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Abstract: Ni1−xZnxFe2O4 (x = 0.5, 0.6, 0.7) nanoparticles were synthesized by a thermal decomposition
method. The synthesized particles were identified as pure spinel ferrite structures by X-ray diffraction
analysis, and they were calculated to be 46–51 nm in diameter by the Scherrer equation, depending
on the composition. In the FE-SEM image, the ferrite nanoparticles have spherical shapes with slight
agglomeration, and the particle size is about 50 nm, which was consistent with the value obtained by
the Scherrer equation. The lattice parameter of the ferrite nanoparticles monotonically increased from
8.34 to 8.358 Å as the Zn concentration increased from 0.5 to 0.7. Initially, the saturation magnetization
value slowly decreases from 81.44 to 83.97 emu/g, then quickly decreases to 71.84 emu/g as the zinc
content increases from x = 0.5, through 0.6, to 0.7. Ni1−xZnxFe2O4 toroidal samples were prepared by
sintering ferrite nanoparticles at 1250 ◦C and exhibited faceted grain morphologies in the FE-SEM
images with their grain sizes being around 5 µm regardless of the Zinc content. The real magnetic
permeability (µ′) of the toroidal samples measured at 5 MHz was monotonically increased from 106,
through 150, to 217 with increasing the Zinc content from x = 0.5, through 0.6, to 0.7. The cutoff

frequency of the ferrite toroidal samples was estimated to be about 20 MHz from the broad maximum
point in the plot of imaginary magnetic permeability (µ′′) vs. frequencies, which seemed to be
associated with domain wall resonance.
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1. Introduction

Spinel ferrite nanoparticles such as NiZn, MnZn have gained much attention for several
applications [1–5], including high frequency circuits, the cores of radiofrequency (RF) transformers,
inductors, antennas and radar absorbing materials, based on their high resistivity and low loss at
high frequency. They also have great potential as an efficient catalysts and/or catalyst supports for
decomposing organic or inorganic pollutants [6,7]. NiZn ferrite nanoparticles are becoming more and
more important in the field of bio-medical applications for instance magnetic resonance imaging (MRI),
drug delivery systems and hyperthermia treatment of cancer by using their appropriate magnetic
properties, antimicrobial activity and biological compatibility [8,9].

Figure 1 shows the spinel structure (the lattice parameter is about 0.84 nm) is formed by 24 cations
(Fe2+, Zn2+, Co2+, Mn2+, Ni2+, Mg2+, Fe2+, Gd2+) and 32 O2− anions and generally has a chemical
form of AB2O4, which is designated as a cubic closed-packing of O2− ions [10–13]. The round and
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the square brackets represent the tetrahedral interstitial A site and the larger octahedral interstitial B
site, respectively. Zinc ferrite is called a normal spinel structure of the form ZnFe2O4, where Zn2+ ions
occupy the tetrahedral sites and Fe3+ ions occupy the octahedral sites [13]. Nickel ferrite is called an
inverse spinel structure of the form FeNiFeO4, where Ni2+ ions occupy the octahedral sites, and half the
Fe3+ ions occupy the tetrahedral sites and the other half occupy the octahedral sites [10]. NiZn ferrite
is a kind of solid solution composed of Ni ferrite and Zn ferrite, which can be expressed as the form
ZnxFe(1−x)Ni(1−x)Fe(1+x)O4. The magnetic properties of the NiZn ferrite are strongly dependent on
the number of 3d unpaired electrons of transition metals. The Zn2+ ions do not have any unpaired
electrons (or Bohr magneton) in the 3d orbital, while Ni2+ ions have two unpaired electrons and Fe3+

ions have five unpaired electrons in the 3d orbital. Therefore, the appropriate loading of the Ni2+ ion,
which has unpaired electrons into the crystal structure of ZnFe2O4 provides much better magnetic
properties, e.g., higher saturation magnetization (Ms) and lower coercivity (Hc) [14,15] because an
addition of transition metal ions leads to the movement of some Fe3+ ions from the octahedral sites to
the tetrahedral sites, and the unequal of Fe3+ ions in both lattice sites effectively produce the remainder
of unpaired electrons, which generate and increase the magnetism [16].
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In general, with a reduction in particle size, the coercive force gradually increases until it reaches
the maximum value, but if the size of the particle is reduced to a critical size, the thermal effect becomes
even more intense and produces super paramagnetic characteristics in which each particle becomes a
single domain with not only very low magnetic loss but also very high magnetic permeability [17,18].
Moreover, the superparamagnetic particles have a zero coercive force and high magnetization, so the
control of the particle size is very important because the properties of the nanocrystals strongly depend
upon that. Properties of NiZn ferrite nanoparticles are greatly sensitive to the synthesis method
and its preparation conditions. There are many methods for the synthesis of ferrite nanoparticles,
including sol-gel, co-precipitation, high energy ball milling and thermal decomposition [19–23].
Thermal decomposition method has more advantages than other methods in synthesizing uniform
and fine-nanoparticles with a high crystallinity. Also, it is easy to control particle size and particle size
distribution with this method [24,25].

The morphology and composition of magnetic nanoparticles have a great influence on their
magnetic properties not only in their own particles but also in bulk samples after sintering. When the
saturation magnetization of magnetic nanoparticles increases, the initial permeability generally also
increases according to the relationship of µi

′ = MsD/K1, where K1 = MsHc/0.96 is the crystalline
anisotropy constant, Ms is the saturation magnetization, Hc is the coercivity and D is the average
grain size [26,27]. However, there are few studies available in the literature showing the relationship
that the permeabilities of sintered magnetic samples are inversely proportional to their magnetization
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value, and explaining the relationship in detail. Therefore, it seems to be beneficial studying NiZn
ferrite systems showing these magnetic behavioral relationships in understanding and improving
magnetic properties.

In this paper, we synthesized Ni1−xZnxFe2O4 (x = 0.5, 0.6, 0.7) ferrite nanoparticles by the
thermal decomposition method and examined the influence of the Ni/Zn ratio on the crystal structures,
microstructures and magnetic properties of the prepared NiZn ferrites using an X-ray diffractometer
(XRD), a field emission scanning electron microscope (FE-SEM), an impedance analyzer and a vibrating
sample magnetometer (VSM).

2. Materials and Methods

Ni1−xZnxFe2O4 (x = 0.5, 0.6, 0.7) nano-particles were synthesized by a thermal decomposition
method as shown in Figure 2. The raw materials were nickel(II) acetylacetonate (97%), zinc acetylacetonate
hydrate (95%), iron(III) acetylacetonate (97%). Oleic acid (90%) and oleylamine (70%) were used as
a surfactant, 1,2-hexadecandediol (90%) as a reducing agent, and benzyl ether (98%) as a solvent.
Ni, Zn and Fe-acetylacetonate precursors were weighed, respectively according to the chemical form
of Ni1−xZnxFe2O4 (x = 0.5, 0.6, 0.7) and poured into a 500 mL three neck flask that was filled with
a mixed solution of 6 mmol oleic acid, 6 mmol oleylamine, 1,2-hexadecandediol(HDD), and 20 mL
benzyl ether. The precursor solution was heated to 200 ◦C for 1 h, then further heated to 300 ◦C and
kept there for 1 h; the process was carried out in a N2 atmosphere with refluxing using cooling water.
The solution that finished the reaction was cooled to room temperature, centrifuged for 30 min at a
speed of 4000 rpm and washed repeatedly with hexane and ethanol in order to separate organic remains
from the ferrite particles. Hexane was used to dissolve fat acids such as oleic acid and oleylamine.
Finally, Ni1−xZnxFe2O4 (x = 0.5, 0.6, 0.7) nanoparticles were collected and dried at 100 ◦C for 24 h.
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Toroidal samples of NiZn ferrites were fabricated by uniaxial pressing. The ferrite powder was
mixed with a PVA (Polyvinyl alcohol, 5 wt %) binder solution, which was poured into a toroidal
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shaped mold and applied with a pressure of 1 ton/cm2 to make green toroidal samples. The green
toroidal samples were burned out at 650 ◦C for 30 min in air and then sintered at 1250 ◦C for 2 h.

The phase purity of the NiZn ferrites nanoparticles was investigated with an X-ray diffractometer
(XRD: D/max 2200 V/PC, Rigaku Co., Akishima, Japan). Microstructures of sintered toroidal
ferrite samples were observed with a Scanning Electron Microscope (SEM, JSM 6700F, JEOL, Japan).
Magnetic permeability (µ′, µ′′) was measured from 1 MHz to 1 GHz with an Impedance analyzer
(E4991A). Saturation magnetization of the ferrite particles was measured with a Vibrating Sample
Magnetometer (VSM).

3. Results

Figure 3a–c shows the X-ray diffraction patterns of Ni1−xZnxFe2O4 (x = 0.5, 0.6, 0.7) nanoparticles,
which indicate a pure spinel structure for all three ferrites without any second phases regardless of
the composition.

Figure 4 shows the dependence of the lattice parameters of the ferrite nanoparticles on the Ni
concentration, which were calculated with the following equation [28].

a =
λ
√

h2 + k2 + l2

2sinθhkl

The lattice parameter increases monotonically from 8.340 Å to 8.358 Å with increasing Zn
concentration from x = 0.5 to 0.7, which is due to the fact that the ionic radius of the Zn2+ ion (0.74 Å) is
larger than that of the Ni2+ ion (0.69 Å). This result means that some Zn ions appear to be incorporated
into Ni site, considering that the larger Zn2+ ions prefer tetrahedral A-sites, but the smaller Ni2+ ions
prefer octahedral B-sites in the crystalline spinel structure. The lattice volume of Ni1−xZnxFe2O4 was
also increased with increasing Zn concentration, which is reasonable considering the difference in their
ionic radii.

Figure 5 shows the dependence of the crystallite size of ferrite nanoparticles on the Zn concentration,
in which the average size (D) of crystallites was calculated from (311) peak using Scherer’s equation as
shown below.

D =
kλ
βcosθ

where the constant k = 0.89, λ = 1.5406 Å, and β is the FWHM of the (311) diffraction peak. Regardless
of the Zn concentration, the crystallite size was in the range of 46 to 51 nm and there was no significant
difference in it.

Figure 6 shows the hysteresis curve of NiZn ferrite nanoparticles at room temperature. As the Zn
ion concentration increases from x = 0.5 to 0.7 in Ni1−xZnxFe2O4, the saturation magnetization and the
coercivity decreases from 83 to 71 emu/g and from 18.54 to 16.48 Oe, respectively, which is considered
high compared to some other results. The magnetic properties of the Ni1−xZnxFe2O4 depends on its
chemical composition, grain size, preparation method, and the arrangement of cation between two
interstitial sites [29]. The ferrite under an applied field has two magnetization processes: domain wall
motion and magnetization rotation within domains. In general, domain wall motion is sensitive to
extrinsic material features such as grain size and grain-boundary structure, the presence of inclusions
or pores within the grains, impurity levels and stresses. Figure 7 shows the Ni1−xZnxFe2O4 particles
are considered single domain particles, taking into account the fact that the crystallite size gotten from
the XRD is almost the same as the particle size obtained from the FE-SEM image. Therefore, it appears
that the high saturation magnetization is mainly due to an arrangement of cations on the sub-lattices A
and B. The decrease in the saturation magnetization with Zn ion content is well complied with the
report that the Curie temperature, which means the transition temperature between paramagnetic and
ferromagnetic phase, decreases rapidly with increasing nonmagnetic Zn ions in NiZn ferrite [29].
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Figure 7. FE-SEM image of synthesized Ni1−xZnxFe2O4 (x = 0.5, 0.6, 0.7) nanoparticles. (a) x = 0.5
(b) x = 0.6, and (c) x = 0.7.

The saturated magnetization of ferrite is proportional to the difference in sub-lattice magnetization
associated with octahedral and tetrahedral sites. In normal spinel, tetrahedral sites are occupied by
divalent cations, while in reverse spinel these sites are filled by trivalent cations. ZnFe2O4 is reported
as normal spinel, but NiFe2O4 is inverse spinel. The combination of ZnFe2O4 and NiFe2O4 form a
solid solution Ni1−xZnxFe2O4. With increase in Zn content, Fe+3 in the tetrahedral sites are replaced by
Zn2+ cations and Fe+3 fill the octahedral sites emptied by Ni2+. Zn2+ ion doesn’t contain any unpaired
electrons, however, Ni2+ ion has two and Fe+3 ion has five unpaired electrons. The following convention
has been adopted to define the location of cations in the octahedral and tetrahedral sites of ferrite:

Zn2+(Fe2
3+)O4 normal spinel

Fe3+(Ni2+Fe3+)O4 inverse spinel

where the ions on the octahedral sites are enclosed in brackets. Ferric ions may occupy tetrahedral
or octahedral sites depending on the different cations present. When non-magnetic Zn ions are
incorporated into the NiFe2O4 lattice, they have a stronger affinity for the tetrahedral site than ferric
ions and thus will reduce the amount of Fe3+ ions on the tetragonal A-site. The net magnetic moment
due to the number of unpaired electrons in nickel zinc ferrite is proportional to Equation (2). The Zn2+

ions have no unpaired electrons, while the Ni2+ ions have two unpaired electrons and the Fe3+ ions
have five unpaired electrons [30]. Saturation magnetization is considered to increase with increasing
Zn content according to Equations (1) and (2):

Zny
2+ Fe1−y

3+(Ni1−y
2+ Fe1+y

3+)O4 (1)

M = −0(y) − 5(1 − y) + 2(1 − y) + 5(1 + y) = 2 + 8 y (2)
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where y is the mole fraction of Zn2+ ions. The theoretical value of this magnetization was inconsistent
with the magnetization data which indicates a decreasing trend with increasing Zn content. However,
it has been reported that the magnetization of NiZn ferrite decreases as the Zn content increases above
0.5 mole fraction in NiZn ferrite [31]. At high levels of zinc substitution, Fe3+ ions in the tetragonal
sites were so diluted that super-exchange interaction between tetrahedral and octahedral sites was lost
and the saturation magnetization dropped. The Curie temperature declines abruptly and eventually
drops below room temperature with increasing Zn content, so that the magnetic properties disappear
at this temperature.

Figure 8a–c shows the X-ray diffraction patterns of the Ni1−xZnxFe2O4 (x = 0.5, 0.6, 0.7) samples
sintered at 1250 ◦C. There are no second phases in these X-ray diffraction patterns, which means that
the sintered samples have the same pure spinel structure regardless of their composition.

Figure 9a–c displays FE-SEM images of the Ni1−xZnxFe2O4 (x = 0.5, 0.6, 0.7) sintered at 1250 ◦C.
Note that the microstructures become denser with an increasing Zn concentration in Ni1−xZnxFe2O4

ferrite. This behavior is consistent with the study that Zn ions not only lower the sintering temperature,
but also play a crucial role in increasing the sintering density. Meanwhile, it is interesting to note that
although the particle size is somewhat uniform with about 5 µm, the particle shape is faceted.

Figure 10a,b shows the real and imaginary parts of the magnetic permeability of Ni1−xZnxFe2O4

(x = 0.5, 0.6, 0.7) toroidal samples in the frequency range from 1 MHz to 1 GHz. It is clear from the
Figure 10 that the real permeability (µ′) at 5 MHz increases monotonically from µ′ = 106 to 217 with
increasing Zn content from x = 0.5 to 0.7 in of Ni1−xZnxFe2O4 (x = 0.5, 0.6, 0.7). The value of µ′ for
all three toroid samples remains constant up to 10 MHz and increases slightly with further increase
in frequency.

The imaginary part of permeability (µ′′) increases with increase in frequency and a broad maximum
is observed at 20 MHz, where µ′ decreases rapidly. This characteristic is a consequence of domain wall
resonance, which consists of relaxation and resonance type dispersions. Hence, in the low frequency
domain, the complex permeability spectrum of domain wall motion can be treated as the superposition
of resonance and relaxation dispersion [30]. The broad maximum in µ′′ is the result of the overlapping
of the domain wall motion (DWM) resonance and spin resonance [32–35]. The contributions of domain
wall motion on the complex permeability spectrum decreases gradually with increasing frequency,
and only the spin rotational component becomes dominant at higher frequency [36]. At frequencies
below 500 kHz, the chief magnetizing mechanism of ferrite is DMW [37], while the domain wall
resonance happens in the range from 1 to 100 MHz and rotational resonance occurs above 1 GHz [32,33].
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Figure 9. FE-SEM images of the Ni1−xZnxFe2O4 (x = 0.5, 0.6, 0.7) samples sintered at 1250 ◦C: (a) x = 0.5,
(b) x = 0.6, and (c) x = 0.7.
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Figure 10. Real part (a), and imaginary part (b) of the magnetic permeability of Ni1−xZnxFe2O4 (x = 0.5,
0.6, 0.7) toroidal samples in the frequency range from 1 MHz to 1 GHz.

The frequency dependence of the permeability of ferrite samples is connected to two types of
magnetization mechanisms: domain wall motion and spin rotation, as shown below.

µ = 1 + χdw + χsp (3)

χdw =
3πMS

2D
4γ

(4)

χsp =
2πMS

2

Ku
(5)

where χdw is the domain wall susceptibility, χsp is the intrinsic rotational susceptibility, Ku is the
anisotropy constant, γ is the gyromagnetic ratio, Ms is the saturation magnetization, and D is
the grain diameter. With increasing Zn content, µ′ of Ni1−xZnxFe2O4 (x = 0.5, 0.6, 0.7) increases,
while the cut-off frequency decreases. Real part of permeability (µ′) is depends on various parameters
such as stoichiometry, grain size, composition, porosity, impurity levels, saturation magnetization,
magnetostriction, and crystal anisotropy [37]. Higher permeabilities are favored by large grain size,
low porosity, high saturation magnetization, low crystalline anisotropy, low magnetostriction and high
purity. In particular, the real part of permeability strongly depends on grain size.

As Zn ion increases, the crystalline anisotropy is decreased, but permeability is increased as
shown in Table 1. Here, the crystalline anisotropy constant K1 was calculated using the following
relation [38] expressed as K1 = MsHc/0.96, where Ms is the saturation magnetization and Hc is the
coercivity. The initial permeability varies inversely with magneto-crystalline anisotropy constant,
but proportional to grain size according to the relationship [39] represented by µi

′ = MsD/K1 where D
is the average grain size. Thus, the formula µi

′ = 0.96D/Hc is obtained, which means that as the Zn
concentration increases, the increase in permeability (µ′) is related to increased grain size and reduced
coercivity. This corresponds to the results shown in Table 1. In other words, an increase in µ′ as the Zn
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concentration increases can be attributed to an increase in the domain wall mobility promoted by the
larger grains, as well as lower crystalline anisotropy according to Equations (1) and (2).

Table 1. Properties of Ni1−xZnxFe2O4 (x = 0.5, 0.6, 0.7) powder and toroidal samples.

Sample
Name

Saturation
Magnetization

Ms (emu/g)

Lattice
Parameter

a (A)

Crystallite
Size (nm)

Permeability
µ′ (5MHz)

Coercivity
Hc (Oe)

Anisotropic
Constant K1

(erg/cm3)

Ni0.5Zn0.5Fe2O4 84.44 8.340 49 106 18.54 1631
Ni0.4Zn0.6Fe2O4 83.97 8.346 51 150 17.56 1536
Ni0.3Zn0.7Fe2O4 71.84 8.358 46 217 16.48 1233

4. Conclusions

Ni1−xZnxFe2O4 (x = 0.5, 0.6, 0.7) nanoparticles were successfully synthesized by a thermal
decomposition method and they were identified as pure spinel ferrite structures by X-ray diffraction
analysis. The synthesized ferrite nanoparticles were calculated to be 46–51 nm in diameter by the
Scherrer equation, which was consistent with the particle size of about 50 nm observed from FE-SEM
images. The lattice parameters of ferrite nanoparticles monotonically increased as the Zn content
increased. The synthesized ferrite nanoparticles showed relatively high saturation magnetization
values of 71–83 emu/g depending on their composition. Toroidal samples were prepared by sintering
ferrite nanoparticles at 125 ◦C, and they exhibited faceted grain morphology in FE-SEM images with
a grain size of about 5 µm. The real magnetic permeability (µ′) of the toroidal sample measured at
5 MHz increased with increasing Zn content, showing µ′ = 217 for x = 0.7. The cutoff frequency of the
ferrite toroidal sample was about 20 MHz, which seemed to be associated with domain wall resonance.
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