, 45 steel is a common material in the area of
shaft-related parts manufacturing. The shaft parts must have high surface quality when coordinating
with the bearings. In terms of bearing, the surface roughness of bearing raceway also has a significant
influence on bearing noise [1]. Abrasive belt grinding is an effective way for polishing and deburring
of 45 steel to achieve a smooth surface. However, in the actual mass production process, we want
to improve material removal rate (MRR) to enhance production efficiency with good surface quality
assurance at the same time, thereby saving costs and winning customers.

Grinding is the final processing procedure and an important step in determining product quality,
and therefore merits special attention and study. Investigators have conducted a lot of studies on the
optimization of process parameters in the field of grinding. Some research focused on increasing MRR
on the basis of the prediction model of MRR. For example, Song et al. [2,3] built an effective material
removal prediction model considering the influence of the curvature radius on the bonnet polishing.
Liu et al. [4] established a machining mathematical model of MRR and optimized the processing
parameters (cutting area, feed rate, and cutting speed) to achieve higher MRR in rotary ultrasonic
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grinding machining. Wu et al. [5] introduced a simulation platform that has the ability to predict MRR
and achieve an optimal selection of the grinding process key parameters. Ho et al. [6] studied the
process parameters and optimized the polishing parameters to enhance the MRR.

Some research strongly focused on reducing surface roughness determining optimal process
parameters by establishing a surface roughness prediction model in order to get better product quality.
Zhao et al. [7] and Yong et al. [8] investigated the grinding and grinding process of IBR of aero-engine
and nHAP, respectively, while both established the surface roughness prediction model and optimized
grinding parameters by using response surface methodology (RSM). Periyasamy et al. [9] found the
optimum parameters for minimum surface roughness by using RSM with design expert software in the
grinding process of AISI 1080 steel plates. In references [10–13], the Taguchi design method was widely
used to optimize milling parameters for surface roughness. In fact, focusing on only a single goal will
not meet the grinding requirements of an actual production process, since at least two objectives must
be considered simultaneously.

In recent years, more research has focused on the multi-objective optimization of. Gopal et al. [14]
developed a genetic algorithm (GA) code to optimize the grinding conditions for maximum material
removal with using a multi-objective function model, by imposing surface roughness and surface
damage constraints. Ting et al. [15] carried out the optimization of operating parameters to obtain
optimum parameters via Particle Swarm Optimization (PSO) based on the objective of maximizing
MRR with reference to surface finish and damage for silicon carbide grinding. Kumar et al. [16]
studied the optimization of input parameters for maximizing the MRR and achieving optimum surface
roughness with the help of Minitab software. Pai et al. [17] investigated three grinding variables
for simultaneous optimization of MRR and surface roughness with using RSM and enhanced elitist
non-dominated sorting genetic algorithm (enhanced NSGA-II), respectively, and proved that the
enhanced NSGA-II is effective. Kumar et al. [18] developed empirical models for surface roughness and
MRR by considering grinding parameters (wheel speed, table speed, and depth of cut) as control factors
using RSM and obtained the optimum machining parameters which can lead to minimum surface
roughness and maximum MRR. Sedighi et al. [19] presented an approach using an integrated Genetic
Algorithm-Neural Network (GA-NN) system to optimize the creep feed grinding (CFG) process,
aimed to obtain the maximal MRR and the minimum of the surface roughness. Lee et al. [20] used
compressed air to minimize specific grinding forces and surface roughness while maximizing specific
material removal rate (MRR), conducted a multi-objective optimization and got the optimal values
of depth of cut, feed rate and air temperature towards minimum surface roughness and maximum
specific MRR. However, most of the research described above focused on optimizing MRR and surface
roughness regarding one as a constraint or considering both as independent goals. Only a few studies
have attempted to convert the two objectives of surface roughness and MRR to an integrated one to do
the optimization.

The purpose of this article is to find out the optimal grinding parameters for the 45 steel. The critical
parameters that affect the surface roughness and polishing efficiency such as abrasive size, contact force,
belt linear speed, and feed speed, were examined. RSM with CCD was used to select polishing
conditions (abrasive size, contact force, belt linear speed, and feed speed) in order to obtain the minimal
surface roughness and maximal grinding efficiency. This research of 45 steel grinding would be useful
in the grinding and grinding industries. Meanwhile, the multivariable optimization method is widely
used in scientific research. The research method in this paper has significant reference value for
other researchers.

This paper is organized as follows: Section 2 introduces the design of the mechanical system of a
grinding machine; Section 3 presents a single factor experiment and the application of CCD; Section 4
describes an optimization example and obtains the optimum grinding parameters; Section 5 shows
a simple laboratory experiment to validate the effect of this method and Section 6 proposes some
concluding remarks and prospects.
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2. Mechanical System Design

According to the technical requirements of robot belt grinding, the robot belt grinding system is
designed (see Figure 1). Robot is the center of this grinding system, it can catch the workpiece from
the feeding station, and then complete the scheduled grinding track relying on its own programming.
After the completion of grinding, the workpiece will be returned back to the feeding station. The series
of actions of the robot can finally help to achieve automatic grinding.
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In order to maintain constant belt tension force during the grinding process, the pneumatic
tensioning mechanism is designed to fulfill the pressure requirement. A belt transmission and
tensioning system are established, as we can see in Figure 2. The belt tension force can be changed by
controlling the regulating valve of a floating pneumatic cylinder.
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Figure 2. Belt transmission and tensioning system.

Figure 3 shows the schematic depiction of the abrasive belt grinding, in the case of abrasive grinding,
important parameters that affect abrasion are abrasive size, contact force, belt linear speed, and feed
speed. Different experimental conditions may lead to different results, so it is absolutely essential
to note the working conditions and workpiece characteristics before belt grinding. The chemical
composition of 45 steel, main characteristics of the workpiece, and grinding condition are shown in
Tables 1–3, respectively.
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belt polishing.

Table 1. Chemical composition of 45 steel.

Element Type C Si Mn Cr

Percentage (%) 0.42–0.50 0.17–0.37 0.5–0.80 ≤0.25
Element type Ni Cu Fe

Percentage (%) ≤0.30 ≤0.25 remaining

Table 2. Workpiece characteristics before belt grinding.

Workpiece Characteristics

Workpiece material 45 Steel
Superficial hardness of workpiece <HRC28

Initial roughness 5–10 µm
Size of the grinding surface 10 × 10 mm

Table 3. Grinding condition.

Material of Driving and Driven Wheels Polyurethane

Single grinding time 20 s
Perimeter and width of belt (4000 × 90) mm

Grinding type Dry grinding
Robot type Yaskawa HP-20D



Appl. Sci. 2020, 10, 6314 5 of 16

3. Experiment Procedure

3.1. Experiment Preparation

After the determination of experimental program, all test equipment and samples are prepared
shown in Figure 4. The actual grinding experiment can be seen in Figure 4a. TR210 roughness tester,
as shown in Figure 4c, is used in the measurement, which can measure the surface roughness of
workpiece of 45 steel shown in Figure 4b. Precision electronic balance is applied to measure the weight
of workpiece to calculate MRR. Belt linear speed can be adjusted continuously by using an operating
inverter. Contact force is determined by using a pressure tester. Since the workpiece is mounted on the
robot arm end, the feed speed of workpiece is set by the robot control system using its programming
teaching box.
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3.2. Single-Factor Experiment

In the single-factor experiment, key grinding parameters such as abrasive size (P), contact force
(F), belt linear speed (VS), and feed speed (VW) were considered as control factors. It was found
that the abrasive size was the most significant factor in both surface roughness (Ra) and MRR (Zw).
In Figure 5a, it shows that surface roughness decreases rapidly along with the increasing of abrasive
size, MRR of workpiece drops sharply when abrasive size change from 120# to 180#, then goes down
gently from 180# to 400#. In Figure 5b, it suggests that surface roughness can reach the minimum value
when the contact force is 20 N, MRR has an approximate linear growth trend along with belt linear
speed increases. In Figure 5c, it produces the lowest surface roughness value when the belt linear
speed is 7 m/s, MRR has an approximate parabolic growth trend along with contact force increases.
In Figure 5d, it reveals that surface roughness increases continuously with the increase of feed speed,
while MRR remains almost unchanged under the same condition.
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MRR; Vs: belt linear speed); (d) Feed speed (Ra: roughness; Zw: MRR; VW: feed speed).

3.3. Weighting Objective Method

The weighting objective method is selected to use in this situation by building a weighted sum of
the two objectives (Ra and Zw) [21,22] to form the unified objective function Y as:

Y(x) = λaRa(x) − λwZw(x) (1)

where
λa + λw = 1 (2)

and
x = [P F Vs Vw]

T (3)

where λa and λw are the weighting coefficients that represent the relative importance of each criterion
and reflect closely importance of objectives.
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As the surface roughness and MRR are two different goals, so it is necessary to evaluate them at
the same level. Generally, normalization is the best way to solve this problem as:

Ŷ(x) = λaR̂a(x) − λwẐw(x) (4)

where Ŷ is the new comprehensive goal that can be seen as normalized Y. R̂a is the normalized surface
roughness and Ẑw is normalized MRR. Since the surface roughness is more important than MRR for
products, it is reasonable to set the value of weighting coefficient λa be larger than λw.

In the experiment, Ra(x1, x2, x3, . . . , xn) and Zw(x1, x2, x3, . . . , xn) is the measured data,
R̂a(x1, x2, x3, . . . , xn) and Ẑw(x1, x2, x3, . . . , xn) is normalized. The normalized method can be
described as follows:

R̂a(xi) =
Ra(xi) −minRa(x1, x2, x3, . . . , xn)

maxRa(x1, x2, x3, . . . , xn) −minRa(x1, x2, x3, . . . , xn)
(i = 1, 2 . . . n) (5)

Ẑw(xi) =
Zw(xi) −minZw(x1, x2, x3, . . . , xn)

maxZw(x1, x2, x3, . . . , xn) −minZw(x1, x2, x3, . . . , xn)
(i = 1, 2 . . . n) (6)

3.4. Central Composite Design (CCD)

A response surface methodology was applied to optimize the grinding conditions of 45 steel.
A three-level central composite design (CCD) with three factors was selected to examine the
comprehensive goal, and an experimental design can be seen in Table 4. The factors of abrasive size
(X1), grinding contact force (X2), belt linear speed (X3), and feed speed (X4) were chosen as independent
variables. When the value of weighting factor λa and λw were selected as 0.6 and 0.4, respectively,
the coded and real values of abrasive size (X1) were 0 for 240#, 1 for 320#, and 2 for 400#, those for
contact force (X2) were 0 for 15 N, 1 for 20 N, 2 for 25 N, those for belt linear speed (X3) were 0 for
6 m/s, 1 for 7 m/s, 2 for 8 m/s, and those for feed speed (X4) were 0 for 2 mm/s, 1 for 3 mm/s, 2 for
4 mm/s. We obtained similar interpretations referring to the above when the weighting factor λa and
λw were selected as other values. Regression analysis was done on the data obtained by triplicate
analysis for each dependent variable using design-expert software (Table 5). Response surface analysis
was also applied to the data from CCD for modeling and prediction of optimum grinding contact force,
belt linear speed, and feed speed.

Table 4. Level of factors distribution of grinding (λa = 0.6; λa = 0.7; λa = 0.8; λa = 0.9).

Parameter Unit Code
Level

0 1 2

Abrasive size (P) # X1 240# 320# 400#
Contact force (F) N X2 15 20 25

Belt linear speed (Vs) m/s X3 6 7 8
Feed speed (Vw) mm/s X4 2 3 4

Table 5. Central experiment design table and experiment results.

No.
Parameter Results λa = 0.6 λa = 0.7 λa = 0.8 λa = 0.9

P F VS VW Ra R̂a Zw Ẑw Ŷ1 Ŷ2 Ŷ3 Ŷ4

1 240 15 6 2 0.709 0.769 0.02 0.333 0.328 0.438 0.548 0.658
2 400 15 6 2 0.480 0.217 0.018 0.250 0.030 0.077 0.123 0.170
3 240 25 6 2 0.623 0.561 0.024 0.500 0.137 0.243 0.349 0.455
4 400 25 6 2 0.433 0.104 0.019 0.292 −0.054 −0.015 0.025 0.064
5 240 15 8 2 0.657 0.643 0.022 0.417 0.219 0.325 0.431 0.537
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Table 5. Cont.

No.
Parameter Results λa = 0.6 λa = 0.7 λa = 0.8 λa = 0.9

P F VS VW Ra R̂a Zw Ẑw Ŷ1 Ŷ2 Ŷ3 Ŷ4

6 400 15 8 2 0.479 0.214 0.020 0.333 −0.005 0.050 0.105 0.160
7 240 25 8 2 0.600 0.506 0.036 1.000 −0.096 0.054 0.205 0.355
8 400 25 8 2 0.464 0.178 0.025 0.542 −0.110 −0.038 0.034 0.106
9 240 15 6 4 0.805 1.000 0.019 0.292 0.483 0.613 0.742 0.871

10 400 15 6 4 0.494 0.251 0.012 0.000 0.150 0.175 0.200 0.226
11 240 25 6 4 0.669 0.672 0.023 0.458 0.220 0.333 0.446 0.559
12 400 25 6 4 0.476 0.207 0.019 0.292 0.008 0.058 0.107 0.157
13 240 15 8 4 0.743 0.851 0.020 0.333 0.377 0.495 0.614 0.732
14 400 15 8 4 0.493 0.248 0.014 0.083 0.116 0.149 0.182 0.215
15 240 25 8 4 0.608 0.525 0.029 0.708 0.032 0.155 0.279 0.402
16 400 25 8 4 0.478 0.212 0.023 0.458 −0.056 0.011 0.078 0.145
17 240 20 7 3 0.581 0.460 0.024 0.500 0.076 0.172 0.268 0.364
18 400 20 7 3 0.390 0.000 0.018 0.250 −0.100 −0.075 −0.050 −0.025
19 320 15 7 3 0.571 0.436 0.014 0.083 0.228 0.280 0.332 0.384
20 320 25 7 3 0.518 0.308 0.020 0.333 0.052 0.116 0.180 0.244
21 320 20 6 3 0.559 0.407 0.013 0.042 0.228 0.273 0.317 0.362
22 320 20 8 3 0.532 0.342 0.021 0.375 0.055 0.127 0.199 0.270
23 320 20 7 2 0.417 0.065 0.014 0.083 0.006 0.021 0.035 0.050
24 320 20 7 4 0.485 0.229 0.016 0.167 0.071 0.110 0.150 0.189
25 320 20 7 3 0.456 0.159 0.019 0.292 −0.021 0.024 0.069 0.114
26 320 20 7 3 0.457 0.161 0.019 0.292 −0.020 0.026 0.071 0.116
27 320 20 7 3 0.460 0.169 0.020 0.333 −0.032 0.018 0.068 0.118
28 320 20 7 3 0.462 0.173 0.018 0.250 0.004 0.046 0.089 0.131
29 320 20 7 3 0.460 0.169 0.020 0.333 −0.032 0.018 0.068 0.118
30 320 20 7 3 0.469 0.190 0.019 0.292 −0.002 0.046 0.094 0.142

(Ra unit: µm; Zw unit: g/s).

3.5. Regression Analysis of Experimental Results

In the process of grinding, since the comprehensive goal of Ŷ prediction model is nonlinear,
the fitting was done by using a second-order model for each response [23]. The mathematical
relationship between the independent variables can be expressed by:

YR = β0 +
n∑

i=1

βiXi +
n∑

i=1

βiiX2
i +

n−1∑
i=1

n∑
j = 2
j > i

βi jXiX j (7)

where YR is the predicted response (comprehensive goal Ŷ ) and Xi represents the independent variables
(abrasive size, contact force, belt linear speed, feed speed) that are known for each experimental run.
The parameter β0 is the model constant, βi is the linear coefficient, βii is the quadratic coefficients,
and βij is the cross coefficients.

The Model F-value of 26.58 implies that the model is significant. There is only a 0.01% chance that
a “Model F-Value” this large could occur due to noise. Values of “Prob > F” less than 0.0500 indicate
model terms are significant. In this case, X1, X2, X3, X4, X1X2, X1X3, X1

2, X2
2, X3

2 are significant model
terms. The “Lack of Fit p-value” of 10.06 indicates that the LOF is significant. The value of R2 is 0.9612
shows that 96.12% of experimental data confirm the compatibility with the data predicted by the model.
The “Pred R2” of 0.8676 is in reasonable agreement with the “Adj R2” of 0.9251. “Adeq Precision”
measures the signal to noise ratio. A ratio greater than 4 is desirable. The ratio of 22.646 indicates an
adequate signal. This model can be used to navigate the design space (Table 6).
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Table 6. ANOVA for the response surface quadratic model of Ŷ1.

Source
Ŷ1 Ŷ2

Sum of Squares df Mean Square F Value p-Value Prob > F Sum of Squares df Mean Square F Value p-Value Prob > F

Model 0.60 14 0.043 26.58 <0.0001 0.78 14 0.055 43.71 <0.0001
X1 − P 0.18 1 0.18 111.68 <0.0001 0.33 1 0.33 260.20 <0.0001
X2 − F 0.18 1 0.18 111.18 <0.0001 0.16 1 0.16 124.49 <0.0001

X3 − VS 0.055 1 0.055 34.45 <0.0001 0.042 1 0.042 32.96 <0.0001
X4 − VW 0.050 1 0.050 30.95 <0.0001 0.050 1 0.050 39.07 <0.0001

X1X2 0.023 1 0.023 14.52 0.0017 0.026 1 0.026 20.91 0.0004
X1X3 0.012 1 0.012 7.77 0.0138 0.014 1 0.014 11.13 0.0045
X1X4 0.001743 1 0.001743 1.09 0.3141 0.002943 1 0.002943 2.32 0.1483
X2X3 0.004128 1 0.004128 2.57 0.1298 0.001463 1 0.001463 1.15 0.2995
X2X4 0.003221 1 0.003221 2.00 0.1772 0.003278 1 0.003278 2.59 0.1286
X3X4 0.0001051 1 0.0001051 0.065 0.8016 0.00001806 1 0.00001806 0.014 0.9065
X1

2 0.011 1 0.011 6.72 0.0204 0.005273 1 0.005273 4.16 0.0594
X2

2, 0.020 1 0.020 12.34 0.0031 0.028 1 0.028 22.28 0.0003
X3

2 0.021 1 0.021 12.77 0.0028 0.029 1 0.029 23.14 0.0002
X4

2 0.0005104 1 0.0005104 0.32 0.5813 0.002048 1 0.002048 1.62 0.2230
Residual 0.024 15 0.001606 0.019 15 0.001267

Lack of Fit 0.023 10 0.002296 10.06 0.0100 0.018 10 0.001815 10.66 0.0088
Pure Error 0.001141 5 0.0002282 0.0008513 5 0.0001703
Cor Total 0.62 29 0.79 29

SD = 0.040, Mean = 0.076, C.V.% = 52.46, PRESS = 0.082,
R2 = 0.9612, Adj R2 = 0.9251, Pred R2 = 0.9676,
Adeq Precision = 22.646

SD = 0.036, Mean = 0.14, C.V.% = 24.69, PRESS = 0.063,
R2 = 0.9761, Adj R2 = 0.9537, Pred R2 = 0.9204,
Adeq Precision =29.293
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Table 6. Cont.

Source
Ŷ3 Ŷ4

Sum of Squares df Mean Square F Value p-Value Prob > F Sum of Squares df Mean Square F Value p-Value Prob > F

Model 1.03 14 0.073 65.63 <0.0001 1.35 14 0.096 82.31 <0.0001
X1 − P 0.53 1 0.53 471.77 <0.0001 0.77 1 0.77 656.31 <0.0001
X2 − F 0.14 1 0.14 123.37 <0.0001 0.12 1 0.12 102.20 <0.0001

X3 − VS 0.030 1 0.030 26.54 0.0001 0.020 1 0.020 17.12 0.0009
X4 − VW 0.049 1 0.049 44.28 <0.0001 0.049 1 0.049 42.11 <0.0001

X1X2 0.030 1 0.030 26.67 0.0001 0.033 1 0.033 28.35 <0.0001
X1X3 0.016 1 0.016 14.00 0.0020 0.017 1 0.017 14.80 0.0016
X1X4 0.004489 1 0.004489 4.02 0.0633 0.006241 1 0.006241 5.34 0.0354
X2X3 0.0001563 1 0.0001563 0.14 0.7135 0.0001823 1 0.0001823 0.16 0.6984
X2X4 0.003422 1 0.003422 3.07 0.1003 0.003481 1 0.003481 2.98 0.1048
X3X4 0.0003240 1 0.0003240 0.29 0.5979 0.001056 1 0.001056 0.90 0.3567
X1

2 0.001689 1 0.001689 1.51 0.2374 0.00009164 1 0.00009164 0.078 0.7832
X2

2 0.038 1 0.038 34.26 <0.0001 0.050 1 0.050 42.57 <0.0001
X3

2 0.039 1 0.039 35.40 <0.0001 0.051 1 0.051 43.81 <0.0001
X4

2 0.004578 1 0.004578 4.10 0.0610 0.008110 1 0.008110 6.94 0.0188
Residual 0.017 15 0.001116 0.018 15 0.001168

Lack of Fit 0.016 10 0.001604 11.57 0.0073 0.017 10 0.001692 13.99 0.0047
Pure Error 0.0006935 5 0.0001387 0.0006048 5 0.0001210
Cor Total 1.04 29 1.36 29

SD = 0.033, Mean = 0.21, C.V.% = 15.76, PRESS = 0.063,
R2 = 0.9839, Adj R2 = 0.9689, Pred R2 = 0.9397,
Adeq Precision = 35.244

SD = 0.034, Mean = 0.28, C.V.% = 12.22, PRESS = 0.082,
R2 = 0.9872, Adj R2 = 0.9752, Pred R2 = 0.9395,
Adeq Precision = 38.371

df—degrees of freedom, CV—coefficient of variation, F—Fisher’s ratio, p—probability.
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The normal plot of residuals (as shown in Figure 6) shows that the errors are distributed normally.
Figure 7 also shows each experimental value matches well with its predicted value.
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After conducting the experiment, the obtained data were modeled and a quadratic equation for
comprehensive goal Ŷ1 was achieved as follows:

Ŷ1 = 6.34756 + 0.00124309X1 − 0.15942X2 − 1.35614X3 + 0.21733X4 + 0.0000954688X1X2

+0.000349219X1X3 − 0.000130469X1X4 − 0.00321250X2X3 − 0.00283750X2X4

+0.00256250X3X4 − 0.0000100836X1
2 + 0.00349860X2

2 + 0.088965X3
2
− 0.014035X4

2
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Similarly, the regression model for comprehensive goal of Ŷ2, Ŷ3 and Ŷ4 were established as follows:

Ŷ2 = 7.92318− 0.00130370X1 − 0.19631X2 − 1.61488X3 + 0.34007X4 + 0.000101719X1X2

+0.000371094X1X3 − 0.000169531X1X4 − 0.00191250X2X3 − 0.00286250X2X4

−0.00106250X3X4 − 0.00000704907X1
2 + 0.00417544X2

2 + 0.10639X3
2
− 0.028114X4

2

Ŷ3 = 9.47886− 0.00384649X1 − 0.23318X2 − 1.86806X3 + 0.46160X4 + 0.000107813X1X2

+0.000390625X1X3 − 0.000209375X1X4 − 0.000625X2X3 − 0.002925X2X4

−0.0045X3X4 − 0.00000398986X1
2 + 0.0048586X2

2 + 0.12346X3
2
− 0.042035X4

2

Ŷ4 = 11.04075− 0.00639606X1 − 0.27025X2 − 2.12170X3 + 0.58284X4 + 0.000113750X1X2

+0.000410937X1X3 − 0.000246875X1X4 − 0.000675X2X3 − 0.00295X2X4

−0.008125X3X4 − 0.000000929276X1
2 + 0.00554211X2

2 + 0.14055X3
2
− 0.055947X4

2

4. Grinding Parameters Optimization

As the optimization procedure is analogous for different surface roughness weighting coefficients,
it is representative to select one to be optimized. In the following section, as an optimization example,
the optimal value of each parameter is tried to minimize the comprehensive goal Ŷ1 when the surface
roughness weighting coefficient λa = 0.6 and MRR weighting coefficient λw = 0.4.

The optimal value of each grinding parameter was determined by a Ŷ1 prediction model using
design-expert software and obtained from Figure 8. The grinding parameters for grinding are abrasive
size of 398.16#, contact force of 21.35 N, belt linear speed of 7.13 m/s and feed speed of 2.00 mm/s.
But the abrasive size of 398.16# doesn’t exist in practical use. Therefore, the abrasive size of 320#
and 400# were the only a limited selection of abrasive sizes, they were considered to replace 398.16#.
In addition, the grinding belt was replaced regularly. The respond surface of abrasive size for 320#
and 400# is established, as shown in Figure 9, it shows the comprehensive goal Ŷ1 minimum value is
−0.022 when the abrasive size is 320#, and which is much larger than that of −0.210 when the abrasive
size is 400#. So the optimum grinding parameters are abrasive size of 400#, contact force of 21.35 N,
belt linear speed of 7.13 m/s, and feed speed of 2.00 mm/s.
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Figure 9. Respond surfaces in two different abrasive sizes. (a) P = 320#, VW = 2.00 mm/s; (b) P = 400#, 
VW = 2.00 mm/s. 
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Figure 9. Respond surfaces in two different abrasive sizes. (a) P = 320#, VW = 2.00 mm/s; (b) P = 400#, 
VW = 2.00 mm/s. 

5. Experimental Verification and Analysis 

Figure 9. Respond surfaces in two different abrasive sizes. (a) P = 320#, VW = 2.00 mm/s; (b) P = 400#,
VW = 2.00 mm/s.

5. Experimental Verification and Analysis

The optimized parameters were used in the new experiment to verify that the method is effective.
The result is shown in Table 7. No.18 of the above CCD experiment achieved the minimum value of
0.390 µm, so it was suitably chosen as the comparison group.

From Table 7, compared with reference group, when λa is 0.6 and 0.7, the mean value of surface
roughness went down by 2.05% and 4.62% respectively, and the mean value of MRR of both went
up 11.11% to 0.020 g/s; when λa is 0.8 and 0.9, the mean value of surface roughness went down by
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10.51% and 14.87% respectively, and the mean value of MRR of both went up 5.55% to 0.019 g/s.
In addition, the error ranges in the values of surface roughness and MRR of both groups are estimated
to be −0.05 to 0.05, and −0.001 to 0.001 respectively.These results reveal a trend that the optimized
value of both surface roughness and MRR decrease along with the increase of surface roughness
weighting coefficient.

Table 7. Comparison of optimization results by using weighting objectives method and response
surface methodology (RSM).

Result λa [P, F, VS, VW] Ra Error of Ra Zw Error of Zw
Increase Rate (%)

Ra Zw

Reference group
/ [400#, 20.00 N, 7.00 m/s, 3.00 mm/s] 0.390 ±0.050 0.018 ±0.001 / /

Optimized group

0.6 [400#, 21.35 N, 7.13 m/s, 2.00 mm/s] 0.382 ±0.050 0.020 ±0.001 −2.05 11.11
0.7 [400#, 20.93 N, 7.09 m/s, 2.00 mm/s] 0.372 ±0.050 0.020 ±0.001 −4.62 11.11
0.8 [400#, 20.60 N, 7.02 m/s, 2.00 mm/s] 0.341 ±0.050 0.019 ±0.001 −10.51 5.55
0.9 [400#, 20.38 N, 6.97 m/s, 2.00 mm/s] 0.332 ±0.050 0.019 ±0.001 −14.87 5.55

(Ra unit: µm; Zw unit: g/s).

Furthermore, 2D profiles of the workpiece surfaces from optimized and unoptimized group
are extracted by using laser scanning confocal microscope (OLYMPUS, OSL4100), it shows that the
surface quality of 45 steel from optimization group shown in Figure 10a,b, has significantly improved
compared with that obtained from the unoptimized group, shown in Figure 10c–e. The experiment
results show the prediction model is reliable, that is to say, this method is effective for optimizing
grinding parameters.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 15 

The optimized parameters were used in the new experiment to verify that the method is 
effective. The result is shown in Table 7. No.18 of the above CCD experiment achieved the minimum 
value of 0.390 μm, so it was suitably chosen as the comparison group.  

From Table 7, compared with reference group, when λa is 0.6 and 0.7, the mean value of surface 
roughness went down by 2.05% and 4.62% respectively, and the mean value of MRR of both went 
up 11.11% to 0.020 g/s; when λa is 0.8 and 0.9, the mean value of surface roughness went down by 
10.51% and 14.87% respectively, and the mean value of MRR of both went up 5.55% to 0.019 g/s. In 
addition, the error ranges in the values of surface roughness and MRR of both groups are estimated 
to be −0.05 to 0.05, and −0.001 to 0.001 respectively.These results reveal a trend that the optimized 
value of both surface roughness and MRR decrease along with the increase of surface roughness 
weighting coefficient.  

Furthermore, 2D profiles of the workpiece surfaces from optimized and unoptimized group 
are extracted by using laser scanning confocal microscope (OLYMPUS, OSL4100) , it shows that the 
surface quality of 45 steel from optimization group shown in Figure 10a,b, has significantly 
improved compared with that obtained from the unoptimized group, shown in Figure 10c–e. The 
experiment results show the prediction model is reliable, that is to say, this method is effective for 
optimizing grinding parameters. 

Table 7. Comparison of optimization results by using weighting objectives method and response 
surface methodology (RSM). 

Result λa  [P, F, VS ,VW] Ra  Error of Ra Zw Error of Zw 
Increase Rate (%) 

Ra Zw 
Reference 

group 
/ 

[400#, 20.00 N, 7.00 m/s, 
3.00 mm/s] 

0.390 ±0.050 0.018 ±0.001 / / 

Optimized 
group 

0.6 
[400#, 21.35 N, 7.13 m/s, 

2.00 mm/s] 0.382 ±0.050 0.020 ±0.001 −2.05 11.11 

0.7 
[400#, 20.93 N, 7.09 m/s, 

2.00 mm/s] 
0.372 ±0.050 0.020 ±0.001 −4.62 11.11 

0.8 
[400#, 20.60 N, 7.02 m/s, 

2.00 mm/s] 
0.341 ±0.050 0.019 ±0.001 −10.51 5.55 

0.9 
[400#, 20.38 N, 6.97 m/s, 

2.00 mm/s] 
0.332 ±0.050 0.019 ±0.001 −14.87 5.55 

(Ra unit: μm; Zw unit: g/s). 

 
Figure 10. 2D profiles of the workpiece surfaces from optimized and unoptimized group. Optimized 
group: (a) Ra = 0.332 ± 0.050 μm, (b) Ra = 0.382 ± 0.050 μm; Unoptimized group: (c) Ra = 0.550 ± 0.050 
μm, (d) Ra = 0.750 ± 0.050 μm, (e) Ra = 0.850 ± 0.050 μm. 

Figure 10. 2D profiles of the workpiece surfaces from optimized and unoptimized group. Optimized group:
(a) Ra = 0.332 ± 0.050 µm, (b) Ra = 0.382 ± 0.050 µm; Unoptimized group: (c) Ra = 0.550 ± 0.050 µm,
(d) Ra = 0.750 ± 0.050 µm, (e) Ra = 0.850 ± 0.050 µm.

6. Conclusions

This study focuses on the experiment of grinding parameters that uses two performance measures,
including surface roughness and workpiece MRR. The influences of abrasive size, contact force,
belt linear speed as well as feed speed were investigated for achieving 45 steel grinding with high
surface quality and high MRR. The two objectives including minimization of the surface roughness and
maximization of the MRR are converted to one comprehensive goal by using the weighting objective
method. The CCD and RSM were used to facilitate the understanding of the deep influence of grinding
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parameters. The optimum grinding conditions were obtained under different grinding goals. Based on
the results and comparisons, it is observed that the approach proposed in this work has enhanced the
surface grinding performance and optimized the grinding parameters in the surface grinding process.
The knowledge derived from this study would be useful for expanding practical use of grinding
parameters optimization technology.
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