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Abstract: Image captioning is a multi-modal transduction task, translating the source image into the
target language. Numerous dominant approaches primarily employed the generation-based or the
retrieval-based method. These two kinds of frameworks have their advantages and disadvantages.
In this work, we make the best of their respective advantages. We adopt the retrieval-based approach
to search the visually similar image and their corresponding captions for each queried image in the
MSCOCO data set. Based on the retrieved similar sequences and the visual features of the queried
image, the proposed de-noising module yielded a set of attended textual features which brought
additional textual information for the generation-based model. Finally, the decoder makes use of not
only the visual features but also the textual features to generate the output descriptions. Additionally,
the incorporated visual encoder and the de-noising module can be applied as a preprocessing
component for the decoder-based attention mechanisms. We evaluate the proposed method on the
MSCOCO benchmark data set. Extensive experiment yields state-of-the-art performance, and the
incorporated module raises the baseline models in terms of almost all the evaluation metrics.

Keywords: image caption; computer vision; natural language processing

1. Introduction

Recently, the multidisciplinary image captioning task has received considerable critical attention
in natural language processing and computer vision. It aims to generate human-like descriptions
according to the input image. It is a very difficult and challenging task. Since not only must the caption
generation models to recognize the objects and their relationships in an image, but also must expressing
them in form of natural language. Apparently, the input image is always represented in the vision
domain, while the output sentence is in another irrespective language domain. Despite the difficulties
of the cross-domain operation, more important thing is that it has a wide range of applications, such as
text-based image retrieval, human-robot interaction, etc.

Most of the existing captioning models can be categorized into template-based, generation-based
and retrieval-based methods. The retrieval-based method first retrieves the visually similar images
with their captions from the training data set based on the visual similarity of image features, and these
existing captions are called candidate captions [1]. For each query image, the retrieval-based method
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selects the most appropriate caption from the candidate captions. For example, Ordonez et al. [2]
builds a web-scale collection of images with associated descriptions from the Internet. They use
the gist feature and the resized tiny image feature respectively, to retrieve the similar images and
associated descriptions. Their final result was the captions from the top ranked image. Gupta et al. [3]
finds k images that were most similar to the query from the training images, and used the phrases
extracted from their descriptions. A ranked list of triples was generated, and they were used to
compose the descriptions for the new image. Kuznetsova et al. [4] presented a tree-based approach
to compose expressive image descriptions that makes use of naturally occurring web images with
captions. The tree fragments were expressive phrase from existing descriptions. Then they composed
a new description by selectively combining the extracted tree fragments. These methods can produce
general and syntactically correct captions. However, the generated caption may not be semantic
suitable and novel for the query image.

Inspired by the sequence-to-sequence neural machine translation model, most of the successful
image captioning generation-based methods adopt the encoder–decoder framework and they are
trained in an end-to-end manner. Generally, the convolutional neural network (CNN) acts as the
encoder to extract the visual features of the input image, and the recurrent neural network (RNN) is
used as a decoder to translate the input visual feature vectors into natural captions word by word.
However, these methods are unable to analyze the image over time during the caption generation
process. As a result, the attention mechanism [5–7] establishes the connection of the caption words and
their related image regions dynamically during the decoding process [8–10], which highly improved
the captioning performance. Despite better quality and flexibility of the generation-based results,
the generated captions mainly suffer from a lack of fluency, diversity and informativeness [11].

In this paper, we work toward constructing a framework that takes advantage of the
generation-based method and the retrieval-based method. First, we use the retrieval-based method
to search the most similar image with their related descriptions of the query image from the
MSCOCO [12] training data set. Secondly, for the extracted visual features of the query image,
we fully explore potential hidden correlations of the different image regions to form a spatial and
relational representation. Our de-noising module models the cross-modal correlations of the attended
visual features from vision domain and the embedded similar sequences from language domain.
Finally, the decoder takes both the de-noised semantic knowledge and the image representations
to generate the final output descriptions. In general, our main contributions of this work can be
summarized as follows:

• We propose a model that incorporate the retrieval-based and the generation-based image
captioning method to translate the source image into target language.

• The proposed de-noising module incorporated with the visual encoder can be viewed as a
preprocessing component, providing a part of high-level semantic information and a set of
attended visual features.

• This component can be used with the decoder-based attention mechanisms. Experiment result
shows the effectiveness when we replace the information sources for different baselines.

• The experiment result evaluated on the MSCOCO data set shows that our model has achieved
the state-of-the-art results.

2. Related Works

2.1. Retrieval-Based Methods

The retrieval-based conventional methods can retrieve the visually similar images and their
captions from the training data set. This kind of approach can directly copy sentences from these
retrieved captions. Mason et al. [13] uses GIST features of the query image to select the nearest
image and sentence. The related sentences are compressed by removing details that may probably
not semantic suitable for the test image. Devlin et al. [14] chose one caption from the retrieved
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captions pool of k nearest training images. The captions of the query image are then used to select
the most appropriate captions from the candidate pool. However, these methods heavily rely on the
pre-constructed candidate pool, and the selected captions may not be visual and semantic correct
for the query image. Xu et al. [11] propose a framework by using adversarial learning, and leverage
the copying mechanism to extract words from the retrieved captions to enrich the meaning of the
generated captions. They got the competitive experiment result compared with the baselines.

2.2. Generation-Based Methods

Inspired by the success of the encoder–decoder framework used in deep neural machine
translation tasks [15,16], the image captioning tasks adopted the structure to translate the source
image into the target language [17–19]. Vinyals et al. [20] first applied the framework into the image
captioning task, which trained a convolutional neural network(CNN) as the encoder, used these
extracted visual features as the input to a recurrent neural network(RNN) decoder, and generated the
captions word by word until getting the end token of the sentence. These encoder–decoder-based
models [21,22] gained promising performance.

Furthermore, the attention mechanism was introduced to the caption generation. Xu et al. [5]
used the deterministic soft attention and the stochastic hard attention to help the decoder focus on the
most relevant image part when generating different words, and they promoted the sentence generation
quality. Anderson et al. [23] further improved the attention module by the bottom-up and top-down
mechanism. Attention mechanism bridged the gap between the vision domain and the language
domain effectively. Thus, this mechanism has been widely adopted in the image captioning tasks [6].
Vaswani et al. [7] proposed a Transformer model which stacked the attention blocks entirely without
convolution and recurrence. This model composes an encoder and a decoder. The encoder comprised
a self-attention and a position-wise feed-forward block. The decoder contained a self-attention and
a cross-attention layer. Zhu et al. [24] adapted their framework from the Transformer architecture to
perform image captioning. The difference lies in that they replace the encoder of the Transformer by
a CNN model. Herdade et al. [25] incorporates the information about the spatial relationships of
the R-CNN detected object pairs to the attention block. Huang et al. [26] proposed an “Attention on
Attention” module to model the relationships of different objects of the image on encoder, and refining
for the decoder with self-attention mechanism. Pan et al. [27] propose a unified X-Linear attention
block that fully leverage bilinear pooling to selectively capitalize on different visual information.
Cornia et al. [28] propose a Meshed Transformer with memory for image captioning. The framework
uses a mesh-like connectivity at decoding stage to exploit low- and high-level features.

Different with the above-mentioned methods, we design a novel image captioning model that
incorporate the retrieval-based and the generation-based method which contains a visual encoder,
a de-noising module and a decoder. The de-noising module does help to filter the retrieved similar
sequences conditioned on the visual features. In addition, the decoder incorporates the visual features
and the filtered textual features to decode into fluent descriptions.

3. Model Architecture

Most of the generation-based image to language translation models makes use of the
encoder–decoder structure. Visual features are widely used as the source information for image
captioning. For the input image I, an intuitive way to extract visual features is by ResNet [29],
VGG [30] or GoogLeNet [31]. The encoder is usually used to encode image features, mapping the
image I to a set of visual features. The decoder uses these visual features to generate the output
sequence. In this section, we briefly review the architecture of the proposed model. The proposed
method is based on the attention mechanism. As can be seen in Figure 1, our model incorporates
the retrieval-based method and the generation-based method. The retrieval-based method search
the most similar image and their descriptions in the training data set for the input image. At the
generation-based branch, a CNN is used to extract the visual features of the input image. These visual
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features are then fed into the visual encoder to compute their inner relationships. The de-noising
module filtered the embedded similar sequences conditioned on the attended visual features yielded a
set of textual features. A caption decoder leverages both the attended visual features and the de-noised
semantic features to generate the output descriptions.

CNN

Training data

De-noising 

Module

Visual 

Encoder (Masked) Multi-Head

Attention

Feed Forward

Cross-modal

Attention

Cross-modal

Attention

Linear + SoftmaxSimilar sentences:

1: A tennis player about to hit the tennis ball.

2: A tennis player strains on a court as many look on

3: A female tennis player swinging at a ball.

4: A tennis player reaching for a tennis ball with her 

     racket.

5: Female tennis player lunges forward aiming to hit the    

     ball.

Retrieval-based Method

Output Sequence

Generation-based Method

Output 

Embedding

Decoder

Figure 1. Our model combined the retrieval-based method and the generation-based method.
The de-noising module here is used to filter the retrieved similar sequences. The decoder here used
both the filtered textual features and the attended visual features to generate the final descriptions.

3.1. Preliminary

The Transformer model has been widely applied in sequence-to-sequence tasks and gains
significant improvements. Our model mainly acquires the attention mechanism proposed by [7].
Thus, we first introduce the preliminary knowledge of the scaled-dot product attention which is
defined as:

Att(Q, K, V) = so f tmax(
QKT
√

dk
)V (1)

where Q ∈ Rm×dmodel is the query matrix, m is the number of objects, dmodel is the latent dimension.
K ∈ Rn×dmodel denotes the key matrix, and V ∈ Rn×dmodel represents the value matrix. K and V are
key-value matrix pairs. In briefly, the query matrix K = [k1, ..., kn], kn ∈ Rdmodel , the value matrix
V = [v1, ..., vn], vn ∈ Rdmodel , and n is the number of the key-value pairs. QKT stands for the product
operation to compute the similarity score between Q and K, which may cause the result become larger
or smaller and further influence the precision of the variable. Thus,

√
dk indicates the scaled dot to

scale QKT . The attention of queries Q = [q1, ..., qm], qm ∈ Rdmodel is computed in parallel. After a series
computation, Att(Q, K, V) ∈ Rm×dmodel is the attended output features.

The multi-head attention contains h parallel heads, and each head corresponds to a
scaled-dot-product attention function. These h scaled-dot product attention are independent.
The multi-head attention concatenated them and projected to form the final attentive representation:

headi = Att(QWQ
i , KWK

i , VWV
i ) (2)

O = MultiHead(Q, K, V) = Concat(head1, ..., headh)Wo (3)
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where Concat(·) is the concatenation function, headi represents the i-th scaled-dot-product attention.
Wo ∈ Rh∗dv×dmodel is the output of different heads, dv is the output dimension of each head. WQ

i ∈
Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dv are the linear Transformer parameter matrices.

Followed the multi-head attention is a position-wise feed-forward network(FFN), FFN takes the
output of the multi-head attention as input which is defined as:

FFN(x) = Dropout(max(0, xL f + b f ))L f f + b f f (4)

where Dropout(·) is the dropout [32]operation to prevent over-fitting, max(·) function is the ReLU
activation, L f and L f f represent two linear transform operations, and b f and b f f are the corresponding
bias terms. It is worth noting that both the multi-head attention and the FFN all followed a series
operation of residual connection, dropout and layer normalization [33].

3.2. Visual Encoder

When we look at an image, we always focus on a specific object first. Then we look around to
find the other semantically or spatially related objects. These related objects form inner groups that
are of importance to our approach. The visual encoder here is used to learn the spatial or semantic
relationships of these objects. Our visual encoder is composed by a multi-head self-attention and a
position-wise feed-forward network as can be seen in the left of Figure 2. The input of the self-attention
sub-layer is a set of visual features of the image.

Feed Forward

Multi-Head 

Attention

Feed Forward

Multi-Head 

Attention

Add&Norm Add&Norm

Add&NormAdd&Norm

A tennis player 

about to hit the 

tennis ball.

Embedding

Figure 2. The left part is a visual encoder, the right part is the de-noising module. Here we list one of
the retrieved similar sequences.

Given a source image I, we use the top m objects extracted by Faster R-CNN [34] to represent the
image, and each object is represented as a feature vector xi ∈ Rdx . The image includes m objects can be
denoted as a visual feature matrix X = (x1, ..., xm) ∈ Rm×dx . We adapt the dimensionality of the visual
feature by using the fully connected layer to fit the encoder. The linear projected visual feature matrix
X ∈ m× dmodel is fed into the multi-head attention to mimic our human how these visual features
(x1, x2, ..., xm) are related. Multi-head attention block composes h parallel heads.

The full visual encoder computation process can be described as an iteration:

V1 = FFN(MultiHead(X, X, X)) (5)

VN = FFN(MultiHead(VN−1, VN−1, VN−1)) (6)
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where X is a set of extracted original input visual features. Here we use dk = dv = 64. V1 is the
nonlinearly transformed attended features of the first iteration. After we obtain V1, the first iteration is
completed. The second iteration takes the computation result of the first time as input and repeats
the same process for N times to get the final output by using Equation (6). In this paper, we denote
the final attended visual feature VN of the visual encoder as V. Followed with the self-attention layer
and the FFN follows a residual connection and a layer normalization post-processed operation to
normalize the visual features, respectively.

3.3. De-Noising Module

To make use of the retrieved similar sequences for image captioning, we must filter these sequences
conditioned on the attended visual features. As can be seen in the right bottom of Figure 2, a retrieved
sequences seems semantically similar to the original input image which can provide complementary
semantic information. The first cross-modal attention sub-layer can learn the correlated features by
using the attended visual features V to query the textual features T. We leverage V as query, T as the
key-value pairs. By using the multi-head attention operation, we get a set of the textual features that
most related with the visual features. The text encoder can be denoted as follows:

T1 = FFN(MultiHead(V, T, T)) (7)

TN = FFN(MultiHead(VN , TN−1, TN−1)) (8)

where V ∈ Rm×dmodel , and T ∈ Rl×dmodel . T1 is the textual features embedded by the embedding model.
The query matrix V is from the vision domain, and T is the key-value pairs from the language domain.
At last, the filtered textual features only contain homogenous information since the information from
the vision domain only serves as the attentive weight and is not part of the final values.

3.4. Decoder

Given the attended visual features V and the filtered textual features T, the decoder will make
full use of this information to generate descriptions in a recursively manner for the image. We can
see in Figure 1 inside the decoder, there is a masked self-attention block, two multi-head cross-modal
attention components and a position-wise feed-forward layer.

The input of the masked self-attention block is a temporal input caption which can be embedded
into a feature matrix Y = [y1, ..., yn] ∈ Rn×dmodel , and n is the input captions length. Considering
that the prediction of a word should only use the previous predicted words, which means that we
should prevent the decoder from seeing the future sequence information. When we generate the t-th
word, we only require the former predicted words information Y≤t. We implement this by setting
the subsequent sequence position to −∞. Therefore, a triangular masked matrix with dimension
M ∈ Rn×n is generated as the input to the first sub-layer, and n is the length of the input caption.
This first sub-layer models the self-attention on the caption words which can be described as:

M1 = MultiHead(Y, Y, Y) (9)

where Y ∈ Rn×dmodel is the masked caption feature. The output of the first sub-layer M1 are then fed
into the second cross-modal attention sub-layer as the query. We use the attended visual feature V as
the key-value pairs.

The second cross-modal attention layer can be defined as follows:

M2 = MultiHead(M1, V, V) (10)

where M1 ∈ Rn×dmodel is the textual feature, and V ∈ Rm×dmodel is the attended visual feature from the
visual encoder. M1 is the query, and V is the key-value pairs. M2 is a set of attended visual features.



Appl. Sci. 2020, 10, 6235 7 of 14

For the third multi-head attention sub-layer, we adopt the de-noised text features Tl×dmodel as the
key-value pairs, M2 as the query. In addition, we have:

M3 = MultiHead(M2, T, T) (11)

where M2 ∈ Rn×dmodel . Finally, M3 ∈ Rn×dmodel is fed into the position-wise feed-forward network to
nonlinearly transform this feature :

F = FFN(M3) (12)

After the above calculation, a linear word embedding layer takes F as input to transform it into a
dv-dimensional space, where dv is the vocabulary size. Subsequently, the softmax function is performed
on each word to predict the probability over words in the dictionary. The decoder contains N layers,
thus the decoder repeats the same process for N times.

3.5. Training Details

We first train the proposed model by the word-level cross-entropy loss(XE). Following the common
practice in [8], our model predicts the next token according to the previous ground-truth words which
are not the predicted words. The cross-entropy loss LXE is defined as:

LXE(θ) = −
T

∑
t=1

log(pθ(y∗t |y∗1:t−1)) (13)

where t is the t-th word, and y∗1:T represent the target ground-truth sequence.
Then we train the proposed model by reinforcement learning to optimize the non-differentiable

evaluation metrics CIDEr-D which is close to our human judgment. In the decoder phase, we use
beam search [23] to sample top-k words from the decoder probability distribution, and keep the top-k
highest probability sequences. We adopt the self-critical sequence training method on these sampled
sequences which is:

∇θ LRL(θ) = −
1
k

k

∑
i=1

((r(yi
1:T)− b)∇θ logp(yi

1:T)) (14)

where yi
1:T is the i-th sentence in the beam, r(·) is the reward function uses the score of CIDEr-D,

and b = r(y1:T) is the reward computed on the greedy decoding sequences.

4. Experiments

To take advantage of the generation-based and the retrieval-based method, we must retrieve the
visually similar images for each queried image in the MSCOCO data set. For this purpose, we use
Baidu-API to search for the most similar image in the data set for each image. Then we can acquire the
corresponding five ground-truth descriptions of the similar image. After the above operation, we can
use the de-noising module to get a set of attended textual features conditioned on the visual features.

For the ground-truth captions and the retrieved similar sequences, we count the times of each
word that appears in the sentences and replace the words that appear less than five times by the
unknown word token. The rest words are used to construct the dictionary with 9487 words. Each word
is embedded into dmodel vectors. If the length of the sequences is shorter than 16 words, we will use
zero-padding to fill them to the maximum size.

In this section, we evaluate our method on the MSCOCO image captioning data set. We make
comparisons with several state-of-the-art methods. Furthermore, we integrate the de-noising module
with the visual encoder as a preprocessing component and added to the decoder-based models.
The models takes both the attended visual features and the textual features as input.
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4.1. Datasets and Metrics

MSCOCO is a popular benchmark data set and it has been widely used in the tasks like object
detection, image captioning and instance segmentation. This data set contains 82,783 training images,
and 40,504 validation images. To make fair comparisons with other methods, we use the commonly
used data set splits provided by [35] to evaluate our offline evaluation result. The re-split training set
contains 113,287 training images, 5000 validation images and 5000 test images respectively, and each
image is paired with 5 annotated captions. The result of the proposed model is reported on the
Karpathy split testing data set.

To evaluate the generated caption quality, we use the official MSCOCO image captioning
evaluation metrics CIDEr [36], SPICE [37], BLEU [38], METEOR [39] and ROUGE [40] that are widely
used in previous works. CIDEr measures the consensus in the task by using Term Frequency-Inverse
Document Frequency weighting for each n− gram. BLEU is the precision metric by measuring the
similarity of the generated captions and the ground-truth captions. METEOR is a metric to explicit the
word to word matches of the generated captions and the ground-truth captions [24]. SPICE uses the
graph-based image semantic to compute F-score value of the objects, attributes and relationships in
the generated caption. ROUGE is the metric that computes the longest common sub-sequence between
the generated captions and the ground-truth captions, and the longer the common sub-sequence,
the higher the score.

4.2. Experimental Settings

For our captioning model, we first use Faster R-CNN with ResNet-101 [29] as the feature extractor
which is finetuned on the Visual Genome data set. We keep top m objects to represent an image,
and each object is represented by a 2048-dimensional feature vector dx. In our model, we set m = l = 17.
The mini-batch size is set to 16. The dropout rate is 0.9 which is used after the attention block and the
position-wise feed-forward layer. Same with the base Transformer model, we set the dimension d f f of
the feed-forward network to 2048. The latent dimension dmodel in the multi-head attention module is
512, the number of head h is 8, the dimension of each head is dh = 64, and the number of layers N is 6.

To train the proposed model, we use the Adam method [41] with mini-batch 16 to update the
parameters. We use the cross-entropy loss first to train the model for 10 epochs. The learning rate is set
to 5e− 4. Then we further train the proposed model for additional training by using the self-critical
loss to directly optimize the CIDEr metric. The learning rate is 1e− 5. The self-critical sequence training
brought dramatic improvement of all the evaluation metrics. We set the beam size equals 4 to add the
sequence diversity.

When we integrate the visual encoder and the de-noising module as a preprocessed component.
After the self-attention computation of the visual encoder, the attended visual features V ∈ dm×dmodel

is generated. We can simply add V with the de-noised textual features T and followed with layer
normalization. Then we fed the added sum result into the decoder and make comparisons with the
original baseline models to verify the useful of the component.

4.3. Comparison with the State-of-the-Art Methods

Our captioning model make comparison with several powerful state-of-the-art methods.
The performance of these model are shows in Table 1. These models are the generation-based methods.
VS-LSTM [42] replace the low-level visual features with semantic attributes. Bottom-Up and Top-Down
Attention(Up-Down) [23] adopt the Faster R-CNN features as the encoder, and uses a two-layer LSTM
as the decoder. ADP-ATT [6] learnt an adaptive attention model that automatically determined when
to look and where to look for word generation. GCN-LSTM [43] used the Graph Convolutional
Neural Network to exploit relationships of each two different entities in the image to perform image
captioning. LSTM-A [44] integrated semantic attributes into the CNN plus LSTM framework for
caption generation. SCST [8] makes use of attention on the grid of features and a one-layer LSTM as the
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decoder. RFNet [45] exploited multiple CNNs as encoder and followed a recurrent fusion procedure
to form representations to the decoder. UGRIC [11] is a model that incorporate the retrieval-based
method and the generation-based method.

Table 1. Performance of our model and several state-of-the-art single models evaluated on MSCOCO
“Karpathy” offline test split.

Method Cross-Entropy Loss Self-Critical Loss

B@1 B@4 M R C S B@1 B@4 M R C S

SCST [8] - 30.0 25.9 53.4 - - 99.4 - 34.2 26.7 114.0 55.7
ADP-ATT [6] 74.2 33.2 26.6 - 108.5 - - - - - - -
LSTM-A [44] 75.4 35.2 26.9 55.8 108.8 20.0 78.6 35.5 27.3 56.8 118.3 20.8
VS-LSTM [42] 76.3 34.3 26.9 - 110.2 - 78.9 36.3 27.3 - 120.8 -
Up-Down [23] 77.2 36.2 27.0 56.4 113.5 20.3 79.8 36.3 27.7 56.9 120.1 21.4

RFNet [45] 76.4 35.8 27.4 56.5 112.5 20.5 79.1 36.5 27.7 57.3 121.9 21.2
UGRIC [11] - - - - - - 81.3 38.2 28.4 58.6 123.5 -

GCN-LSTM [43] 76.5 36.8 27.9 57.0 116.3 20.9 80.5 38.2 28.5 58.3 127.6 22.0
Ours 76.7 36.5 28.0 56.8 115.1 21.2 80.0 38.3 28.7 58.5 128.0 22.1

For fair comparison, we evaluate our model on the MSCOCO “Karpathy” test split. In Table 1,
B@1, B@4, M, R, C and S correspond to the BLEU@1, BLEU@4, METEOR, ROUGE, CIDEr and SPICE
scores. All values are reported as percentage. We show the single-model experiment results of
our approach along with several competitive methods. As can be observed from Table 1 that our
approach is superior to the first six models in all the evaluation metrics. After the model trained by the
self-critical loss, the experiment results is a little worse on BLEU-1 of the UGRIC model, but our model
is superior in terms of the other five evaluation metrics. We can see UGRIC unified the retrieval and
generation-based method got 123.5 CIDEr score which is inferior to ours. Although GCN-LSTM is a
very strong baseline. Our model is superior in terms of all the evaluation metrics except for Bleu-1
after self-critical sequence training. It can be seen that our model got 128.0 CIDEr score which is higher
than GCN-LSTM. This indicates the competitive of our model. Although our model is superior to the
baselines. It is worth mentioning that our model is inferior to the models [26–28].

In Figure 3 we show several examples selected from the validation set of the description results
generated by our approach. The first column is the input image, the second column is the corresponding
retrieved similar image. We can see that the retrieved result is similar to the input image. The first row
of the original picture is describing two men fishing on a boat with a dog. The retrieved similar image
is describing a man with a dog on the boat without the fishing action which is different with the input
image. Although they are different in some detailed place, these similar sequences still bring useful
textual information(“boat”, “dog”). The third row of the input image is a baby holding a toothbrush.
The retrieved image and sentences are both visually and semantically similar to the input image.
Our generated description is almost same with the ground truth. On the whole, the proposed method
can generate fluency and semantic correct captions with help of the similar semantic information.
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0

Re t r i eve d :  A baby holding a toothbrush while 

smiling at the camera.

Ours: A baby holding a toothbrush in its hand.

GT: A child holds a toothbrush in their hand.

Retrieved: A train that is coming around the curb 

of a tree filled area.

Ours :  A train is coming through tracks around 

with trees.

GT: A train is moving along train tracks through 

the woods.

Retrieved: Elephants walking through a field on                                             

the side of road.

Ours :  A  man riding on the back of an elephant 

down a street

GT: A man is riding on top of an elephant.

Retrieved:  A person on a rowboat with a

dalmatian dog on the boat.

Ours: Two men fishing on a boat with a dog on it

GT: Two men on a blue boat with dog fishing.

Figure 3. Examples of the retrieved similar sequence and the captions generated by our model on
MSCOCO validation set. “Retrieved” indicates one of the retrieved five similar sequences by computing
the image pairs visual similarity. “Ours” is the generated result by our approach. “GT” denotes one
ground-truth caption.

4.4. Ablation Study

Experiment results of different information sources for baselines. To verify the effectiveness of the
de-noised textual features and the attended visual features, we replace the information sources of the
following frameworks by the two kind features, respectively. The attended visual features is the output
of the visual encoder. The added sum features is the summarization of the attended visual features and
the de-noised textual features. The base models we compared with are as follows. Google NIC [46],
ADP-ATT and Up-Down are three baselines that count on the visual features to generate captions.
Google NIC uses the GoogLeNet for image visual feature extractor and an LSTM for generating image
captions. Spatial-Attention takes advantage of ResNet as the visual extractor. Up-Down uses two
kinds of visual features: one adopts Faster R-CNN as the powerful encoder which has been trained
on the large scale Visual Genome data set, and another one uses the ResNet as the visual extractor.
For fair comparison, we use the corresponding visual feature extractor of different baseline model to
extract visual feature. The extracted visual features are then put into the visual encoder to compute the
relationship of different objects. The preprocessed visual feature by our visual encoder is denoted as
“V”. We represent the de-noised textual feature as “T”. For the added sum result of these two kinds of
features is represented by “VT”.

We can see the experiment result in Table 2 when we replace the information sources of several
baseline models. Google NIC has a better performance on all the evaluation metrics except Bleu-1 by
using the attended visual features “V” as the information sources. As soon as the de-noised textual
features add with the attended visual features as the information sources, the model got a more
powerful result, especially in CIDEr. This shows the usefulness of the similar sequences retrieved by
the retrieval-based method. Spatial-Attention also achieved a higher score when the decoder takes the
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attended visual feature or the added sum result as input. It shows the little helpful of the de-noised
textual features. There is also an improvement on the Up-Down-ResNet model when we use both the
de-noised textual feature and the original visual feature as the input of the decoder compared with the
basic experiment results. Up-Down-R-CNN with the added sum result also achieves better results.
Up-Down here is trained by the cross-entropy loss function.

Table 2. Experiment results when we replace the information sources by the visual encoder result “V”
or the added sum result “VT”.

Model B@1 B@4 M R C S

Google NIC [46]

Baseline 70.7 27.7 23.7 51.7 85.5 17.0
w/V 70.9 29.8 24.5 52.5 93.3 17.5

w/VT 71.0 30.1 25.2 52.7 95.6 17.9

ADP-ATT [6]

Baseline 73.4 30.4 25.7 54.9 102.9 18.7
w/V 73.9 32.9 26.3 54.8 105.6 19.2

w/VT 74.6 33.4 26.5 55.1 106.0 19.3

Up-Down-ResNet [23]

Baseline 73.4 33.4 26.1 54.4 105.4 19.2
w/V 74.2 33.7 27.1 55.6 110.5 20.1

w/VT 75.0 34.8 27.7 56.2 111.5 20.7

Up-Down-R-CNN [23]

Baseline 77.2 36.2 27.0 56.4 113.5 20.3
w/V 76.1 36.2 28.1 56.6 114.8 21.1

w/VT 76.4 36.4 28.3 57.0 115.6 21.2

As for that the deep reinforcement learning can alleviate the so-called exposure bias in text
generation. We conduct experiments on Up-Down-ResNet and Up-Down-R-CNN with CIDEr
optimization. Our experiment results are presented in Table 3. For the performance of the baselines,
we directly report from the original papers. We can see the experiment result when the baseline takes
the preprocessed visual feature “V” or the added sum result “VT” as the information sources. It is
clearly to see these two kinds of information sources can bring improvements more or less on these
evaluation metrics. Up-Down is a very strong baseline, our preprocessed information sources can
still bring improvements under the reinforcement learning settings, proving the effectiveness of the
preprocess component.

Table 3. Experiment results on the Up-Down model with different kind of information sources trained
by the reinforcement learning method.

Model B@1 B@4 M R C S

Up-Down-ResNet [23]

Baseline 76.6 34.0 26.5 54.9 111.1 20.2
w/V 76.9 34.6 27.5 56.3 113.7 20.5

w/VT 77.2 35.2 28.1 56.4 114.5 20.9

Up-Down-R-CNN [23]

Baseline 79.8 36.3 27.7 56.9 120.1 21.4
w/V 78.0 36.7 28.0 57.0 121.3 21.5

w/VT 79.5 37.3 28.2 57.6 122.5 21.8

Ablation study of our model. It is clearly to see in Figure 1 that our decoder uses both the attended
visual features “V” and the de-noised textual features “T” as the information sources. We denoted as



Appl. Sci. 2020, 10, 6235 12 of 14

“V T”. To verify the effectiveness of the de-noised textual features “T”, we also make experiment on the
decoder with only the attended visual features “V” as information sources.

The evaluated result with beam size equals 1 is shown in Table 4. It shows the decoder with “V T”
acquires superior experiment results on all the evaluation metrics. This verified the effectiveness of the
de-noised textual features.

Table 4. Experiment results of the ablation study of our model when the decoder takes the visual features
“V”, or takes both the visual features “V” and the textual features “T” as the information sources.

Cross-Entropy Loss Self-Critical Loss

B@1 B@4 M R C S B@1 B@4 M R C S

w/V 75.0 33.3 27.4 55.7 113.0 20.7 79.2 37.7 28.3 58.4 126.0 21.7

w/V T 75.5 33.9 27.8 56.4 113.9 21.0 79.7 38.2 28.5 58.6 127.1 21.8

5. Conclusions

In this paper, we propose a novel image captioning model which incorporates the
generation-based approach and the retrieval-based method. The proposed model makes use of both
the image visual features and the retrieved similar sequences textual features to enrich the information
sources for captioning. We use the image-guided cross-modal attention mechanism to acquire the
textual features that conditioned on the visual features to acquire the de-noised textual features.
Finally, the decoder module takes both the de-noised textual feature and the attended visual feature to
generate the final captions. Furthermore, the integrated visual encoder and the de-noising module can
be viewed as a preprocessed component which help provide fine-grained image representations for
these images to text generation task. Extensive experiments on the MSCOCO image captioning data
set show that our method achieves better performance in both quantitative and qualitative evaluations.
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