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Abstract: Current trends in designing medical and tissue engineering systems rely on the incorporation
of micro- and nano-topographies for inducing a specific cellular response within the context
of an aimed application. As such, dedicated studies have recently focused on understanding
the possible effects of high and low density packed topographies on the behavior of epithelial cells,
especially when considering their long-term viability and functionality. We proposed to use stair-like
designed topographies with three different degrees of distribution, all created in polydimethylsiloxane
(PDMS) as active means to monitor cell behavior. Our model cellular system was human bronchial
epithelial cells (BEAS-2B), a reference line in the quality control of mesenchymal stem cells (MSCs).
PDMS microtextured substrates of 4 µm square unit topographies were created using a mold
design implemented by a KrF Excimer laser. Varying the spacing between surface features and
their multiscale level distribution led to irregular stairs/lines in low, medium and high densities,
respectively. Profilometry, scanning electron and atomic force microscopy, contact angle and surface
energy measurements were performed to evaluate the topographical and interface characteristics
of the designed surfaces, while density-induced cellular effects were investigated using traditional
cell-based assays. Our analysis showed that microstructure topographical distribution influences
the adhesion profiles of epithelial cells. Our analysis hint that epithelial organoid formation might
be initiated by the restriction of cell spreading and migration when using user-designed, controlled
micro-topographies on engineered surfaces.

Keywords: polydimethylsiloxane (PDMS) replica; laser textured mold; BEAS cells; topography
analysis; cellular behavior

1. Introduction

Besides composition, topography represents another key factor in research aimed at categorizing
and influencing the hierarchical organization of cells into distinct tissue [1]. Studies showed that
topography plays a crucial role in initiating processes required for inducing and maintaining
a specific cellular response or tissue-related activities, for instance. Specifically, recent trends in
tissue engineering technologies [2] have focused on understanding such organization and how could
it be designed to instill both nano to macroscale functionality when cell adhesion and orientation
are considered [3–5]. For instance, various studies have evaluated both specific topography and
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cell functionality for understanding cellular activity towards a desired response, with most of these
studies using macrophages, osteoblasts, mesenchymal stem cells (MSCs), and fibroblasts, etc. [6–8]. In
other analyses, topographic organization has been used to modulate the phenotype of osteoblasts [9]
and fibroblasts [10,11]. More recently, additional reports evaluated how surface topography affects
epithelial tissue functionality [12–15]. The additional focus on epithelial cells was motivated by several
factors including their known roles in maintaining the integrity and functionality of a tissue to be
translated to artificial tissue [16] formation, their demonstrated abilities to create biochemical gradients
to help guide cell positioning into a specific location [17] or potential to serve as a model system for
stem cells’ analysis [18,19]. Immortalized human bronchial epithelial cells (BEAS-2B), for instance,
are now established as non-tumorigenic epithelial cell lines from human bronchial epithelium and
are used as an in vitro cell model for respiratory diseases studies [20] or more recently, as a model
for human umbilical cord-derived MSCs cell lines [18,19]. Cell-specific expression profiles of surface
markers, the exhibition of similar osteogenic and adipogenic differentiation potential and suppressive
activities on proliferation of mitogen-activated total T lymphocytes, but not on type 2 macrophage
polarization, have been shown to be extremely beneficial when implementing these cells in artificial
tissue function design and structural functionality.

More recent studies showed how using topography with restrictive effects could impact epithelial
organoids formation, with such analysis also describing the roles of surface topographies in inducing
rapid epithelial polarization and tissue organization [21,22]. For instance, a wire-like topography
induced localized restrictive effects on cell spreading [23,24], with cultured human airway epithelial cells
(Calu-3) and Madin–Darby canine kidney cells (MDCK-II) forming organoids that closely resembled
in vivo morphologies [25]. Notably, in such studies and despite research imposing distinct geometries
and mechanical restrictions to cell spreading, the possible effects of high and low densities packed
micro topographies have not been fully investigated. Future developments in tissue engineering
design and subsequent integration in synthetic applications should consider both cell functionality as
well as how surface topographical effects dictate and/or control such functionality.

We hypothesized that a user-directed design strategy could be implemented to define surface
topographies to be further used to control the density and functionality of epithelial cells. To demonstrate
our hypothesis, we used polydimethylsiloxane (PDMS) replicated microtextured substrates with three
degrees of densities and depths, all designed by the user, and evaluated the early response and
organization of BEAS-2B cells exposed to such surfaces. The choice of PDMS was motivated by its
known biocompatibility and ease in implementation for creation of engineered cellular scaffolds [26,27].
The user-defined topographies were created with a mold polycarbonate (PC)-replication and a KrF
excimer laser [6,28], with the design allowing not only for organization of square micrometric base
units (depth/height and width, of the 250 nm/4 µm square side sizes), but further, for controlled spacing
and distribution on multiscale levels of such features.

Our analysis of BEAS-2B cell number showed that surface topography is essential in both
controlling cell activity as well as its organization; for instance, the surface that had a rarer distribution
of the step-like structures allowed for the agglomeration of cells to support the hypothesis that epithelial
organoid formation might be initiated by the restriction of cell spreading and migration.

Our results offer additional perspectives for future tissue constructs formation, with such
perspectives being supported by the intensive user-directed role when scaffold formation and
organization are envisioned.

2. Materials and Methods

2.1. Substrate Fabrication

Textured substrates were obtained by replication in polydimethylsiloxane (PDMS; Sylgard 184
Silicone Elastomer Kit; Dow Corning, USA MI,; 1:10) using polycarbonate (PC) multi-scaled molds
micromachined by a projection laser ablation system equipped with a KrF excimer laser (Exitech
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PPM-601E Gen6 Tool, Oxford, UK), (20 ns pulse, 248 nm wavelength, 50 Hz repetition rate, average
fluence at the substrate level 400 mJ cm−2 per pulse), as described in [6,28]. Briefly, the laser beam
was collimated on a grey level mask, focused on the PC substrate, with the de-magnification factor of
5, and the mask was moved in a controlled manner under the beam to lead to a design on a 1 cm2

area. The residual ablated particles were aspired during the texturing process. Before being used for
replication, the PC molds were cleaned by ultrasonication for 10 min, sequentially, in isopropyl alcohol
(IPA)(Chemical Company, Iasi, Romania) and Millipore ultrapure water (R = 18 MΩ), followed by
their subsequent drying with an air gun.

The liquid PDMS obtained from mixing the two above components was placed onto the PC mold
for 48 h at room temperature, and then heated at 80 ◦C for 1 h [29,30]. The resulting PDMS samples were
subsequently removed from the mold and cleaned by ultrasonication, twice, with each 10 min cleaning
step being performed in Millipore ultrapure water. Three degrees of densities were created using
the mold design, with 4 µm2 units and varying the spacing between the features and their disposal at
multiscale levels; specifically, irregular stairs/lines in low, medium and high densities were created [28].
Such structures were further referred to as low-density square unit-LDSU, medium density square
unit-MDSU and high-density square unit-HDSU, respectively (Supplementary Materials Figure S1).

2.2. Substrates Topography Characterization

The morphology of the PDMS samples was characterized using optical and scanning electron
microscopy (i.e., OM and SEM, respectively), as well as atomic force microscopy (i.e., AFM). SEM
investigations were performed using a scanning electron microscope (JSM-531 Inspect S Electron
Scanning Microscope, FEI Company, Hillsboro, OR, USA), at accelerating voltages between 5 and
25 kV after the samples were coated with a 10 nm thin gold layer deposited using a sputter coater
(Agar Scientific Ltd, Essex, UK).

All AFM investigations were performed using a XE100 AFM from Park Systems, Suwon, South
Korea, in ambient conditions. Topography analysis was evaluated in non-contact mode. PDMS samples’
elastic flexibility and AFM tip adhesion to the PDMS surfaces were determined by force versus distance
measurements, at three points situated at different heights, all randomly chosen [31] (Supplementary
Materials Figure S2). Silicon tips with a resonance frequency of approximately 70 kHz and an elastic
constant of 2 N·m-1 were used. Height between two primary units (high and an intermediate), as well
as between the intermediate and a shallow one, respectively, were measured using contact mode.

The surface of PDMS samples was also evaluated using a profilometer (P-7 stylus profiler, KLA,
Milpitas, CA, USA) to help determine the distribution of the height profiles as created using the molds.
The profilometer was equipped with a diamond tip and a radius of 2 µm. For analysis, the sample areas
of 400 × 400 mm2 with a distance of 10 µm between adjacent profiles, at a scanning rate of 100 µm/s,
and an applied mass of 0.5 mg, were used. The results were analyzed via APEX 3D BASIC V7USA,
(Milpitas, CA, USA) dedicated software and the density of square unit per surface area was calculated
using the Abbott–Firestone algorithm, a cumulative probability density function of the total measured
heights [32–34].

2.3. Wetting Behavior

The hydrophobicity of the PDMS samples (with different topographical characteristics) was
evaluated by contact angle measurements when using a KSV CAM101 microscope (KSV Instruments
Ltd., Espoo, Finland) equipped with a video camera and FireWire interface which allowed the acquisition
of images with a resolution of 640 × 480 pixels. For this, the sessile drop method was applied at
constant room temperature (20 ◦C) by using a syringe containing Millipore water and di-iodomethane
(Sigma Aldrich, St. Louis, MO, USA). The reported values were obtained from three independent
measurements made on different areas of each sample. Surface free energy (SFE) was also evaluated
and the two wetting agents, namely water and di-iodomethane, were obtained using the Owens,
Wendt, Rabel and Kaelble (OWRK) method [35–37].
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2.4. In Vitro Studies

PDMS samples were sterilized in 70% ethanol for 1 h. For cell culture experiments, samples
were washed twice with sterile warm phosphate buffered saline solution (i.e., PBS Fisher Scientific,
USA), pH = 7.4 prior to cell seeding. Immortalized human bronchial epithelial cells (BEAS-2B) from
American Type Culture Collection (ATCC, USA) were cultured in 100 mm dishes (Corning, Inc.,
Corning, NY, USA) in Dulbecco’s Modified Eagle Medium (DMEM) containing 5% Fetal Bovine
Serum (FBS), 1% L-glutamine, and 1 % penicillin–streptomycin (all reagents were purchased from
Life Technologies, USA). The cells were incubated at 37 ◦C, 5% CO2, and in an 80% relative humidity;
consistent sub-culturing took place using 0.05 or 0.25% trypsin (Invitrogen). Before each experiment,
cells were grown to a monolayer of 90–100% confluency and cells in the 3rd–6th passage were used.
Experiments were performed in replicates, in three different blocks designs.

2.5. Cell viability analysis

BEAS-2B cells were seeded onto the samples, overnight, at a density of 2.5 × 105 cells/mL.
Subsequently, the cells were incubated with 10 µg·mL-1 of Hoechst 33,342 (Molecular Probes, Eugene,
OH, USA) for 30 min at 37 ◦C and then analyzed using fluorescence microscopy (Leica Microsystems,
Wetzlar, Germany) to assess the percentage of intensely condensed chromatin and/or fragmented
nuclei. The apoptotic percentage was calculated as the percentage of cells with apoptotic nuclei over
the total number of cells, both per field of view. Experiments were performed in replicates, in three
different block designs.

3. Results and Discussion

It has been demonstrated that cells assemble into structures that mimic surface’s topographies,
with such structure formation relying on specific cellular responses to external cues [1–4]. In our
work, we hypothesized that, by providing surface topographies of random distribution in low (LDSU),
medium (MDSU) and high densities (HDSU), a user-controlled effect is induced on exposed epithelial
cells. It is envisioned that our analysis will be able to shine light onto hierarchical cellular organization
and its role in tissues structure formation to be used for future synthetic applications.

3.1. Formation and Characterization of the Micro-Structured Surfaces

We first designed polydimethylsiloxane (PDMS) substrates of known morphologies using replica
demolding from a laser textured polycarbonate (PC) substrate. In our approach, the short pulse of
20 ns allowed a non-thermal ablative removal of the mold material and controlled formation of depth
profiles with spatial resolution in the order of 0.1 and 1 µm. Scanning electron microscopy (SEM)
analysis (Figure 1a–c) and atomic force microscopy (AFM; Figure 1d–f) images allowed the evaluation
of such structures and showed surfaces with a base unit of 250 nm/4 µm square side size with varying
spacing between their features. Moreover, analysis showed that such user-designed surfaces displayed
multiscale level architectures of well-maintained dispositions (Supplementary Materials Figure S1).

The distribution and density of the square units as well as root mean square (RMS) analysis
revealed changes in surface roughness values from 11.5 mm for control (flat PDMS) [38,39] to 110.7 nm
for the PDMS-LDSU sample (Figure 2a), 226.9 nm for the PDMS-MDSU (Figure 2b), and 358.4 nm for
the PDMS-HDSU sample (Figure 2c), respectively.
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Figure 1. Scanning Electron Microscopy images of surface structures polydimethylsiloxane (PDMS) 
(a) Low-density square unit (LDSU), (b) Medium-density square unit (MDSU), and (c) High-density 
square unit (HDSU), with scale bar of 50 µm. Atomic Force Microscopy images of the PDMS 
structures of (d) LDSU, (e) MDSU, and (f) HDSU, respectively, with corresponding topographies in 
3D and 2D representations combined with a synthetic illumination effect used to enhance the contour 
of each obtained slope. 
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Figure 1. Scanning Electron Microscopy images of surface structures polydimethylsiloxane (PDMS)
(a) Low-density square unit (LDSU), (b) Medium-density square unit (MDSU), and (c) High-density
square unit (HDSU), with scale bar of 50 µm. Atomic Force Microscopy images of the PDMS structures
of (d) LDSU, (e) MDSU, and (f) HDSU, respectively, with corresponding topographies in 3D and 2D
representations combined with a synthetic illumination effect used to enhance the contour of each
obtained slope.
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Figure 2. Profilometry analysis of the PDMS samples; top view results on the left-side and 3D
maps on the right-side together with root mean square (RMS) values for: (a) LDSU; (b) MDSU and
(c) HDSU, respectively.
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Sample microstructure height values were evaluated by the Abbott–Firestone algorithm and are
revealed in Figure 3. As shown, for the PDMS-LDSU (Figure 3a), the predominant depths values
were in the 0.164–0.330 µm range, while the ranges for PDMS-MDSU (Figure 3b) and PDMS-HDSU
(Figure 3c) samples were between 0.320–0.640 and 0.200–0.670 µm, respectively. Further, analysis
showed that PDMS–MDSU and PDMS–HDSU samples had approximately the same height of their
surface structures, while PDMS–LDSU showed the smallest height structures.
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Figure 3. Distribution of PDMS depths: (a) LDSU; (b) MDSU and (c) HDSU. The obtained histograms
show the depth values on the vertical left-side; each histogram contains a number of 20 bins, with the bin
width of 0.03284 µm (a-PDMS–LDSU), 0.06371 µm (b-PDMS–MDSU) and 0.09467 µm (c-PDMS–HDSU),
respectively. The bin widths were assigned automatically by the software (APEX 3D BASIC software
analyses V7, Digital Surf, Besançon, France, 2016, approved by ISO 25178). (d) Histogram representation
showing the adhesion force values of the different PDMS replicates.

The above results were also confirmed by AFM analysis (Supplementary Materials Figure S3).
Specifically, analysis showed a value of 0.67 µm between two primary units (high and an intermediate),
as well as between the intermediate and a shallow one for the HDSU probe.

The force–displacement data were further used to estimate the elasticity of the samples; it is
known that manipulating substrate’s elasticity or topography could be used to promote organized
epitheliogenesis and controlled cell proliferation and differentiation [40,41]. Previous studies have
shown that a number of cellular processes including adhesion, migration and proliferation [40] could
be influenced by the substrate itself to determine cell fate. Contact mode and force versus distance and
tip-substrate adhesion AFM measurements were evaluated at shallow, medium and higher point of
each substrate (Supplementary Materials Figure S2), revealing that most significant adhesion forces
were held by the HDSU samples whose density of primary units were much higher than compared to
the other two surfaces.

Lastly, contact angle measurements and surface free energy analysis were performed to evaluate
the degree of contact surface wetting and the hydrophobicity of PDMS, respectively. As shown in
Figure 4a, even though the PDMS contact angles changed with the various types of structure densities,
all surfaces remained hydrophobic. Analysis also showed that increasing the density of the primary
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units on the individual PDMS replicas induced an increase in the contact angle value. Our results are in
good agreement with the data obtained using the sessile drop technique and reported in literature—i.e.,
95.2 ± 0.9 [38]. Surface free energy, as determined by the OWRK method, showed that the energy
profiles mimic the hydrophobicity ones. Analysis also showed that, as the polar component increased,
the density of the structural units increased, with the exception of HDSU interface that maintained this
component close to that of the PDMS used as a control (1.34 mN·m-1) [42,43]. An increase in the polar
component of surface energy (1.55 to 4.59 mN·m-1) was observed and correlated to the increase in
density of structural units for LDSU and MDSU, respectively.
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3.2. Evaluation of Cell Behavior on Micro-Structured Surfaces

Above designed and characterized PDMS-based samples were next exposed to human lung
epithelial cells (BEAS-2B) with cellular behavior being evaluated after 24, 48 and 72 h, respectively. Such
analysis aimed to understand whether the (1) contact orientation can be minimized when structures are
distributed to restrict cell spreading, migration and proliferation; (2) intensity, dynamic and reciprocal
interactions between cells and topographic models can be achieved when accessibility and flexibility
of the substrate are controlled [44]. Using optical microscopy, the influence of the topography on
morphological profiles of the cells as well as on the cell numbers was evaluated. Analysis of the surface
effects on cell attachment and growth showed a surface-dependent behavior, with trends towards
specific cellular density adaptations as related to the LDSU, MDSU or HDSU surface topographies,
respectively (Figure 5a–f).
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Figure 5. Fluorescence microscopic images (40×) of Hoechst-labeled BEAS 2B cell nuclei (blue);
(a) control cells, cells on control (b) PDMS, (c) LDSU, (d) MDSU, and (e) HDSU samples, respectively.
(f) Quantification of BEAS-2B live cells seeded on PDMS microstructures with different topographies
(n = 4).

The distribution of attached cells seemed to conform to the surface’s axis of elongation [45].
Briefly, analysis showed that BEAS-2B cells spread on the microstructures of medium heights, avoiding
the highest primary units. On a stiff substrate, such as control glass, cells are known to lengthen in
the direction of the developing major axis, while on PDMS, a more radial distribution was observed.
Cells grown on top of HDSU also seemed to assume a more individual distribution profile, while cells
grown on top of LDSU and MDSU had more conglomerated profiles (Supporting Figure S4).

The individual or conglomerate profiles were presumably determined by the overall topography
and the amount of interactions between individual cells and respective surfaces. Specifically, close
interactions between cells and substrates are known to be essential for improved cellular responses,
especially when considering the development of tissue constructs, enhanced cytoskeletal organization,
cell growth and cell proliferation, respectively [46]. When comparing the cell numbers for the different
surface morphologies (Figure 5f), analysis showed that there was generally a relatively homogenous
response of the exposed cells. Specifically, the number of the cells grown on different surfaces showed
no significant differences after 24, 48 or 72 h, respectively, all relative to controls. After 24 h, cell activity,
however, seemed to decrease on PDMS, regardless of the presence or absence of topographic features;
however, at 72 h, the HDSU replica appeared to favor cell proliferation, as shown in Figure 5f and
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supported by the lower variation in the cell numbers as reported relative to MDSU and LDSU surfaces,
respectively [47,48].

Our analyses support that a multi-dimensional design controls cell attachment and implicitly, cell
density; moreover, our studies emphasize that, in order to trigger a more localized cellular response,
one could use different modulation factors to direct cellular growth and, further, cell proliferation
and differentiation. For instance, one could envision topographical features with different growth
factors or stimulants to be released upon established cellular contact, to thus provide a localized cell
fate response. Lastly, since establishing a strong cellular focal adhesion profile is vital for cell fate, one
could also imagine that inter-spacing variation both in y (height) and x (distance) directions would
not only establish the density of possible tissue constructs on synthetic surfaces, but further, would
allow for a more-directed response to be exploited when tissue constructs are to be formed through
synthetic techniques.

4. Conclusions

In this work, user-designed topographies with three different densities were obtained by replication
in PDMS; subsequently, the surfaces were used to evaluate the preliminary response of BEAS-2B
epithelial cells. SEM, AFM and profilometry analysis showed that the user-designed surfaces displayed
multiscale level architectures of well-maintained dispositions (with a base unit of 250 nm/4 µm
square side size) with such interfaces being characterized by hydrophobic profiles. Topographic
quantifications, contact angles and the surface free energy of the surfaces analyses were shown to
support in vitro assays and correlated with the BEAS-2B epithelial cell behavior. Taking into account
that the microtopography of a substrate is one of the first physical cues to be detected by attaching cells
when the organization of a tissue is being considered, the approach presented herein offers exciting
perspectives for formation of specific epithelial-type tissue.
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(c) cells on LDSU, (d) cells on MDSU, and (e) cells on HDSU respectively, taken at 10× via use of optical microscopy.
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