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Featured Application: The described simple and straightforward lung field segmentation
algorithm could serve as a basis for automated Chest X-ray interpretation and aid the rapid
discrimination of pathological Chest X-rays in high-volume radiology settings, remaining largely
unaffected by variable lung shapes and chest deformities.

Abstract: The delineation of bone structures is a crucial step in Chest X-ray image analysis. In the case
of lung field segmentation, the main approach after the localization of bone structures is either their
individual analysis or their suppression. We prove that a very fast and approximate identification of
bone points that are most probably located inside the lung area can help in the segmentation of the
lung fields, without the need for bone structure suppression. We introduce a deformation-tolerant
region growing procedure. In a two-step approach, a sparse representation of the rib cage is guided
to several support points on the lung border. We studied and dealt with the presence of other bone
structures that interfere with the lung field. Our method demonstrated very robust behavior even with
highly deformed lung appearances, and it achieved state-of-the-art performance in segmentations for
the vast majority of evaluated CXR images. Our region growing approach based on the automatically
detected rib cage points achieved an average Dice similarity score of 0.92 on the Montgomery County
Chest X-ray dataset. We are confident that bone seed points can robustly mark a high-quality lung
area while remaining unaffected by different lung shapes and abnormal structures.

Keywords: image segmentation; Chest X-ray (CXR); lungs; region growing; rib cage

1. Introduction

The Chest X-ray (CXR) is a common and widely used imaging modality in everyday clinical
practice, aiming to visualize disorders of the bony thorax and the organs of the thoracic cavity [1,2].
Even though it is cheap, readily available and technically simple, it can reveal a significant amount of
information regarding the patient’s health, thus providing important clues for an accurate diagnosis [1].
Over the years, CXR has inevitably faced the rapid progress of medical imaging technology and has
been subjected to criticism regarding its poor diagnostic sensitivity, which has to be counterbalanced by
an accurate, detailed and time-consuming interpretation by a radiologist [1]. Radiograph interpretation
is prone to error and discrepancies, and even an experienced radiologist using a systematic approach
can miss 10-15% of pathologic lesions [1]. A discrepancy is defined as the extent of disagreement
between the opinions of two radiologists regarding a diagnosis [3]. Studies report a day-to-day error
rate of 3-5% per observer and a disagreement rate of 5-9% between two observers [3]. In a study
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of 100 chest radiographs, concordance between three expert radiologists was 61%, pointing out the
significant interobserver variation in CXR interpretation [4]. The structures and pathologies depicted
on a CXR often have similar opacities or overlap one another, making the discrimination of fine lesions
difficult. The abovementioned weaknesses paved the way for Computer-Aided Diagnosis (CAD) in
chest radiography, aiming to improve the diagnostic accuracy. The first attempt to implement CAD
in CXR interpretation dates back to 1963 when Lodwick et al. proposed a method to determine the
probability of a lung nodule being cancerous, based on the systematic classification of unique descriptive
features of lung lesions [5]. Since then, CAD in chest radiography has focused on automating discreet
steps of CXR interpretation such as size and shape measurements, contour delineation and nodule
detection [6]. Moreover, CAD research has focused on developing algorithms suited for one disease at
a time (pneumonia, lung cancer lesions, tuberculosis, pneumothorax) and not an all-in-one automated
solution [6]. Over the past few years, there has been an increasing number of published works aiming
to identify various lung pathologies by using deep learning approaches such as Convolutional Neural
Networks (CNN) [7-10].

Automated CXR interpretation could drastically alleviate the increasing workload of radiologists
by complementing their diagnostic procedures and acting as a “second opinion” [11]. From a technical
standpoint, a typical CXR analysis algorithm comprises the following discrete steps: defining the
Region Of Interest (ROI), identifying specific imaging features of the ROI and using a machine learning
strategy to classify the detected pathology [12]. In the case of CXR analysis, the ROl is the lung region
within the bony thorax, and its correct identification is a crucial prerequisite. Accurately delineating the
lung boundaries is a very challenging image analysis problem, and it is well studied in the literature.
The majority of available algorithms are evaluated based on anatomically “correct” CXRs and are
sometimes prone to error due to anatomical variations, chest deformities and incorrect positioning of
the patient [12].

In the era of the ongoing pandemic of the novel coronavirus disease 2019 (COVID-19), which has
pushed the critical capacity and efficiency of healthcare facilities to their limits, fast and accurate
diagnosis of positive cases has become a matter of crucial importance. Hu et al. proposed a weakly
supervised deep-learning method for the detection of COVID-19 from chest Computed Tomography
(CT) scans [13]. The aim of their approach was to provide a solution for the fast detection of COVID-19,
minimizing the time-consuming need for manual labeling of cases by radiologists. Their multiscale
learning scheme was able to cope with variations in the size and location of the lesions, since pathological
lesions are usually small for mild cases. They evaluated their algorithm on a chest CT dataset from
multiple centers and CT scanners. Discrepancies in image appearance due to the use of different
classes of scanners or variable image acquisition techniques and issues regarding the low visibility
of anatomical structures are addressed by the studies of Yang et al. and Li et al., both focusing on
cardiac imaging [14,15]. The former authors applied a joint segmentation method based on a multiview
two-task (MVTT) recursive attention model to segment the left atrium of the heart and its scars by
mimicking the inspection sequence of radiologists, whereas the latter authors used a deep learning
method by developing a multiview recurrent aggregation network (MV-RAN) for the segmentation of
each echocardiographic sequence during a full cardiac cycle. Liu et al. also applied an attention model
to segment the prostate gland, which exhibits various morphological characteristics [16].

For the segmentation of the lung area, we propose a region growing method where the enclosed
rib cage structure is promoted as a peculiarity for a very robust initial demarcation. The specifics of our
method along with a brief introduction to the dataset used and the evaluation results follow in later
sections. At this point, we review related published works regarding the segmentation of lung regions
and ribs, focusing on their strengths and weaknesses and comparing their approaches with ours.

The presence of several insufficiently separated bone structures, some of them irrelevant to the
lung area, remains a big concern in many works. Gordienko et al. introduce a deep learning technique
for bone shadow exclusion and lung segmentation in 2D CXRs, to assist radiologists in the diagnostic
process [17]. However, the introduced additional preprocessing step, which is very complex most of
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the time and computationally very demanding, can contribute to the accumulation of errors when
used within the context of the overall lung area segmentation. In contrast, in our work we prove that a
very simplistic identification of a few rib cage points is enough for quite an efficient overall lung area
segmentation algorithm without the intention to preprocess the initial CXR image.

Loog et al. attempted to segment the rib cage by using an iterated contextual single pixel
classification approach [18]. The overall relabeling process guarantees that any errors appear in a
structured way. They confirmed the challenges of rib cage segmentation, emphasizing the risk of
confusion between ribs and clavicles and, besides the poor visibility of the ribs, the potential problem
of differences in appearance and size for rib structures localized at the top of the lung fields compared
with the rest of the image.

Li et al. qualified ribs overlapping with the lung field as the main noise in lung node detection,
pointed out the fact that their shapes are different from each other and subsequently used different
templates to describe them [19]. The beforementioned authors introduced a sophisticated filtering
process of real rib structures, also employing graph theory. Wessel et al. introduced a unique method
addressing both rib segmentation and anatomical labeling in chest radiographs [20]. Based on the
idea that the additional information of neighboring ribs leads to a more precise detection of a single
rib, they proposed a sequential processing scheme, extending the Mask Region-based Convolutional
Neural Network (R-CNN) architecture. As commonly done, Cong et al. considered the segmentation
of the two lung fields as a given [21]. In their approach, the generalized Hough transform is employed
to localize the lower boundary of the ribs, and based on this, a novel bilateral dynamic programming
algorithm delineates the upper and lower boundaries of each rib within the lung area.

Ultimately, our method aims to accurately segment the overall lung regions, benefiting from a very
sparse localization of rib cage points, which belong to an imprecise initial contour approximation. In the
same manner as our method, Wan Ahmad et al. avoided any training, opting for a straightforward
sequential, rule-based algorithm [22]. They highlighted the fact that an unsupervised method is
mandatory for a robust Content-Based Medical Image Retrieval System (CBMIRS). Preprocessing
deals with different looking X-rays due to different machine configurations, while they managed to
estimate the lung border by automatically selecting threshold values for each direction. However,
the elimination of clavicles, sides and body artifacts is highly parametric, a fact that increases the
risk of low generalization capability. The initial mask is optimized thanks to a clustering approach.
Our method can achieve a particularly good quality segmentation result with much fewer parameters
since it principally exploits morphological structure information in and around the lungs, which in
most cases remains invariable across CXR images.

A notable lung shape deformation appears in radiographs from patients suffering from bacterial
pulmonary infections, where the lung boundary might not be determinable even by an experienced
observer. This specific application was the focus of Iakovidis et al., who studied CXRs obtained using
portable devices with problematic positioning of the patient [23]. They utilized a robust algorithm for
the detection of several salient points in the outer rib cage and the spinal cord, which also assisted in a
selective thresholding procedure for the different parts. Finally, as done by many other researchers
in the field of CXR segmentation, they employed an active shape model (ASM) approach to build a
shape prior to their overall algorithm, based on ground truth lung field boundaries. The fact that shape
learning is a kernel part in ASM can be a limiting factor in cases where a scarcity of training data that
cover a broad range of shape variations is present.

An active shape model (ASM) based on gradient vector flow was applied by Xu et al. [24]. Given a
test image, an initial contour estimate is achieved, using a point distribution model. By introducing a
global gradient vector flow, the contour is attracted towards the object boundary. Finally, in the method
of Annangi et al. [25], the aim is to drive the contour to a given binary prior shape. They emphasized
the challenges that are introduced by local minima due to shading effects, by non-rigid shape variations
of the lung and by the undesirable presence of unrelated strong edges. In their method, the aim is to
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drive the contour to a given binary prior shape. The generation of the initial seed mask is considered
very crucial and is completed based on two levels of thresholding.

After the identification of the rib cage points, our algorithm tries to grow the initial segmented lung
area towards the actual border of the lung. The border is automatically identified in an unsupervised
manner, around the rib cage points. Hence, in comparison to the previously mentioned ASM-based
methods, it does not depend on the availability of labeled training data, while it demonstrates a
reduced risk of falsely identified border points due to the limited search area.

The available literature, which is reviewed above, is summarized in Tables 1 and 2.

Table 1. Summary of approaches for the analysis of lung bone structures found in published literature.
The adopted strategy varies and is either the accurate delineation of bone structures for individual
analysis or their elimination while segmenting the lung field.

Algorithm Main Purpose Main Methodology Comments
Improved accuracy by using a
Assess how clavicles and UNet-based preprocessed version of the JSRT
Gordienko et al. [17] rib shadows affect lung convolutional neural dataset without clavicles and rib
segmentation network shadows. Process is sped up by

running on a GPU.

Evaluated on the JSRT dataset.

Loog et al. [18] Posterior 1.r1b fterated co.n.text.u al pixel Misclassifications appear in a
segmentation classification
structured way.
Evaluated on the normal X-rays
Template matching, of the JSRT dataset. Overlap
Lietal. [19] Rib recognition graph theory and with clavicle introduces
machine learning recognition problems.

High sensitivity and specificity.

First approach for simultaneous
Mask R-CNN rib detection and segmentation.
Improved detection rate.

Rib segmentation and

Wessel etal. [20] anatomical labeling

Hough transform and Very high sensitivity and

Cong et al. [21] Eliminate the ribs dynamic programming specificity.

Table 2. Summary of related lung segmentation approaches.

Algorithm Main Methodology Datasets DSC Q
Wan Ahmad et al. [22] ! Orl.ented Gaussian derivatives ~ X-ray datase?s from different ; 0.69-0.87
filter and Fuzzy C-Means machine types

Portable chest radiographs
Takovidis et al. [23] 2 Selective thresholding and ASM of patients with bacterial - 0.91-0.92
pulmonary infections

Gradient Vector Flow-based

3 - |
Xu et al. [24] ASM JSRT and CXR 0.84-0.9
. . Shanghai Pulmonary
Annangi et al. [25] Active contours; low-level Hospital and other clinical 0.88 -

features at boundary sites in China

1 Score range from worst to best performing dataset.? Average score for left and right lungs.? In the paper, scores are
given as averages for left and right lungs, for each evaluated dataset. (): Jaccard similarity coefficient, DSC: Dice
Similarity Coefficient (see Results section).

2. Materials and Methods

2.1. Proposed Segmentation Method

The proposed method is able to adaptively run per each lung field (right and left) and achieve
segmentation in two steps (for the availability of the code see Appendix A). The adaptability of the
initially identified region is ensured by automatically selecting rib cage samples, most probably located
in the lung area and some support points on the lung border, by incorporating universal a priori
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knowledge. The selection of points does not require any previous training, and it will be proven, where
necessary, that these points can be indicative of features in challenging segmentation cases.

2.2. Lung Region Approximation: A Robust Method

A series of trivial preprocessing steps were taken to reduce irrelevant information as well as
to improve the separability of the region of interest. The Contrast Limited Adaptive Histogram
Equalization (CLAHE) technique achieves locally significant contrast enhancement. Furthermore,
the glenohumeral joint area introduces many challenges during segmentation but its location and size
are generally invariable; thus, a straightforward cropping strategy can produce satisfactory elimination
results. Afterwards, in order to separate the left and right parts, an automatic symmetry line detection
algorithm is employed [26]. This is essentially achieved by comparing features on the image to those
in the reflected version of the image. From now on, the segmentation algorithm is applied on each
part separately.

The algorithm employs bone structure information inside the lung area. This structural information
can help us to better approximate the pixel intensity distribution of the lungs, as described in Figure 1.
Based on this distribution, we are able to select a universal upper intensity threshold to initially filter
out the background (Figure 2). Moreover, as will be shown in the Results section, abnormal patterns
can already be identified by comparing individual CXRs with this distribution.

We found that the Hough Line Transform succeeds in partially identifying the ribs, despite their
predominantly curvy shape. This is sufficient for our particular segmentation problem. The two ends
of every identified line are included in an initial set of bone points. Afterwards, these points are filtered
by reviewing the likelihood of belonging to the rib cage—more specifically in a pattern of almost
equally spaced parallel lines (which is usually the case inside a lung field). The third column of Figure 2
shows the distribution of the most probable rib cage points, after the filtering process. Based on their
location, it should be straightforward to select only one of the lung contours for further processing
(last column of Figure 2). This method is robust, as is also proven during the evaluation process.

0.8

06

Probability

0.4

0.2

0.0

0 50 100 150 200 250
pixel_intensity

Figure 1. Cumulative probability distribution of the intensities of automatically selected most probable
bone points inside the lung areas, after aggregating over all Chest X-ray (CXR) images in the dataset.
A few points were not taken into account: those around the symmetry line that crosses the sternum,
and around the cropped areas around the glenohumeral joints. This plot can be indicative of an
appropriate upper intensity limit for an initial thresholding approach. In our specific case, we decided
to drop high-intensity values with a total probability of less than 0.25.
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Figure 2. Issues after initial segmentation. When the various contours are well separated, the distribution

of rib cage points within them can hint at the valid lung contour. For the last row, the algorithm has
undesirably identified a region below the arm, connected to the actual lung region. The separation of
undesirable areas succeeds, as described in the next section.

An important erroneous case is visible in the last row of Figure 2. Our segmentor identified the
biggest part of the actual lung region but failed to separate it from neighboring parts, such as the
areas around the glenohumeral joint and the sternum. The method for dealing with this problem is
presented in the next subsection.

2.3. Minimizing the Irrelevant Lung Area

The solution so far roughly demarcates the actual lung field. However, in many cases the lung
contour intensity range was not directly separable from that of other anatomical structures in the
image, as the last row of Figure 2 demonstrates. It was experimentally proven that in most cases the
separation was possible as a postprocessing step.

In the example in the last row of Figure 2, which is repeated in Figure 3a, there is a clear indication
of the separation point between the two contours. We are particularly interested in the points that
violate the convexity property of the initial contour, that is, the points where the shape varies with
angles greater than 180 degrees. Specifically, first the convex hull of the contour is determined, which is
the minimum fitting convex boundary around it. Afterwards, as Figure 3b demonstrates, the convexity
defects are isolated. Each of those is represented by the indices of three points in the original contour:
the points where the defect starts and ends, and the point that is located farthest away from the two
aforementioned points. The distance metric d implemented in OpenCV [27] is calculated as follows:
in the 2D image space, given the start and end points sand e and their integer indices s, e in the
contour, the distance of a contour point ;7) with index pels, e] is:

d= det(do, d,,) «C (1)
— — - — — 0, lfd() - 0
withdo=e—-s,dy=p—-s and C=1{ 1 ,tpepmpise -ascaling factor.

do
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From now on, we avoid the vector representation of the 2D points, for simplicity in the notation
of the mathematical formulas.

Useful prior knowledge for the modification of the contour is the density of the points that probably
belong to the rib cage, as presented in Figure 3b. Having these constraints in mind, minor convexity
defects, referring to the ones where all three points are very close together, can be fixed by simply filling
up their area. A more interesting analysis should be made for the points that very loosely (including
their neighborhood) connect two otherwise distinct contours. The way we isolate these points is by
evaluating the maximum distance of the farthest point to the start and end points of the convexity
defect, as well as the minimum distance of the farthest point to the line that connects the start and
end points:

Q= {x | xeX, seS,ec EAnmax(d(x, s), d(x, e)) >T1 Adi(s,ex) > T, } )

where X denotes the set of farthest points of all convexity defects, S and E correspondingly the sets
of starting and ending points of the convexity defects, d the Euclidean distance among two points,
d;(s, e, x) the minimum distance of the point x to the line defined by s and e, and T; and T, distance
thresholds, selected to be sufficiently large (in order to avoid actual lung area separation) relative to
the smallest dimension of the bounding box that encloses the identified region up to now.

It must be noted that not all of these points are valid separation points. Following a very
conservative approach, we only keep the points in narrow defects. This is done by calculating the angle
formed by the lines created from the farthest point and two points on the contour sufficiently close
to that point, more specifically one point preceding and one following on the contour. Equation (3)
shows this filtering.

Q =lxlxe QA v, < T,) (3)

where v, = £C;419C;C;_19, considering C the initial contour points” vector, and i is the index of the
examined farthest point on the contour. T, is the preselected maximum allowed angle.

By now, we are aware of initial contour defects that most probably signal the existence of two
unrelated contours. The next step is to achieve this separation. Ideally, the separation should be done
by a multitude of curves that represent the complex geometry of the defect, or better said the geometry
of the border between the two contours. For simplicity, the separation was made by a line: the one that
is connected with the separation point and crosses the defect’s bounding box so that the number of
background points is maximized, as can be seen in Equation (4) below. Figure 3c shows the separation
line selection process.

L= arggax(“pex:](p) = 0}() 4)

where S is the set of all lines between the defect’s farthest point and the points on the line between the
defect’s start and end, and p € x denotes the points on the line x represented as pixel coordinates in the
image I. It must be noted that background pixels in a binary image have a value of 0.

After the separation, it is vital to correctly select the lung field. This was done by utilizing some
heuristics, related to the dimensions of the contours and the density of bone points. Figure 3d shows the
final selected contour, which confirms that the usage of a straight separation line leads to a suboptimal
result. The discovery of the curve that best resembles the border between the two contours would be a
very advantageous improvement in the current algorithm.
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(€) (d)

Figure 3. Identifying separation points by analyzing convexity defects. (a) The initial segmentation
result, where two distinct contours are clearly visible. (b) Convexity defects: farthest points inside
the valleys are illustrated as thick blue circles; start and end points of the defects are connected by a
line. Moreover, the rib points are also illustrated as smaller green circles—they will assist in selecting
the correct contour after separation. (c) A farthest point has been selected as the separation point,
and the best candidate separation lines, that cross the most background points, are depicted. These lines
start from the farthest point and finish on the line between the start and end points of the relevant
defect. The thicker green line crosses the most points inside the defect that do not belong to the contour
and qualifies as the best separation line. (d) The final contour after separation. Small white residues
are eliminated.

2.4. Identification of Border Points

Up to now, we were able to estimate the lung area. Unfortunately, there are many abnormalities
in its homogeneity. Inevitably, the employed method fails to correctly identify brighter regions that are
part of the lung. These parts are usually near the border of the lung area and are very important for
several diagnoses.

One can observe that the border of the lung area is (most of the time) clearly separable as it appears
as a thin bright line. A sliding window method can be used to filter this line. We are only interested in
the line that borders, and is quite close to, the already available approximation of the lung area. Thus,
we can limit the scanning to only a small area around the approximation. In our approach, we limit the
search further by dropping areas near the vertical center of the image, avoiding the inclusion of parts
of the mediastinum.
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2.5. Stretching the Initial Region

For the same image as the one examined in Figure 3, Figure 4 depicts the result after extending
the initial contour to include the border points. The stretching is simply achieved by replacement of
the closest continuous segment of the contour with the connected component’s points. It is expected
that this method is sensitive to falsely detected border lines farther away from the lung area.

(a) (b) (c)

Figure 4. The region growing procedure. (a) The initial lung contour. (b) Identified bright border curve.
(c) The result after stretching the initial contour to the curve.

2.6. Evaluation Dataset

For the evaluation, we utilized the Montgomery County Chest X-ray dataset, publicly
available from the National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
(see Appendix A) [28,29]. This set contains 138 X-ray images, of which 80 X-rays are normal and 58 are
abnormal with manifestations of tuberculosis. A wide range of abnormalities is covered, including
effusions and miliary patterns. Many of the diseases can heavily affect the lung shape.

In the vast majority of literature, the segmentation is evaluated on the Japanese Society of
Radiological Technology (JSRT) data. This dataset covers a far narrower set of abnormalities. This means
that a method developed to segment CXRs of this dataset might not generalize well for many
abnormalities. Furthermore, X-rays in this dataset appear smoother intensity-wise due to an older
imaging system.

For all these reasons, the Montgomery County dataset was considered representative for the
development and evaluation of our method. Manual masks separately for the left and right lung are
also provided; these are binary images depicting as white the lung field and as black the background.
In addition, although the classification of the abnormalities was out of scope for this work, clinical
readings for every CXR are also provided.

For the otherwise straightforward parsing of the images (CXRs and manual masks), it is only
worth mentioning that they are read as 8-bit gray-scale images in OpenCV and they are shrunk to
640 x 525 pixels. Although this resolution is not that popular in the literature, where in most cases a
resolution of 256 X 256 is used, it is preferred as a less degraded version of the high-resolution original
images. In any case, the results will differ only slightly quality-wise. For modern hardware, the bigger
dimensions should not introduce huge delays. Finally, the mapping between the CXR and manual
masks can be done immediately, while parsing.

3. Results

The validation of the segmentation algorithm aims to compare the detected region with the
available ground truth mask in the dataset. To achieve this, three different similarity metrics are
employed. Two of them measure the overlapping area and one the distance between the two contours.
These measures are widely used in relevant studies [12]. Specifically:

ITP|
|TP| 4 |FP| + |FN|

)

Jaccard similarity coefficient:
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2|TP|
2|TP| + |EN| + |FP|
where |TP| is the number of pixels that were correctly classified as lung area, |[FP| the number of
pixels that were incorrectly classified as lung area, and |[FN| the number of pixels that were incorrectly
classified as background.

Dice similarity coefficient:

©)

-d(a;, R Y. dlb;, S
Average Contour Distamce:1 Lid(a; R) =+ ! <] ) (7)

21 lall ‘{b]}‘

where R denotes the pixels on the boundary of the calculated lung area, and S the pixels on the
boundary of the ground truth lung area. Therefore, we average the minimum distances between pixels
of one boundary to the other and the reverse, and then we average the two results.

After executing the algorithm on the full dataset, we obtained an average Jaccard similarity
coefficient of 0.862, Dice similarity coefficient of 0.923 and Average Contour Distance of 7.4 pixels.
From this point, one can perform an analysis at the image level. The algorithm demonstrates a Jaccard
score above 0.84 and close to that of the state-of-the-art methods for about 77.5% of the images in the
dataset. On the other hand, the segmentation of about 5.8% of the images is very questionable, where the
Jaccard score was between 0.59 and 0.77. Table 3 compares the results of our method, its strengths and
its weaknesses to other recent studies, which apply neural networks for the segmentation of lung fields.

Table 4 summarizes an analysis of misdetections, where only cases of CXRs with Jaccard score
below 0.8 are considered. It is understandable that the intensity homogeneity of the pixels inside the
lung area affects the algorithm’s segmentation capability. Nevertheless, as the table shows, some of these
cases are of crucial medical interest. In a further analysis, we prove that the probability distribution of
intensity values inside the lung area can assist in identifying such pathological patterns. For example,
Figure 5 demonstrates that an abnormality in the left lung (pleural effusion in this case) is confidently
recognized, using the cumulative probability of intensities inside the lung area, sampled around the
most probable rib cage points, shown in the left-most image. Cases where the field of one or both lungs
extends to bright regions can be assigned a lower segmentation confidence value by the algorithm.

Cumulative probability distribution for intensities inside lung Intensities along y-axis for right lung

1.0

—— Right lung prob
Left lung prob

08

086

04

02

00

0 50 100 150 200 250
pixel intensity 100 w e

(a) (b) (e

Figure 5. Recognition of pleural effusion in the left lung. (a) Automatically selected most probable lung
points used as samples for the characterization of the lung area. The points around the symmetry line at
the center and around the preselected shoulder area have been excluded as they most probably belong
to irrelevant structures (these points are illustrated thinner with red color). (b) Cumulative probability
distribution of intensities inside the lung area calculated around the sample points. (c) The intensity
along the y-axis of the image for the right lung (upper) and for the left lung (lower), top to bottom,
averaged along the corresponding samples on the x-axis.
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Table 3. Comparison of our method with very recent neural network approaches.

11 of 15

Authors (Year)

Jaccard

Dice

Strengths

Weaknesses

Kalinovsky et al. (2016) [30]

0.962

Uniform Deep Learning approach.

Hardware-demanding training.

Novikov et al. (2018) [31]

0.95

0.974

Copes with overfitting and
imbalanced data. Reduces parameters.
Segmentation of lungs, clavicles and
heart.

Training and testing on the same
dataset. Computational feasibility
trade-off.

Arbabshirani et al. (2017) [32]

Main Method Dataset
Tuberculosis portal
Encoder/Decoder CNN and JSRT
InvertedNet with Exponential
Linear Units JSRT
Registration-based and Geisinger and JSRT

patch-based CNN

0.88-0.96

Heterogeneous dataset.
Multiscale network evaluated.

Hardware-demanding training.
Coarse lung boundaries in some
images.

Souza et al. (2019) [33]

Patch-based AlexNet,

ResNet-18 with 2 deep CNNs ~ Montgomery County

0.94

Second CNN for more complex cases.
Better segmentation of lungs with
dense abnormalities.

Postprocessing required after the
first network.

Resizing of images required due to
hardware limitations.
Second network does not ensure
quantitative improvement and leads
to decreased performance.
Many parameters.

Dai et al. (2018) [34]

JSRT, Montgomery
County

Structure-Correcting
Adversarial Network (SCAN)

0.973

Segments lung fields and heart.
Limited training data.
Generalizes to different patient
populations and disease profiles.

Like many other methods, labeled
data are a necessity.

Oh et al. (2020) [35]

Mixture of public

Patch-based (FC) DenseNet103 CXR datasets

0.932-0.955

Few trainable parameters.
Provides clinically interpretable
saliency maps, which are useful for
COVID-19 diagnosis and patient triage.
Patch training leads to smaller
network complexity and
augmentation of dataset.
Performs classification.

Huynh et al. (2019) [36]

Hybrid Network with network

individuals Hoan My Hospital

0.87

Huge improvement compared to
applying a traditional CNN to the
same dataset.

Addresses the challenge of segmenting
large-size chest X-ray images.

Not evaluated on a standard dataset.
Small testing set.
Boundaries not that smooth.

FPs or FNs when similar density
between regions or high-curvature
lung regions.
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Table 3. Cont.

12 of 15

Authors (Year) Main Method Dataset Jaccard Dice Strengths Weaknesses
Two-Stream Collaborative JSRT, Montgomer P;:zf;rtrgsirfilissiif; tleosn' Poor performance with the
Chen B et al. (2020) [37] Network (TSCN) with U-net at s > O BOMETY - 0.973 : g lmages. perior:
: County and NTH Combined datasets for training and Infiltration group.
segmentation stage A
validation.
Contrast enhancement usefulness in
Fast training, low storage terms of Jaccard measurement
CNN-based architectures Montgomery County requirements improvement depends on the
Chen HJ et al. (2020) [38] . L . and private clinic in 0.842 0.893 . .
applied on binarized images India Contrast enhancement helps a lot to selected Network architecture.
improve Dice score. Relatively small validation and
testing set.
Depends on at least some visibility
Rib cage points-driven region Straightforward unsupervised method.  of the rib cage and a distinguishable
Our method 8ep & Montgomery County 0.862 0.923 Can be used for rapid triage of border curve.

growing

patients.

A few parameters still have to be
selected by intuition.

CNN: Convolutional Neural Network, JSRT: Japanese Society of Radiological Technology, NIH: National Institutes of Health.

Table 4. Segmentation failure scenarios. There might be multiple failure scenarios for each CXR; this is why the location column indicates the specific part of the lungs’

field where a failure is observed. This analysis is only done for CXRs with low evaluation scores. TB: tuberculosis.

Count of Failed Cases Location Reason/Diagnostic Relevance
5 Bottom part Bright region probably due to pleural effusion
4 Bottom part Pleural fluid causes bright areas
3 Multiple Infiltrates due to TB—brighter regions, bone structures not sufficiently visible
1 Inner part of right lung Increased length of cardiac silhouette, probably due to pericarditis
1 Left lung’s outer side brighter Bright area likely because of infiltrate due to pneumonia
1 Bottom part Bright region, localized pleural peel
1 Inner part of right lung (right hilum) Congestive heart failure or infiltrate due to TB
1 Inner part of left lung Extended bright region due to cardiomegaly
’ Top-left/top-right part of right lung Inaccurate symmetry detecti(glizlggnoor;g?rggaaﬁi.glenohumeral joint area crop.
v Multiple CXRs either normal or pathological. The failure is irrelevant to the diagnosis and is

probably due to poor contrast.
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The results show that this method, despite its simplicity, gives very accurate results for the vast
majority of images. Furthermore, it is shown that even a very vague recognition of rib cage points can
guide the overall lung area segmentation. For algorithm output, graphs and images see Appendix A.

4. Discussion

In this study, we achieved the delineation of the lung fields in CXR images, based on the density
field of automatically detected lung area bone points. We proved the feasibility of a robust and
straightforward region growing procedure from an initial segmentation around these points up to a set
of support points identified on top of the actual lung border. In a dataset that contains a great variety
of shapes and abnormal patterns, our method achieves a very good performance, which is directly
comparable to those of recent algorithms that often employ Convolutional Neural Networks (Table 3).
Finally, we demonstrate, through a probabilistic analysis, that the bone points can be used as a strong
lung area feature, even in challenging cases with huge lung area intensity inhomogeneity, such as those
presenting an extended pleural effusion or other chest pathologies. In the scenario of a high-volume
radiology practice, such as a hospital emergency department, the presented algorithm could be
used as a rapid triage tool by flagging CXRs with disconcordant cumulative intensity distributions
as “failed”, given the fact that failed cases actually allude to various chest pathologies that require
further interpretation by an expert radiologist. Our method includes specific limitations already
mentioned in Table 3. It requires a minimum level of visibility of the rib cage and a distinguishable
border curve. The beforementioned parameters are prone to variations that depend on the CXR
acquisition technique, specific pathologies and the patient’s body type. Moreover, some parameters
of our algorithm, as already mentioned, have to be selected by intuition such as the edge detection
thresholds of the Hough Line Transform procedure. As a future step, we aim to apply and evaluate
our algorithm on a mixed dataset of COVID-19 CXRs (such as the “COVID-19 Image Data Collection”
by Cohen et al., which is a work in progress [39]) and other types of pneumonia (viral and bacterial,
including tuberculosis), and to modify it in order to correctly label cases.
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Appendix A

e  Availability of data and material: Algorithm output (images and graphs) is available at: https:
//drive.google.com/drive/folders/liagdmFhgM?2Loedlj_bXBKp-ZelPVCWEF

e The evaluation dataset used is publicly available at: https://lhncbc.nlm.nih.gov/publication/
pub9931

e Code availability: https://bitbucket.org/vmposdel/cxr_image_segmentation/
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