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Abstract: Quality assessment of the 3D printed surfaces is one of the crucial issues related to fast
prototyping and manufacturing of individual parts and objects using the fused deposition modeling,
especially in small series production. As some corrections of minor defects may be conducted
during the printing process or just after the manufacturing, an automatic quality assessment of
object’s surfaces is highly demanded, preferably well correlated with subjective quality perception,
considering aesthetic aspects. On the other hand, the presence of some greater and more dense
distortions may indicate a reduced mechanical strength. In such cases, the manufacturing process
should be interrupted to save time, energy, and the filament. This paper focuses on the possibility
of using some general-purpose full-reference image quality assessment methods for the quality
assessment of the 3D printed surfaces. As the direct application of an individual (elementary) metric
does not provide high correlation with the subjective perception of surface quality, some modifications
of similarity-based methods have been proposed utilizing the calculation of the average mutual
similarity, making it possible to use full-reference metrics without the perfect quality reference images,
as well as the combination of individual metrics, leading to a significant increase of correlation with
subjective scores calculated for a specially prepared dataset.

Keywords: additive manufacturing; 3D prints; surface quality assessment; machine vision;
image analysis; combined metrics; structural similarity

1. Introduction

Additive manufacturing, also referred to as the 3D printing, is one of the key technologies which
revolutionizes the small series production in the Industry 4.0 era. The use of the 3D printers makes
it possible not only to create some original 3D objects for entertaining purposes but also to launch
an individual production of some unique parts of machines and other devices used to replace some
damaged older elements. Some other areas of applications of additive manufacturing technology,
utilizing plastic filaments usually based on polyactic acid (PLA) or acrylonitrile butadiene styrene
(ABS), may be related to biomedical engineering (e.g., individual prosthesis), aerospace and automotive
solutions, civil engineering and architecture (e.g., concrete 3D printing), reverse engineering in industry
or even the protection of cultural heritage. An integration with 3D scanners enables making custom 3D
CAD models and copies of various elements quite easily. Despite a growing popularity of 3D printing
for home use, some important limitations should be considered, such as particle emissions [1,2],
especially using the ABS filaments.
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Nevertheless, the 3D printing process may be affected by various factors influencing the final
quality of the manufactured objects, especially considering the low-cost devices designed for home use.
Such printers belong to the most popular group based on Fused Deposition Modeling (FDM) where
the heated filament is placed from bottom to top layer by layer by the moving extruder forming the
3D printed object. One such source of surface distortions may be the improper melting temperature,
dependent on the type of the filament, as well as some changes of the surrounding temperature.
Some other issues may be related to poor quality of elements used for printer’s construction and low
quality of filaments. Some distortions may also be caused by an improper configuration of stepper
motors as well as changing filament’s delivery speed. Both these types of distortions may be easily
forced during the preparation of test samples, which have been used for the development of the
database used for verification of the proposed methods also in some earlier papers [3,4].

Increasing popularity and availability of the 3D printers, as well as relatively cheap high-resolution
cameras, make it possible to integrate some computer vision algorithms which may be useful
for real-time monitoring of the printing process (i.e., without noticeable delays according to the
manufacturing speed) and the device state [5,6]. Nevertheless, a majority of known solutions are
limited to observation of the device’s state and applied mainly for fault diagnosis purposes [7–9].
Some other attempts assume the knowledge of the reference data representing some features or
descriptors, such as process signatures [10,11]. Some of the proposed systems utilize optical coherence
tomography (OCT) [12], thermographic measurements [13], or terahertz technology [14]. Some other
important aspects of detection of some quality issues may be related to cybersecurity of additive
manufacturing systems [15,16], especially considering that in some cases some embedded defects in
a 3D-printed specimen might remain undetectable, e.g., by ultrasonic inspection [17].

Since the use of sophisticated hardware solutions for monitoring of low-cost 3D printers is
troublesome due to a large increase in overall system’s costs, the most reasonable solution, particularly
for the amateur use, seems to be the analysis of images acquired by affordable cameras. One of such
in situ systems for monitoring the manufacturing process based on the comparison of the printed
geometry with the computer 3D model has been proposed by Holzmond and Li [18]. Another attempt
to anomaly detection and classification for the laser powder bed fusion (LPBF) method based on
an unsupervised machine learning algorithm has been proposed by Scime and Beuth [19]. Nevertheless,
such automated analysis requires the training of the algorithm, limiting its practical applicability in
low-cost devices. A similar problem is also typical for the use of neural networks, adopted e.g., for the
monitoring of the 3D inkjet printing process of electronic products [20].

An automated visual inspection of the 3D printing process may also be related to collision
detection and the use of visual feedback [21]. On the other hand, some more advanced systems make it
possible to optimize the tool paths during manufacturing [22], as well as to use multiple filaments for
fabrication [23]. However, the latter solution, known as MultiFab, requires the use of a 3D scanner and
closed-feedback loop for small corrections, hence its usefulness for low-cost devices may be limited,
even considering the relatively small budget provided by its authors (less than $7000).

An interesting application of machine vision for the detection of defects in 3D prints has been
proposed by Straub [24]. This solution, based on five cameras and Raspberry Pi units, has been
designed to reduce or eliminate the need for testing of printed objects due to the possibility of
automatic correction of minor defects noticed during the printing process, as well as the detection
of “dry printing” issues caused by the lack of filament. Nevertheless, the proposed system has
turned out to be very sensitive to environmental conditions as well as even minor camera movements.
An application of visible sensing for the detection of microdefects in the 3D printed objects used for
safety-critical applications has been presented in the paper [25].

Another example of the usefulness of computer vision methods for defect inspection in plastic
materials may be the surface control system based on the low-cost visual sensors designed for polyvinyl
chloride (PVC) pipes, proposed recently [26].
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Regardless of the great progress in the use of machine vision for the monitoring and quality
assurance of the 3D printed objects, an automatic visual surface assessment is still a challenging task,
particularly correlated with subjective aesthetic perception of the 3D prints. Hence, in this paper,
the adaptation of some similarity-based general-purpose full-reference image quality assessment
(FR IQA) methods has been proposed together with their combination and optimization towards high
correlation with subjective opinions. The experiments have been conducted using a specially prepared
database containing 107 images of the 3D printed flat surfaces affected by the various amounts of
distortions together with subjective quality scores gathered from 92 human observers.

Although in practical applications the correlation between the proposed objective quality scores
and some mechanical properties would be much more desired, the measurement of some of them,
e.g., strength of the materials, would require additional destructive experiments. Therefore, in this
paper, we focus mainly on the aesthetic quality assessment, similarly as in general-purpose image
quality assessment, based on the accordance with subjective opinions. Nevertheless, the developed
methods may be further extended, particularly using the data fusion with some other non-destructive
measurements, to find some dependencies between them and some physical properties of the
manufactured objects.

The rest of the paper is organized as follows: Section 2 contains an overview of similarity-based
IQA methods, whereas the description of the developed dataset is provided in Section 3. The idea of
the proposed modification of the FR IQA metrics for the quality assessment of the 3D printed surfaces
and their combination (Section 4) is followed by the experimental results in Section 5. The paper ends
with a discussion (Section 6) and conclusions (Section 7).

2. Overview of Similarity-Based Full-Reference Image Quality Assessment Methods

General-purpose image quality assessment methods may be divided into two major groups,
namely subjective and objective methods. The main differences between these two generic approaches
are related to the assumed application and required assessment time. The usefulness of the subjective
methods in many practical applications is limited by the necessary long time spent on gathering
the opinions of individual observers. Hence, in practical applications, objective metrics that may be
automatically calculated are more desired. Nevertheless, during the development of objective methods,
subjective metrics may be used for verification of their correspondence to human perception of various
kinds of image distortions, hence they may be considered mainly in view of aesthetic purposes.

The development of subjective methods is a troublesome and time-consuming task as it requires
the engagement of many human observers who fill the questionnaires assessing the quality of the
presented images containing various kinds and levels of image distortions. After the statistical analysis
of their responses, together with outlier rejection and normalization of scores, it is possible to develop
a database of images containing a number of images together with appropriate subjective quality
evaluations expressed as Mean Opinion Scores (MOS) or Differential MOS values. During the last
years, several such databases have been developed for natural images, as well as for stereoscopic
images, video sequences, or even multiply distorted images, which are useful for the verification and
performance evaluation of the objective image quality metrics. A comprehensive overview of many
IQA databases, as well as various types of quality metrics, may be found, i.e., in the recent survey
paper [27].

As the practical applicability of subjective methods is strongly limited by the time necessary to
acquire the scores, for many tasks, including optimization of image filtering and lossy compression
algorithms, the only possibility is the use of objective metrics which may be calculated automatically
without the involvement of the human observers. However, such metrics may be further divided into
three families: no-reference metrics (NR IQA), also referred to as “blind” metrics, which do not require
the knowledge of the original image, reduced-reference metrics using partial reference information
and the most popular full-reference metrics (FR IQA) based on the comparison of the distorted images
with the “pristine” reference images without any distortions. Such perfect quality reference images
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are also included in the IQA databases, helpful mainly in the development of some new FR metrics.
Despite the potentially wide areas of applications of “blind” metrics, their universality is still much
lower in comparison to FR IQA solutions, causing a higher popularity of the latter approaches.

Most of the general-purpose FR IQA methods are based on the assumption that both compared
images represent the same scene but one of the images is corrupted by one or more types of distortions,
such as, e.g., the presence of noise, blur, lossy compression, transmission errors, etc. Hence, during
the comparison of images, any image registering or spatial adjustment operations, including shifting
or rotations are not necessary. Assuming the availability of the reference image, many FR metrics
have been proposed during recent years, which utilize the similarity calculation between the original
and distorted images. A milestone in the development of such metrics has been the idea of Universal
Image Quality Index (UIQI) [28], being the first region-based metric without the disadvantages of the
conventional pixel-based metrics, such as Mean Squared Error (MSE) or Peak Signal-to-Noise Ratio
(PSNR), known as poorly correlated with subjective quality scores. Due to its potential instability,
particularly for black or “flat” (with constant luminance) areas of images, the original version of the
UIQI has been shortly replaced by the Structural Similarity (SSIM) [29], where the original formula has
been extended as

SSIM = l(x, y) · c(x, y) · s(x, y) =
2x̄ȳ + C1

x̄2 + ȳ2 + C1
·

2σxσy + C2

σ2
x + σ2

y + C2
·

σxy + C3

σxσy + C3
, (1)

where the default values of the stabilizing constants (added in comparison to UIQI) for 8-bit grayscale
images are: C1 = (0.01× 255)2, C2 = (0.03× 255)2 and C3 = C2/2. Their role is to prevent the
potential division by zero without affecting significantly the overall quality metric’s value, calculated
as the average similarity value for all positions of the sliding window. The local structural similarity
values are calculated as the product of three factors representing luminance distortions l(x, y), contrast
loss c(x, y), and structural distortions s(x, y) between the fragments x and y of images A and B,
according to the current position of the sliding window. These similarities are based on the local mean
values (x̄ and ȳ) of the original and distorted images, the respective variances (σ2

x and σ2
y ), and the

covariance σxy. The default window is 11× 11 pixels Gaussian window, considered as appropriate for
typical standard definition images. Since the SSIM metric has been widely accepted in the community,
its implementation has appeared in OpenCV and MATLAB R©, for example, and many modifications
based on similar formulas have been proposed by various researchers.

Considering the postulated independence of results of the image size without the necessity of
changing the sliding window’s size, the multi-scale version of this method has been developed by the
same authors known as MS-SSIM [30], where the image details at different resolutions are assessed
applying iteratively a low-pass filter and downsampling by a factor of 2. The contract and structure
comparisons are conducted for each scale, whereas the luminance comparison is computed only for
the highest scale. The default normalized weighting exponents have been provided after cross-scale
calibration experiments.

During the next several years many other SSIM-based metrics have been proposed, which
have also been used in the conducted experiments related to this paper. In 2006 the Quality Index
based on Local Variance (QILV) has been proposed [31], where a comparison of the local variance
distribution is considered as the extension of the use of mean-variance values in the original SSIM.
Finally, the following formula has been proposed, assuming that A and B are the input images:

QILV =
2µVA µVB

µ2
VA

+ µ2
VB

·
2σVA σVB

σ2
VA

+ σ2
VB

·
σVAVB

σVA σVB

, (2)

where σVAVB is the covariance between the variances of two images (VA and VB respectively), σVA

and σVB denote the global standard deviations of the local variance with µVA and µVB being the mean
values of the local variance.
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Another modification proposed by Sampat et al. [32] is based on the use of the wavelet domain.
The metric known as Complex Wavelet Structural Similarity (CW-SSIM) utilizes the assumption that
the presence of some distortions causes consistent phase changes in the local wavelet coefficients.
The metric is also more robust to small rotations and translations in comparison to the spatial domain
SSIM. On the other hand, the application of information content weighting for the multi-scale SSIM
(referred to as IW-SSIM), proposed in the paper [33], incorporates the Laplacian pyramid transform to
calculate the appropriate weights based on the statistical Gaussian model of natural images. A similar
information weighting may also be applied for MSE and PSNR metrics, significantly enhancing their
correlation with subjective quality scores.

One of the most successful similarity-based metrics, known as Feature Similarity (FSIM), has been
proposed in two versions (for grayscale and color images—denoted as FSIMc) [34] and verified as one
of the best metrics for most IQA databases. It utilizes a similar formula as the SSIM but is applied for
low-level features, namely phase congruency (PC—as a significance measure of a local structure) and
gradient magnitude (GM), a complementary feature extracted using the Scharr filter. For simplicity,
the equal importance of these two factors (α = β = 1) has been assumed in the similarity formula
between the images A and B:

SL(x) =

(
2 · PCA(x) · PCB(x) + T1

PC2
A(x) + PC2

B(x) + T1

)α

·
(

2 · GMA(x) · GMB(x) + T2

GM2
A(x) + GM2

B(x) + T2

)β

, (3)

where T1 and T2 are the stability constants preventing the division by zero and x is the sliding window
position. The final formula obtained as the averaged SL for all locations is additionally weighted by
the phase congruency, assuming that the Human Visual System (HVS) is highly sensitive to phase
congruent structures and may be expressed as

FSIM =
∑x∈A SL(x) · PCm(x)

∑x∈A PCm(x)
, (4)

where PCm(x) = max(PCA(x), PCB(x)) and x denotes each position of the local window on the
image plane A (or B). Its extension for color IQA utilizes the YIQ color space with two chrominance
components (I and Q), used as the two other features, weighted using an additional exponential
parameter γ used for tuning the importance of the chromatic data.

A similar approach based on the comparison of gradient images, known as Gradient Similarity
(GSM) has been proposed in the paper [35], where the gradient similarity term, calculated in the same
way as the luminance or contrast factor in the SSIM, is combined with the luminance comparison
(calculated as the l(x, y) term the Formula (1)). As the authors have assumed that the typical Prewitt,
Sobel, or Scharr kernels are too small the gradient extraction has been conducted using the following
5× 5 pixels mask:

Mask =



0 0 0 0 0

1 3 8 3 1

0 0 0 0 0

−1 −3 −8 −3 −1

0 0 0 0 0


, (5)

rotated by 90◦ to obtain four directional masks for gradient calculations.
Further metrics inspired by the idea of SSIM include a fast and effective spectral residual

similarity (SR-SIM), based on specific visual saliency model [36] correlated with perceived image
quality, as well as the Edge Strength Similarity (ESSIM) [37], assuming the edge detection based
on Scharr kernel and further calculation of edge strength maps determined from the directional
derivatives calculated for each pixel. Obtained edge strength maps for the reference and distorted
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images are compared using the SSIM-like formula, similarly as for the other metrics. The similarity
analysis in the frequency domain has led to the idea of the DCT subband similarity (DSS) proposed by
Balanov et al. [38]. This approach considers various importance of structural distortions in different
DCT subbands from a perceptual point of view. Hence, the similarity values, obtained for individual
subbands according to the formula similar to the other mentioned metrics based on the local variances
(i.e., their product divided by the sum of squares with stability constants), are weighted providing the
final DSS result.

Alternatively, good performance may also be obtained using the SSIM-like formula for
measurement of contrast deviation as proposed in the paper [39], where the multiscale contrast
similarity deviation (MCSD) has been defined as another relatively fast IQA metric with high
accordance with MOS values for the most relevant IQA databases. An interesting fact is that although
the contrast has been used in many other metrics, including the original SSIM, in this case, all the
calculations are based only on contrast values combined with multi-scale image representation.

An interesting attempt to pooling following the measurement of local distortions has been
presented in the paper [40], where the analysis of distortion distribution has been used to improve
the performance of the Structural Similarity and Gradient Similarity (the modified methods are
referred to as ADD-SSIM and ADD-GSIM, respectively). The authors of this approach have utilized
the ranking-based weighting, frequency variation based on structural degradation measurement,
and additional entropy gain multiplier.

Recently, some other metrics being the extensions of the original SSIM have been proposed in the
paper [41], which utilizes additional predictability of image blocks. The use of the fourth multiplicative
component (block predictability) in the metric referred to as SSIM4 is based on the minimal value
of mean squared error between the current block and the neighboring ones. Another modification
is related to the use of color components (metrics denoted respectively as CSSIM and CSSIM4) and
assumes simultaneous computations of metrics for several image scales in the YCbCr color space.
Such obtained partial metrics are then averaged with weights obtained by maximizing the rank-order
correlations for three datasets.

Two other recent methods utilize contrast combined with visual saliency and Riesz transform
with visual contrast. The first one, known as CVSSI (Contrast and Visual Saliency Similarity-Induced
Index), has been proposed [42] by the authors of the above mentioned MCSD metric, as the result
of the application of the weighted standard deviation of two quality maps obtained for the local
contrast and the global visual saliency. The latter approach [43] called Riesz transform and Visual
contrast sensitivity-based feature similarity (RVSIM) utilized a Log-Gabor filter for initial image
decomposition followed by Riesz transform. Then, the similarity of local amplitude, phase, and
direction characteristics is determined forming the similarity matrices subjected to weighting using the
visual Contrast Sensitivity Function (CSF), forming a single similarity matrix. It is further combined
with gradient magnitude similarity, calculated for the reference and distorted images in the same way
as in the FSIM, and subjected to final pooling leading to the overall RVSIM index.

Many of these metrics, as well as some others, have been recently combined using the neural
networks for the assessment of remote sensing images [44] leading to promising results. Nevertheless,
the direct application of such an approach for the quality assessment of the 3D prints would
be troublesome due to the time necessary for the calculation of several metrics as well as the
necessity of network training. Considering the variety of the proposed similarity-based approaches
to image quality assessment, as well as their relatively short computation time (analyzed also
in [44]), the above-described metrics have been examined in this paper to verify their usefulness
for an automatic quality evaluation of the 3D printed surfaces, as well as the possibility of their
combination, additionally converting them into no-reference methods due to potential applications in
real-time systems.
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3. The Database of the 3D Printed Surfaces

Verification of the usefulness of various objective IQA metrics for the assessment of the 3D printed
surfaces requires the development of a special database containing the images of various distorted and
high quality manufactured surfaces together with subjective MOS values. To face this challenge some
flat samples have been produced from 9 types of thermoplastic ABS filaments with different colors
using three available FDM devices, namely RepRap Ormerod 3, Prusa i3, and XYZprinting da Vinci 1.0
Pro 3-in-1. The choice of the ABS filaments has been motivated by their good mechanical properties
and lightness, as well as higher abrasion resistance in comparison with PLA polymers. Nevertheless,
relatively high melting temperatures—over 220 ◦C—together with potentially toxic fumes [1,2] have
slightly limited the development of the dataset.

Although the database contains the 107 photographs (together with depth maps obtained by
a 3D scanner not used in this paper) of the flat surfaces, the metrics investigated in this paper may be
successfully applied regardless of the surface flatness or roundness, hence in this sense, the proposed
approach may be considered as universal and may be further verified also for some other surfaces.
The images have been acquired in the controlled lighting environment (distributed illumination from
three lamps to prevent strong reflections) using a Sony DSC-HX100V camera with the exposure time
1/125 s, 5 mm focal length, and an automatic white balance without flash, ensuring a fixed distance to
the surface. The size of such obtained images is 1600× 1600 pixels, being equivalent to the physical size
of the samples equal to 35 mm × 35 mm. Their thickness is about 4 mm and the height of layers varies
from 0.3 to 0.35 mm depending on the individual printer and the size of the nozzle [4]. The additional
depth maps, however not utilized in this paper, have been acquired using the ATOS 3D scanner
manufactured by the GOM company (more information may be found in the paper [3]).

Regardless of the influence of some independent factors, such as quality of filament and
construction materials, the presence of distortions in some samples have been forced by changing
the temperature, configuration parameters of the stepper motors, filament’s delivery speed, as well
as using the software model changes. Some of the samples contain cracks as well as the results of
under- and over-filling. All the photographs have been independently assessed by 92 human observers
using the five-element quality scale from 1 (very poor) to 5 (very good). Obtained results have been
averaged to provide the MOS values, being additionally verified by comparisons with previously
acquired experts’ opinions (used for classification purposes in some earlier works). Some sample
images together with MOS values are presented in Figure 1, where the MOS values approaching 5
correspond to perfect quality.

As the primary goal of the paper and the developed database is the proposal of the objective
method for the quality assessment of the 3D printed surfaces highly correlated with the subjective
perception of surface aesthetics, expressed as the MOS values, the mechanical properties of the samples
have not been investigated. Nevertheless, the development of an extended database, useful for the
analysis of the 3D structure of the manufactured object, supplemented with the results of terahertz or
radiographic detection and identification of defects is planned as a part of the future work, considering
also some non-planar objects.
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Figure 1. Sample images from the developed database with their average subjective quality scores
sorted from the highest to lowest: (a) high quality salmon pink sample (MOS = 4.7253), (b) high quality
pink sample (MOS = 4.6923), (c) high quality brown sample (MOS = 4.1333), (d) moderately high
quality red sample (MOS = 2.4130), (e) moderately low quality yellow sample (MOS = 1.4130), (f) low
quality dark green sample (MOS = 1.1868), (g) low quality black sample (MOS = 1.0978), (h) low quality
fluorescent pink sample (MOS = 1.0110), (i) low quality blue sample (MOS = 1.0000).

4. Proposed Approach

The idea of the combination of various features is partially utilized in many metrics discussed
in Section 2, starting from the Structural Similarity, being in fact a combination of three components,
representing the luminance, contrast, and structure. Nevertheless, such combination may also be
applied for individual (elementary) metrics instead of features, leading to a significant increase in the
correlation with subjective quality evaluations. The most advantageous results may be obtained for the
combination of metrics utilizing various kinds of features or different domains, which are somewhat
complementary to each other.

The first such attempt for the general-purpose IQA, based on the nonlinear combination of
three metrics, similarly as in the construction of the SSIM or FSIM formulas, has been proposed in
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the paper [45], where the weighted product of MS-SSIM [30], Visual Information Fidelity (VIF) [46]
and R-SVD metric [47] has been used. A modified metric referred to as Combined Image Similarity
Index (CISI) [48] has been presented assuming the replacement of the R-SVD metric with FSIMc.
According to one of the recent papers [49], presenting a comprehensive overview and comparison of
many IQA methods, this metric (actually based on two similarity-based formulas) seems to be still
competitive with many recently proposed more sophisticated FR IQA approaches, also for multiply
distorted image databases, confirming the validity of the assumptions made in this work as well.
Hence, the idea of combination of similarity-based metrics is considered as worth investigating also
for the 3D printed surfaces.

Some other approaches to multi-method fusion have also been proposed by some other
researchers, e.g., based on the regression approach [50], also with the use of machine learning [51],
application of neural networks [52], also for remote sensing images [44], or genetic algorithms [53].
Nevertheless, considering the assumed application for the quality assessment of the 3D printed
surfaces during the manufacturing process, the use of a limited number of metrics combined using
their weighted product is assumed according to the general formula:

Qcombined =
N

∏
n=1

Metric
weightn
n , (6)

where N is the number of the weighted elementary metrics.
As the original similarity-based metrics, starting from UIQI and SSIM, belong to the group

of full-reference IQA methods, their direct application for the considered tasks would require the
knowledge of the reference image. In practical applications, it is usually impossible and even the use
of the rendered model of the 3D printed object would require a precise image registering and phase
adjustment to compare two images in the same way as for the general-purpose IQA. An additional
problem might be related fo different colors and luminance of the acquired images and those rendered
from the 3D models. Hence, the idea of the calculation of the average mutual similarity is proposed for
the images of the 3D printed surfaces assuming the side location of cameras, initially investigated in
the papers [54,55] exclusively for classification purposes. Such side-view mounting of a camera makes
it possible to acquire images with visible individual layers of the filament, as illustrated in Figure 1.

The idea of the calculation of the mutual similarity requires the division of the image representing
the manufactured sample into regions and the application of the IQA formula for each pair of such
obtained blocks. In the conducted experiments the division into 4, 9, and 16 square blocks has been
assumed, although the best results have been obtained for 16 blocks (grid of 4× 4 regions) requiring
120 mutual comparisons. Since the division of the surface into regions is fixed, we may expect the same
or very similar orientations of the patters in each region. Hence, due to the use of the mutual similarity
based on the comparison of regions, a potential influence of the position and the orientation of the
cropping regions would be significantly reduced. Due to the use of the sliding window approach in
the SSIM-based quality metrics, the structural changes introduced by such relatively small rotations or
translations influence the final results of individual (elementary) metrics not as much as the presence
of physical distortions of the 3D printed surface. Additionally, a phase-shifting by a few pixels to
adjust the phase of the compared patterns may also be applied as presented in one of our earlier
papers [56]. The influence of the color of individual samples has been reduced using the color to
grayscale conversion according to ITU Recommendation ITU-R BT.601-7 [57] (using the rgb2gray
function in MATLAB R©). The illustration of the idea of the mutual similarity is presented in Figure 2,
where two examples for the division into 4 and 9 regions are presented with the necessary 6 and 36
mutual similarity calculations. The number of similarities may be expressed as

k =
M · (M− 1)

2
, (7)

where M is the number of regions.
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Average of 6 mutual 
similarities for 4 regions

Average of 36 mutual  
similarities for 9 regions

1

2

6

53 4

1 2

3 ...

36… 35

Figure 2. Illustration of the idea of mutual similarity calculation for the division into 4 and 9 regions
with necessary respective 6 and 36 computations of the FR metric.

Therefore, the average mutual similarity values obtained for the elementary metrics may be
considered as the no-reference equivalents of the FR IQA metrics applied for the quality assessment of
the 3D printed surfaces. Since we do not use the “pristine” reference images, we cannot apply FR IQA
methods directly. Therefore, we have divided the images into parts (regions) and compare these regions
using the FR IQA methods to make a workaround of the lack of the reference images. Hence, formally
we can classify our approach as an NR (“blind”) IQA approach, although all metrics used internally
belong to the group of FR methods.

Such obtained quality scores have been used as the input metrics for the combinations according
to Formula (6). The optimized weights have been obtained by the maximization of the Pearson’s
Linear Correlation Coefficient (PLCC) between the objective and subjective scores (expressed as MOS
values in the developed database), representing the prediction accuracy. Since it has been assumed
that the nonlinear combination of elementary metrics should compensate the potentially nonlinear
perception of distortions, no fitting functions have been used, differently than for the general-purpose
IQA being typically applied according to recommendations of the Video Quality Experts Group
(VQEG). Additionally, two rank order correlations have been calculated, representing the prediction
monotonicity, namely Spearman Rank Order Correlation Coefficient (SROCC) marker as ρ and Kendall
Rank Order Correlation Coefficient (KROCC) denoted as τ. They are defined as

ρ = 1−
6 ·∑ d2

i
n · (n2 − 1)

(8)



Appl. Sci. 2020, 10, 6248 11 of 19

and
τ =

nc − nd
0.5 · n · (n− 1)

(9)

respectively, where n is the number of images, nc and nd are the numbers of concordant and discordant,
and di is the difference between the position of the i-th image in two sequences ordered according to
subjective and objective scores. Both rank-order correlations consider only the positions of the images
in these sorted vectors ignoring the differences between the perceived and measured quality.

5. Experimental Results

The procedure of experiments consists of four main steps: production of test samples with various
surface quality, subjective perceptual experiments and data analysis, calculation of individual IQA
metrics using the assumed division into regions, and combination of metrics and optimization of
weights, as illustrated in Figure 3.

1
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Figure 3. Illustration of the experimental procedure.

The first experiments have been conducted assuming the use of individual elementary metrics for
all 107 images converted to grayscale and divided into 4, 9, and 16 regions. For each of them, three
correlation coefficients have been calculated to identify potentially the most useful metrics for further
combinations. The obtained results are presented in Table 1. As may be noticed, in most cases similar
values of PLCC and SROCC have been obtained for individual metrics, hence in further experiments,
only Pearson’s correlation has been used as the optimization criterion. For many metrics the choice of
the number of regions does not change the correlation values significantly, hence further experiments
have been conducted assuming the division into 16 regions. The best PLCC results obtained for various
combinations of two metrics are presented in Table 2 (to save space only the values higher than 0.67
have been presented). As may be seen, in most combination the FSIM has been used, hence it has
been used as the “fixed” metric for the combinations of three metrics (only the two others have been
changed during the optimization of weights, although the FSIM exponent has been optimized as well).
The best PLCC results achieved for such combinations of three metrics are presented in Table 3.
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Table 1. The correlation coefficients obtained for 107 images using the proposed mutual similarity-based
approach for the elementary metrics.

Metric
Division into 16 Regions Division into 9 Regions Division into 4 Regions

PLCC SROCC KROCC PLCC SROCC KROCC PLCC SROCC KROCC

FSIM [34] 0.6756 0.6865 0.5195 0.6820 0.6845 0.5185 0.6780 0.6826 0.5114

CW-SSIM [32] 0.5929 0.5823 0.4028 0.6323 0.6098 0.4232 0.5807 0.5633 0.3981

AD-GSIM [40] 0.4081 0.3515 0.2453 0.4020 0.3470 0.2414 0.3873 0.3324 0.2354

DSS [38] 0.4066 0.3523 0.2411 0.3842 0.3220 0.2210 0.3921 0.3176 0.2142

AD-SSIM [40] 0.4017 0.3574 0.2562 0.3834 0.3209 0.2270 0.3492 0.2932 0.2065

SSIM [29] 0.3996 0.4012 0.2746 0.3905 0.4039 0.2661 0.3048 0.3017 0.1938

CSSIM4 [41] 0.3596 0.3296 0.2354 0.3329 0.2818 0.1977 0.3233 0.2851 0.1991

IW-SSIM [33] 0.3549 0.3669 0.2619 0.3230 0.2997 0.2044 0.3169 0.2473 0.1627

SR-SIM [36] 0.3173 0.2441 0.1588 0.3174 0.2497 0.1652 0.3878 0.3160 0.2150

MCSD [39] 0.3106 0.2958 0.2164 0.3008 0.2889 0.2090 0.2952 0.2825 0.2051

QILV [31] 0.3092 0.1330 0.0868 0.3478 0.2662 0.1832 0.4316 0.3555 0.2534

CVSSI [42] 0.2558 0.2083 0.1370 0.2097 0.1492 0.0935 0.1667 0.1068 0.0593

ESSIM [37] 0.1865 0.2340 0.1631 0.1754 0.2354 0.1648 0.3160 0.2868 0.2026

CSSIM [41] 0.1523 0.1078 0.0724 0.1251 0.0755 0.0519 0.1293 0.0862 0.0632

SSIM4 [41] 0.1283 0.0852 0.0565 0.1031 0.0447 0.0304 0.1085 0.0673 0.0462

GSM [35] 0.1103 0.1689 0.1182 0.0991 0.1631 0.1133 0.2102 0.2253 0.1585

RVSIM [43] 0.0267 0.0198 0.0219 0.0546 0.0433 0.0395 0.0114 0.0247 0.0304

Table 2. The PLCC values obtained for 107 images using 25 “best” combinations of two elementary
metrics assuming the division into 16 regions.

Metrics PLCC Metrics PLCC Metrics PLCC Metrics PLCC

FSIM + MCSD 0.8192 FSIM + SR-SIM 0.7862 FSIM + SSIM4 0.7581 FSIM + RVSIM 0.6875

FSIM + DSS 0.8029 FSIM + AS-SSIM 0.7861 FSIM + ESSIM 0.7377 CSSIM + CSSIM4 0.6852

FSIM + CVSSI 0.8008 FSIM + CW-SSIM 0.7766 FSIM + GSM 0.7312 FSIM + SSIM 0.6809

FSIM + IW-SSIM 0.7981 FSIM + CSSIM4 0.7719 SSIM + AD-GSIM 0.7081 FSIM + RVSIM 0.6762

FSIM + AD-GSIM 0.7921 FSIM + CSSIM 0.7593 FSIM + QILV 0.6952 SSIM + CW-SSIM 0.6731

Table 3. The PLCC values obtained for 107 images using 24 “best” combinations of three elementary
metrics assuming the division into 16 regions.

Metrics PLCC Metrics PLCC Metrics PLCC

FSIM + CW-SSIM + MCSD 0.8472 FSIM + MCSD + GSM 0.8270 FSIM + MCSD + AD-SSIM 0.8221

FSIM + CW-SSIM + DSS 0.8379 FSIM + ESSIM + MCSD 0.8256 FSIM + MCSD + CSSIM 0.8221

FSIM + CW-SSIM + IW-SSIM 0.8356 FSIM + CW-SSIM + CSSIM4 0.8250 FSIM + CVSSI + GSM 0.8219

FSIM + CW-SSIM + CVSSI 0.8348 FSIM + CW-SSIM + SR-SIM 0.8246 FSIM + MCSD + RVSIM 0.8217

FSIM + AD-SSIM + SR-SIM 0.8341 FSIM + CW-SSIM + AD-SSIM 0.8239 FSIM + DSS + AD-SSIM 0.8213

FSIM + CW-SSIM + AD-GSIM 0.8301 FSIM + MCSD + SR-SIM 0.8238 FSIM + ESSIM + AD-GSIM 0.8213

FSIM + DSS + ESSIM 0.8284 FSIM + MCSD + SSIM4 0.8225 FSIM + MCDS + QILV 0.8201

FSIM + DSS + GSM 0.8274 FSIM + MCSD + SSIM 0.8224 FSIM + AD-GSIM + GSM 0.8199

In view of results presented in Table 3, the best results may be obtained using the combination
of FSIM and CW-SSIM with a third metric (preferably MCSD), however good results may also be
achieved using FSIM and MCSD as two basic metrics used in the combinations. Considering these
results, the application of more metrics has led to an even slightly better correlation with MOS values
as presented in Table 4, where the obtained rank order correlations are additionally presented as well
for comparison with Table 1. As may be seen, the best PLCC values are not always equivalent to the
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highest SROCC and KROCC, although the differences may be considered as negligible. The additional
illustration of the obtained increase of the correlation with subjective scores is presented in the scatter
plots in Figure 4.

(a) (b)

(c) (d)

Figure 4. Scatter plots illustrating the linearity of relations between the investigated objective metrics
assuming the division into 16 regions and MOS values: (a) for FSIM, (b) for the “best” combination
of two metrics, (c) for the “best” combination of three metrics, (d) for the “best” combination of
five metrics.

Although the verification of correlations for the combinations of two or three metrics calculated
assuming the division into 4 or 9 blocks has confirmed the validity of the choice of 16 regions
(leading to better performance), the combination of four and five metrics for a smaller number of blocks
gives an opportunity to obtain better results, particularly considering the prediction monotonicity
represented by both rank order correlations, significantly decreasing the computation time as shown
in Table 4.
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Table 4. The correlation coefficients obtained for 107 images using the “best” combinations of four and
five elementary metrics assuming the division into 4, 9, and 16 regions.

Number of Regions Metrics PLCC SROCC KROCC

4
FSIM + CW-SSIM + MCSD + ESSIM 0.8405 0.8431 0.6639
FSIM + CW-SSIM + MCSD + GSM 0.8474 0.8485 0.6710
FSIM + CW-SSIM + MCSD + ESSIM + GSM 0.8565 0.8586 0.6826

9
FSIM + CW-SSIM + MCSD + ESSIM 0.8463 0.8357 0.6558
FSIM + CW-SSIM + MCSD + GSM 0.8487 0.8385 0.6565
FSIM + CW-SSIM + MCSD + ESSIM + GSM 0.8495 0.8397 0.6604

16
FSIM + CW-SSIM + MCSD + ESSIM 0.8502 0.8453 0.6660
FSIM + CW-SSIM + MCSD + GSM 0.8514 0.8443 0.6653
FSIM + CW-SSIM + MCSD + ESSIM + GSM 0.8537 0.8480 0.6748

6. Discussion

Analyzing the results, obtained by the unconstrained nonlinear optimization od exponent weights
using the MATLAB R© fminsearch function, which utilizes the simplex search method, additionally
verified using gradient-based methods, it may be noticed that the application of an individual
elementary metric leads to PLCC and SROCC values not exceeding 0.7 for the best metric (FSIM)
regardless of the chosen division into regions. Nevertheless, the application of the combination of
even two metrics increases the Pearson’s correlation significantly reaching the values over 0.8 for three
“best” combinations. However, removing the FSIM metric from the combination decreases this value to
only 0.7081, hence Feature Similarity should be considered as the basic metric used in all combinations.

Further increase of the PLCC for the combination of three metrics allows one to specify the other
metrics leading to even better performance (CW-SSIM and MCSD, used also in further combinations
of four and five metrics) reaching 0.8472 with further increase to 0.8537 for five metrics, also leading to
a substantial improvement of the rank order correlations. The increase of the linearity of the relationship
between the combined metrics and MOS values may also be observed in Figure 4, particularly for
combinations of 3 and 5 elementary metrics. As presented in Table 4, even better results may be
achieved limiting the number of blocks for the combinations of four and five individual metrics,
obviously with additional advantageous shortening of the overall computation time.

In comparison to previous studies, the obtained results are superior to those presented in the
recent conference paper [58], where PLCC = 0.8353 has been obtained for the combination of various
approaches, previously applied only for sample classification purposes. However, the methods applied
in the aforementioned paper, apart from the use of FSIMc metric, are based on various additional
calculations including preprocessing with the Contrast Limited Adaptive Histogram Equalization
(CLAHE) algorithm, entropy calculations [3,4], use of the Histogram of Oriented Gradients (HOG)
and—more importantly—entropy of the depth maps obtained using the additional 3D scanning.

Considering the practical applicability of the proposed approach, the use of even a monochrome
camera is effortless, being enough to acquire the necessary data without the need of the time-consuming
3D scanning of the samples, which makes the real-time applications almost impossible, or at least
expensive and troublesome, especially in low-cost solutions.

7. Conclusions and Further Work

Presented results confirm the usefulness of the combined IQA metrics for the quality evaluation of
the 3D printed surfaces, leading to a high correlation with subjective opinions of the surface aesthetics.
The proposed approach to automatic objective quality evaluation of the 3D printed surfaces is based
only on the full-reference image quality metrics that rely on the mutual similarity, hence its application
is relatively easy since the values of the elementary metrics necessary for the combination may be
calculated in parallel. The utilized individual metrics may be effectively calculated [44,49] and therefore
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the presented approach may be successfully implemented for the real-time quality monitoring during
the manufacturing, understood as not introducing noticeable delays in comparison to the relatively
slow printing process. An important remark in view of the computation time is the possibility of an
increase in the correlation with MOS values using more metrics but decreasing the number of regions.

Application of the proposed combined metrics makes it possible to increase the correlation with
the subjective quality evaluation of the 3D printed surfaces by over 0.17 in comparison to the use of the
best single metric, considering the prediction accuracy. A similar increase may be observed for SROCC
with the increase of KROCC by more than 0.15, providing significantly higher prediction monotonicity.

As the proposed method is color independent, the use of a monochrome camera is enough,
although the application of some other color to grayscale conversion methods as well as various color
spaces is planned in further research. Another direction of future work is the extension of the proposed
method towards the use of some other image quality assessment methods and integration with
previously developed methods used so far for classification purposes. Nevertheless, the development
of even better-correlated metrics requires additional experiments, as well as the possible extension
of the developed dataset using also some additional samples with non-planar surfaces (with the
time-consuming acquisition of subjective quality scores for the new samples). Such an extension of
the proposed method for the evaluation of non-planar surfaces is possible similarly as for previously
investigated entropy-based approaches [4]. Obviously, reasonable results may be expected only for
the division into relatively small regions, additionally avoiding the mutual similarity calculations for
distant image fragments due to expected different orientation of both compared to local patterns.

Considering some open challenges of the quality control in 3D printing manufacturing analyzed
in the papers [59,60], another direction of further planned experiments is related to the integration of
the proposed vision-based methods with electromagnetic and radiographic non-destructive testing
(NDT) methods, e.g., using terahertz methods, towards the acquisition of the full 3D structure of the
manufactured objects in view of their mechanical properties.
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Abbreviations

The following abbreviations are used in this manuscript:

ABS Acrylonitrile butadiene styrene
ADD-GSIM Analysis of distortion distribution-based Gradient SIMilarity
ADD-SSIM Analysis of distortion distribution-based Structural SIMilarity
CAD Computer-Aided Design
CISI Combined Image Similarity Index
CSF Contrast Sensitivity Function
CSSIM Color Structural SIMilarity
CVSSI Contrast and Visual Saliency Similarity-Induced Index
CW-SSIM Complex Wavelet Structural SIMilarity
DCT Discrete Cosine Transform
CLAHE Contrast Limited Adaptive Histogram Equalization
DSS DCT subband similarity
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ESSIM Edge Strength SIMilarity
FDM Fused deposition modeling
FR IQA Full-reference image quality assessment
FSIM Feature Similarity
GM Gradient magnitude
GSM Gradient Similarity
HOG Histogram of Oriented Gradients
HVS Human Visual System
IQA Image quality assessment
ITU International Telecommunication Union
IW-SSIM Information Content Weighted Structural SIMilarity
KROCC Kendall Rank Order Correlation Coefficient
LPBF Laser powder bed fusion
MCSD Multiscale Contrast Similarity Deviation
MOS Mean Opinion Score
MSE Mean Squared Error
MS-SSIM Multi-Scale Structural SIMilarity
NDT Non-destructive testing
NR IQA No-reference image quality assessment
OCT Optical coherence tomography
PLCC Pearson’s Linear Correlation Coefficient
QILV Quality Index based on Local Variance
SROCC Spearman Rank Order Correlation Coefficient
SR-SIM Spectral residual-based similarity
SSIM Structural SIMilarity
PC Phase congruency
PLA Polyactic acid
PSNR Peak Signal-to-Noise Ratio
PVC Polyvinyl chloride
RVSIM Riesz transform and Visual contrast sensitivity-based feature SIMilarity
UIQI Universal Image Quality Index
VQEG Video Quality Experts Group
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