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Abstract: As a typical non-deterministic polynomial (NP)-hard combinatorial optimization problem,
the hybrid flow shop scheduling problem (HFSSP) is known to be a very common layout in
real-life manufacturing scenarios. Even though many metaheuristic approaches have been presented
for the HFSSP with makespan criterion, there are limitations of the metaheuristic method in
accuracy, efficiency, and adaptability. To address this challenge, an improved SP-MCTS (single-player
Monte-Carlo tree search)-based scheduling is proposed for the hybrid flow shop to minimize the
makespan considering the multi-constraint. Meanwhile, the Markov decision process (MDP) is
applied to transform the HFSSP into the problem of shortest time branch path. The improvement of
the algorithm includes the selection policy blending standard deviation, the single-branch expansion
strategy and the 4-Rule policy simulation. Based on this improved algorithm, it could accurately
locate high-potential branches, economize the resource of the computer and quickly optimize the
solution. Then, the parameter combination is introduced to trade off the selection and simulation
with the intention of balancing the exploitation and exploration in the search process. Finally, through
the analysis of the calculated results, the validity of improved SP-MCTS (ISP-MCTS) for solving
the benchmarks is proven, and the ISP-MCTS performs better than the other algorithms in solving
large-scale problems.

Keywords: hybrid flow shop; scheduling policy; Markov decision process (MDP); single-player
Monte-Carlo tree search (SP-MCTS)

1. Introduction

The flow shop scheduling problem (FSSP) has been a very active research field, since it was first
proposed by Johnson [1]. In the FSSP, a set of n jobs have to be processed on m single-machine stages,
where each job follows the same route of stages. In production, the FSSP may result in overloading
some stages and blocking some jobs [2]. When parallel machines are introduced in some of the stage,
the standard flow shop layout becomes a hybrid flow shop (HFS) for these questioners in many real-life
manufacturing scenarios. Given its practical interest, the hybrid flow shop scheduling problem (HFSSP)
is widely used in today’s manufacturing and production systems, such as heavy industry, light industry
and other industrial systems. Taking into account the computation complexity, more researchers
have conducted in-depth research in this field, since HFSSP has been proved as a non-deterministic
polynomial (NP)-hard problem [3]. Simultaneously, production scheduling has been proved to play
an important role for improving productivity and responsiveness in the manufacturing system [4].
Therefore, developing more efficient algorithms for this problem is significant.
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Ribas and Ruizad [5] discussed HFSSP in depth, and the methods for solving the HFSSP were
divided into the exact algorithm, heuristic method and meta-heuristic algorithm. The exact algorithm
used to be the most common solution. In 1970s, the branch and bound algorithm (B&B) was proposed
by Arthanary and Ramaswamy [6] to solve the two-stage HFSSP. Portmann and Vignier [7] combined
the B&B algorithm with the genetic algorithm to solve HFSSP, and the performance of the algorithm
was significantly improved. Neron et al. [8] applied energy reasoning and global operations to improve
the efficiency of branch definition. Since 1998, many heuristics have been applied to solve HFSSP
problems. Gupta and Tunc [9] proposed a heuristic algorithm for solving the minimum completion
time of the two-stage HFSSP problem. Kahraman et al. [10] introduced an efficient parallel greedy
heuristic algorithm for solving multi-task HFSSP problems. Lin and Liao [11] took a two-step label
manufacturing company as an example to minimize the maximum delay of total weight. Heydari and
Fakhrzad [12] proposed a heuristic algorithm for minimizing the total time of advance processing and
delay processing. In addition, Paternina-Arboleda [13] developed a heuristic method for identifying
and continuously solving bottleneck processes. In summary, the heuristic algorithm can quickly
construct the scheduling solution, but the quality of the solution is difficult to guarantee.

In recent years, various meta-heuristics have also been developed for solving the HFSSP.
Researchers have further studied the application of meta-heuristic algorithms for HFSSP. The taboo
algorithm proposed by Nowicki and Smutnick [14] defines the specific neighborhood through critical
paths for search optimization. Alaykyran et al. [15] proposed a modified ant colony optimization
algorithm to solve HFSSP. Furthermore, Kahraman et al. [16] developed a genetic algorithm which is
better than the B&B method. Liao et al. [17] proposed a particle optimization algorithm, which makes
the hybrid discrete particle swarm optimization algorithm and the bottleneck heuristic algorithm to
fully explore the bottleneck stage, and combine the simulated annealing algorithm to avoid the local
optimal solution. Then, the superiority of the algorithm is illustrated by a comparison of examples.
Recently, Marichelvama et al. [18] optimized the HFSSP using the algorithm of Nawaz, Enscore and
Ham (NEH) heuristic method, and subsequently applied the CS (cuckoo search) algorithm to quickly
search and improve on the basis of the optimized solution. Pan et al. [19] proposed an effective
artificial bee colony optimization algorithm, and solved the optimal scheduling solution by hybrid
representation method. Li et al. [20] used the variable neighborhood algorithm (HVNS) combined
with the chemical reaction optimization algorithm and the distribution estimation algorithm to solve
the HFSSP. In the meantime, the algorithm was studied and adjusted to locate the potential region,
and search for the optimal solution. Cui and Gu [21] applied the vector notation to model HFSSP,
and further proposed an improved discrete artificial bee colony (IDABC) algorithm. Meanwhile,
the validity of the IDABC algorithm was verified by using the benchmark problems. Komaki et al. [22]
proposed heuristic algorithms and two metaheuristic techniques based on an artificial immune system
for a two-stage assembly hybrid flow shop scheduling problem. Zhang and Chen [23] developed a
discrete differential evolution (DDE) algorithm with a modified crossover operator to solve larger
sized problems. Other algorithms, such as Quantum-inspired immune algorithm (QIA) [24], Artificial
immune system (AIS) [25], have also been applied to solve HFSSP. In addition, there are a lot of
non-classical methods for solving this kind of large and complex problems. In order to solve the
flow shop problem of the minimized makespan, Ramanan et al. [26] proposed a feed forward back
propagation neural network to solve the problem. Tkachenko and Izonin [27,28] used neural-like
structures based on the geometric transformations model as a universal approximator to implement
principles of training and self-training, and thus provided the repeatability of training results and
large and small training samples as a satisfactory solution. Gupta et al. [29] investigated the use of
these training algorithms as competitive neural network learning tools to minimize makespan in a
flow shop. In the studies mentioned above, although the meta-heuristic algorithms were widely used
to solve HFSSP, it still has some disadvantages when encountering large problems, such as complex
algorithm frameworks, a lack of real-state mapping and incomplete neighborhood structures [30].
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In order to solve these disadvantages, some scholars adopted machine learning to study HFSSP
for achieving an efficient scheduling. Monte-Carlo tree search (MCTS) algorithms heuristically build
an asymmetric partial search tree by applying machine learning, and then search through the potential
branches to solve the optimal strategy by continuously traversing [31]. Therefore, Chaslot et al. [32]
first introduced MCTS for solving production-related problems. A MCTS-based algorithm for the
multi-objective flexible job shop scheduling problem was presented by Wu et al. [33], and it was
improved by incorporating the Variable Neighborhood Descent Algorithm and other techniques,
like rapid action value, which can estimate the heuristic and transposition table. Chou et al. [34]
used the improved MCTS algorithm to solve the multi-objective flexible shop scheduling problem,
and search the minimum completion time by the adaptive value game comparison. Furuoka and
Matsumoto [35] used an MCTS-based algorithm to find good schedules for a re-entrant scheduling
problem. Although good efforts have been made in the above studies, and MCTS is a series of
two-person zero-sum game decision-making methods, there are still limitations in the performance
and learning efficiency when solving shop floor scheduling problems.

For minimizing the makespan, the HFSSP scheduling approach using improved SP-MCTS
(single-player Monte-Carlo tree search) is proposed in this paper. Schadd et al. [36] proposed a new
machine learning algorithm, which is named the SP-MCTS algorithm. Schadd et al. [37] applied the
algorithm to solve the single-machine puzzle game, and the application algorithm achieved good
results in the standardized test. Shimpei et al. [38] verified the effectiveness of the new simulation policy
through data experiments, calibrated the relationship between the search method and parameters,
and demonstrated the application potential of the SP-MCTS algorithm in actual scheduling.

Through the above review, the improved SP-MCTS (ISP-MCTS) algorithm was successfully
applied in the scheduling problems. Therefore, this paper applies ISP-MCTS to solve HFSSP, and the
organization of this paper is as follows. In Section 2, the flow shop scheduling problem is introduced,
and the mathematical model is established. Then, the improvement scheme of SP-MCTS is introduced
in detail in Section 3. In Section 4, the calibration of the algorithm parameters is performed. In Section 5,
the experimental results and the comparison are presented. Finally, the conclusions are discussed in
Section 6.

2. Hybrid Flow Shop Scheduling Problem

The HFSSP is described as follows: a set of n jobs J = {1, 2, . . . , n} must be processed by the s-stage,
i.e., Oj1→Oj2, . . . , Ojs, S = {1, 2, . . . , s}. Each stage k ∈S, has Mk ≥ 1 identical parallel machines, and each
job j can be processed in any one of the Mk parallel machines. At the same time, the processing time of
the job j in the stage k (Ojk) with deterministic processing time Pjk. Under known the parameters and
assumptions, the scheduling policy is solved to minimize the maximum completion time for processing
n jobs.

2.1. Assumption

The HFSSP problem satisfies the following assumptions:

At the beginning, each job release time is 0.
Job j can only be processed once in each stage.
Each process of job j can only be processed in one machine, and each machine can only process
one job at a time.
There are infinite buffers in the adjacent two stages. Job setup time and the travel time between
consecutive stages are included in the processing time Pjs or are ignored.

2.2. Symbol Definition

The notation of the HFSSP model is shown as follows:

Pjk is the processing time of job j at stage k.
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Djk is the start processing time of job j at stage k.
BM denotes a very large number, the traditional “Big M”.
xjik if job j is assigned to machine i at stage k, then xjik = 1, otherwise xjik = 0.
yjj’k if job j is processed earlier than j’ at stage k, then yjj’k = 1, otherwise yjj’k = 0.

2.3. Mathematical Model

Using the above notation, the mathematical relationship of HFSSP is formulated as follows:

min(Cmax) = max
j∈J

(
D js + p js

)
(1)

mk∑
i = 1

x jik = 1,∀ j ∈ J, k ∈ S (2)

D1 j ≥ 0,∀ j ∈ J (3)

Dk+1, j −Dkj ≥ pkj,∀ j ∈ J, k, k + 1 ∈ S (4)

y j j′k + y j′ jk ≤ 1,∀ j, j′ ∈ J, k ∈ S (5)

Dkj′ −
(
Dkj + pkj

)
+ BM ·

(
3− y j j′k − xkji − xkj′i

)
≥ 0,∀ j, j′ ∈ J, k ∈ S, i ∈ {1, 2, · · · , Mk} (6)

x jik ∈ {0, 1}, j ∈ J, k ∈ S, i ∈ {1, · · · , Mk} (7)

y j j′k ∈ {0, 1}, j, j′ ∈ J, k ∈ S (8)

The objective function (1) is to minimize the maximum completion time. Constraints (2) ensures
that each job completes all the processing stages and can only be assigned to one machine in each stage.
Equation (3) ensures that the first stage start time of each job is greater than or equal to 0. Equation (4)
indicates that when the job is processed in two consecutive stages, the next process can be started after
the previous process is completed. Equations (5) and (6) describe the sequential constraints of different
jobs in the same machine. When two jobs are processed, the previous job must be finished before the
following job can be started. Equations (7) and (8) define the value ranges of decision variables.

3. ISP-MCTS Algorithm Design

The MCTS is based on the Monte Carlo simulation to build an asymmetric search tree,
and subsequently find the “best” action in the current state [39]. The SP-MCTS algorithm derived
from MCTS is proposed to solve HFSSP, and HFSSP is seen as a single-player optimization problem.
In the solving process, the processing machines are regarded as starred positions (drop points), and the
rules are formulated according to the constraint relationship in the mathematical model. With the
goal of maximizing the score, the entire search process includes four phases of selection, expansion,
simulation and backpropagation, as shown in Figure 1.
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Figure 1. Schematic of the hybrid flow shop scheduling problem (HFSSP) state evolution. 

3.1. HFSSP Model 

According to Markov decision processes (MDP), the model of HFSSP is established [40,41]: (1) s 
is a series of state matrix of the HFSSP, describing the relationship between the job state and stage. s1 
and sgoal represent the initial state and completion state in the HFSSP. s1, s2,…, sgoal are used to describe 
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s, the scheduling policy sets a1, a2,…, av are extracted under each state s1, s2,…, sgoal. A is the current 
scheduling policy selected from set a. Therefore, A1, A2,…, Av are the policies corresponding to each 
state of s1 to sgoal, selected from the policy sets of a1, a2,…, av. (3) T(s, A, s’) = 1, the scheduling policy A 
is selected, and the probability that the state is converted from s to s’ is 1. 

According to the design methodology of the above MDP model, the relationship between the 
HFSSP field environment and the model state is established. The matrix model Sn×m satisfies the 
following conditions: (1) n represents the number of jobs, and m represents the number of stages. (2) 
The first column and the m th column of the matrix are on-line stage and offline stage respectively, 
the second to the m-1 th columns represent the processing stages. (3) The number of jobs being 
processed must be less than or equal to the number of parallel machines in the stage. (4) The job in 
the same row is processed according to the sequence of stages, so the job in the next column cannot 
be started until the job in the current column is completed. (5) For any job, there is Pi1 = 0, Pim = ∞. In 
Figure 1, S is a 4 × 4 state matrix, which is the problem of four jobs and four-stage HFSSP. In this 
matrix, stage 1 and stage 4 are the online stage and offline stage, respectively, and stage 2 and stage 
3 have two parallel processing machines. When the state is searched to the k th state matrix, the 
element sk(i,j) = 0 means the job i is not in the machine of the stage j, and sk(i,j) = 1 represents that the job 
i is processing in the stage j. sk(i,j) = 2 represents that the job i has finished processing in the j th stage 

Figure 1. Schematic of the hybrid flow shop scheduling problem (HFSSP) state evolution.

3.1. HFSSP Model

According to Markov decision processes (MDP), the model of HFSSP is established [40,41]: (1) s is
a series of state matrix of the HFSSP, describing the relationship between the job state and stage. s1 and
sgoal represent the initial state and completion state in the HFSSP. s1, s2, . . . , sgoal are used to describe
the job production process through various stages. (2) a is the set of scheduling policies in each state s,
the scheduling policy sets a1, a2, . . . , av are extracted under each state s1, s2, . . . , sgoal. A is the current
scheduling policy selected from set a. Therefore, A1, A2, . . . , Av are the policies corresponding to each
state of s1 to sgoal, selected from the policy sets of a1, a2, . . . , av. (3) T(s, A, s’) = 1, the scheduling policy
A is selected, and the probability that the state is converted from s to s’ is 1.

According to the design methodology of the above MDP model, the relationship between the
HFSSP field environment and the model state is established. The matrix model Sn×m satisfies the
following conditions: (1) n represents the number of jobs, and m represents the number of stages.
(2) The first column and the m th column of the matrix are on-line stage and offline stage respectively,
the second to the m-1 th columns represent the processing stages. (3) The number of jobs being
processed must be less than or equal to the number of parallel machines in the stage. (4) The job in
the same row is processed according to the sequence of stages, so the job in the next column cannot
be started until the job in the current column is completed. (5) For any job, there is Pi1 = 0, Pim =∞.
In Figure 1, S is a 4 × 4 state matrix, which is the problem of four jobs and four-stage HFSSP. In this
matrix, stage 1 and stage 4 are the online stage and offline stage, respectively, and stage 2 and stage 3
have two parallel processing machines. When the state is searched to the k th state matrix, the element
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sk(i,j) = 0 means the job i is not in the machine of the stage j, and sk(i,j) = 1 represents that the job i is
processing in the stage j. sk(i,j) = 2 represents that the job i has finished processing in the j th stage
and waits for scheduling. akx represents the scheduling policy set (Ak1, Ak2, . . . Aku) in the sk state.
If the element Ak1(i,j) = 1, it represents that the job i is dispatched from the machine in the stage j to the
processing machine in the stage j + 1.

As shown in Figure 1, the HFSSP coding model was designed according to the above description.
The specific model evolution process is described as follows:

Step
1:

Construct the n × m matrix of the initial state s1 and the completion state sgoal. In Figure 1, M is
the number of parallel machines in each stage, M1 is the number of idle machines in each stage
during the process, and the matrix evolves from s1 to sgoal.

Step
2:

According to the state of the job and the occupancy of the machine, the available scheduling policy
set has ak = (Akγ, Akβ, . . . , Akδ) during searching for the k-floor shop state node sk. Meanwhile,
the search method is selected on the basis of the traversal times N(sk) of the state node sk. Details
are shown as follows: 1O when N(sk) ≤ P (P is the critical value of the simulation times), heuristic
rules are applied to select the scheduling policy for searching to the sgoal state; 2O as shown in
Figure 1, when N(k) > P, the selection policy of the SP-MCTS algorithm is used to evaluate the
policy set ak and select the scheduling policy Ak. After executing strategy Ak, it will search from
state sk to sk+1.

Step
3:

If sk+1 , sgoal, step 2 is repeated for state evolution until the sgoal.

3.2. ISP-MCTS Algorithm Optimization Process

In this paper, the HFSSP scheduling process is constructed as a tree structure. For the SP-MCTS
algorithm, there are disadvantages such as poor branch positioning accuracy and slow convergence
speed. Therefore, the SP-MCTS algorithm is improved as follows:

3.2.1. Selection

The relationship between balanced depth exploration and breadth exploration is constantly
explored in the existing state tree nodes, so that each exploration can reach a better solution as far as
possible. The UCT (upper confidence bounds applied to trees) algorithm [33] is used to select the
scheduling policy, and the improvements are as follows:

Q⊕(s, a) = Q(s, a) + c
√

2 ln N(s)/N(s, a) +
√(∑

q(s, a)2
−N(s, a)×Q(s, a)2 + D

)
/N(s, a) (9)

πUCT(s) = argmax
a

Q⊕(s, a) (10)

The first two terms of the UCT algorithm in Equation (9) are reserved. N(s) represents the total
times of that the state s is accessed, and N(s, a) represents the times during which the policy a is selected
in the state s. Q(s, a) represents the average score of the policy a that is executed multiple times in state
s. Considering a third item here, indicating the deviation obtained after the policy a is executed, where∑

q(s, a)2 represents the sum of the squared results which achieves at the state s, constant D is used to
ensure that policies with few choices are not underestimated [32]. The purpose of the deviation term
without the particularity of the neighborhood is to fully consider the change in range of the score when
the policy is selected, and select the policy by using Equation (10) in the end. As shown in Figure 1,
taking node s1 as an example, when N(s1) > P, every policy in the set (A11, A12, . . . , A16) is evaluated
according to Equation (9), and the policy is selected on the basis of Equation (10).
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3.2.2. Expansion

When N(s) > P, the branch node is expanded. As shown in Figure 1, if s1 node N(s1) > P,
the scheduling policy A12 is selected, and the node s1 is updated to s2. If s2 is not a node in the tree, s2

is added to the tree as a node.
Single-branch node continuous expansion: considering the existence of optional policy uniqueness

and state self-updating in HFSSP operation, the single-branch node continuous expansion method
is designed. After s2 is expanded as shown in Figure 1, the state needs to be self-updated while the
job finishes processing, so the state evolves to s3. It can be seen that in s3, the scheduling policy only
has A31. At this time, the node s3 is continuously expanded, and then the state evolves to the s4,
and the number of policies (A41, A42) is more than 1. Therefore, node s4 is expanded into the tree,
and heuristic rules are applied to search the scheduling policy from nodes s4 to sgoal. As shown in
Figure 1, the states s2→s4 are continuously expanded to avoid multiple meaningless explorations while
effectively utilizing computing resources.

3.2.3. Simulation

Heuristic rules are used to simulate sgoal from the leaf node s. When the tree searches from the
A12 branch to the s4 leaf node, as shown in Figure 1, s4 is used as the simulation initial state. Then,
the heuristic rule is applied to search for sgoal. Therefore, the root node s1 is used as the starting leaf
node of the program. Each simulation policy is obtained by different heuristic rule.

According to the literature [19] heuristic rules comparison results, four heuristic rules (4-Rule) are
selected as the simulation policy. These four heuristic rules are: (1) NEHLPT(λ) forward heuristic rule
for λ = n × 50%; (2) NEHSPTB(λ) forward heuristic rule for λ = n × 35%; (3) shortest processing time
(SPT); and (4) longest processing time (LPT). Before the simulation policy is applied, with probability ε
a random move is played, ε = 0.005.

3.2.4. Backpropagation

When the simulation is completed, the backpropagation is performed according to the simulation
result. Starting from leaf node s4, as shown in Figure 1, each child node goes back to its parent node
until root node s1 is reached. The information is updated as follows:

N(s)← N(s) + 1 (11)

N(s, a)← N(s, a) + 1 (12)

Q(s, a)← Q(s, a) + (z−Q(s, a))/N(s, a) (13)∑
q(s, a)2

←

∑
q(s, a)2 + z2 (14)

Equation (11) represents the total number of times the node s was accessed. Equation (12) records
the times that the policy a is executed under the node s. Equation (13) updates the average score of the
execution policy a at node s. Equation (14) is used to calculate the sum of the squared score.

3.2.5. Evaluation and Policy Set

The application of ISP-MCT to solve the HFSSP is different from the game-type MCTS problem.
In the ISP-MCTS scheduling search, the first iteration time T1 is used as the benchmark, and the quality
of each subsequent iteration is Tn − T1 as the evaluation score. When Tn − T1 ≤ 0, the score is T1 − Tn+1,
and if Tn − T1 > 0, the score is 0. Therefore, the optimization purpose is to select the highest scoring
policy set.
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3.3. The Complete Process of ISP-MCTS

Through the selection policy and the simulation policy, the root node searches from s1 to sgoal.
The algorithm is based on the node average score design selection algorithm and takes the maximum
score (Tmin) for the optimization purpose. Therefore, the pseudo code of the ISP-MCTS for solving
HFSSP is described as Algorithm 1.

Algorithm 1 The main procedure of ISP-MCTS

1: Initialize: C, D, T1, s1, P, N = 0, sgoal, s = s1.
2: While the halting criterion is not satisfied do
3: Step 1: Selection and expansion
4: if N(s) ≤ P then
5: go to step 2
6: else The improved UCT in Section 3.2.1 is applied to select the scheduling policy a
7: Update state s→s’
8: if the state s’ is a node in the tree then
9: s = s1, return Step 1
10: else s’ is expanded to a leaf node in the tree
11: end if
12: if The new expanded leaf node s has one optional policy or no one
13: N(s) = P + 1, return Step 1
14: else go to step 2
15: end if
16: end if
17: Step 2: Simulation
18: The node s’ is taken as the simulation start state.
19: Selecting the simulation policy
20: Simulation to sgoal, the completion time Tn is obtained, go to Step 3
21: Step 3: Update simulation policy
22: if Tn < Tmin then
23: The policy set (A1γ, A2β, . . . , Avδ) from s1→sgoal is recorded, Tmin = Tn

24: go to step 4
25: else go to step 4
26: end if
27: Step 4: Backpropagation
28: The information from the leaf node s to the root node s1 branch path node is updated

according to Equation (11)→(14)29:
30: if The halting criterion is not satisfied
31: Output the optimal policy set, Tmin
32: else s = s1, return Step 1
33: end if
34: end while

4. Calibration of the Proposed Algorithms

4.1. Simulation Policy Verificationα

In order to verify the simulation policy mentioned above, a set of instances are generated:
n∈{20,40,60,80,100}, s∈{4,6,8}. Ten instances are generated for each combination of n and s, and a total of
150 instances are obtained. The processing time is generated from the uniform distribution [1], and the
number of parallel machines Mk are generated from the uniform distribution [1,5]. The three simulation
policies were constructed in comparison with 4-Rule in Section 3.2.3. The comparison policies
are: 4-Rule without continuous expansion (N-Expan), NEH-LPT(λ) and random policy (Random).



Appl. Sci. 2020, 10, 6220 9 of 19

Simulation threshold: P = 4, taken the combination of expansion and exploration parameters as C = 0.5,
D = 10,000.

These proposed algorithms were coded in MATLAB 2016a, and run on Intel Core i5-3470 3.2 GHz
PC with 4 GB memory. The ISP-MCTS limited their run time to 30 n × s ms and ran two fixed
replications. The minimum completion time Cmin is the optimal result of all simulation policies under
the current instance. The deviation between the final solution of each simulation policy and Cmin is as
shown in the following Equation (15):

RPI(Ci) = (Ci − Cmin)/Cmin × 100%, (15)

In Equation (15), Ci is the solution value of the current simulation policy. The average relative
percentage increase (ARPI) of the 10 sets of problems under each n and s combination is shown in
Table 1. It can be seen that the average deviation of 4-Rule in the four-simulation policy is the smallest,
with the average deviation of 0.07%. Meanwhile, the average deviation of the solution of the 4-Rule
simulation policy is better than the simulation policy of the comparison.

Table 1. Comparison results for the RPI values of the four simulation policies.

Problem 4-Rule N-Expan NEH-LPT(λ) Random

20 × 4 0.01 0.02 4.92 12.23
20 × 6 0.03 0.04 4.37 13.11
20 × 8 0.15 0.29 5.76 14.45
40 × 4 0.08 0.12 4.11 10.17
40 × 6 0.14 0.37 4.77 13.67
40 × 8 0.11 0.28 5.67 15.42
60 × 4 0.04 0.16 4.52 12.83
60 × 6 0.07 0.52 4.87 14.17
60 × 8 0.13 0.31 5.12 17.85
80 × 4 0.02 0.47 2.31 11.77
80 × 6 0.03 0.17 7.57 13.46
80 × 8 0.06 0.24 6.86 15.52

100 × 4 0.03 0.23 3.18 12.83
100 × 6 0.08 0.29 3.57 17.51
100 × 8 0.07 0.61 6.85 21.84

Ave. 0.07 0.275 4.963 14.455

Notes: RPI: Relative percentage increase. NEH-LPT: the algorithm of Nawaz, Enscore and Ham - longest
processing time.

Simulation policies were analyzed using a 40 × 6 case instance. Figure 2a shows the relationship
between the number of iterations and the node depth. The number of callbacks and average depth
of callbacks for each simulation policy are shown in Figure 2b. From Figure 2, NEH-LPT(λ) has the
greater heuristic depth than the other three simulation policies throughout the iteration. In the iterative
process, the number of NEH-LPT(λ) callbacks are the least, and the average depth of NEH-LPT(λ)
callbacks are less than the two algorithms of 4-Rule and N-Expan. Therefore, it can be concluded that
the NEH-LPT(λ) can easily fall into local minimum. The evaluation positioning is not accurate, and the
N-Expan has a high callback frequency in the heuristic process. Therefore, the search depth of the
N-Expan is less than 4-Rule. The Random has the least depth of search. From Figure 2b, since 4-Rule
has the largest average callback depth, the 4-Rule can be used to accurately locate the branch area
within a limited number of callbacks.
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Figure 2. Schematic of the HFSSP state evolution: (a) the relationship between the number of
iterations and the node depth; (b) the number of callbacks and average depth of callbacks for each
simulation policy.

A single-factor analysis of variance (ANOVA) was carried out, where the type of simulation policy
in Table 2 is considered to be a factor. The 4-Rule and the other three simulation policies are analyzed
by multi-comparison method using the least significant difference (LSD) procedure. It indicates that
the 4-Rule is significantly better than the other three simulation policies of N-Expan, NEH-LPT(λ) and
Random. Therefore, the heuristic advantage of the 4-Rule is verified, and the 4-Rule is selected as the
simulation policy.

Table 2. The hypothesis tests of 4-Rule with other heuristic schemes.

N-Expan and 4-Rule NEH-LPT(λ) and 4-Rule Random and 4-Rule

p-Value 0.00 0.00 0.00
Significant? (p < 0.05) Yes Yes Yes

4.2. Parameter Setting

The Benchmark problems [42] and Liao problems [17] were introduced to verify the performance
of the ISP-MCT algorithm. The scale of the problems ranged from 10 jobs of 5 stages to 30 jobs of 10
stages. In this section, the parameter combination (C,D) is optimized in three segments according to
the search space magnitude. The order of magnitude is 0–105, 105–106 and 106–5 × 106. The parameter
combination (0.1, 32) focuses on the development of potential nodes during the search process.
Parameter combination (1, 20,000) in the search process considers the exploration ability of unknown
regions, and the combination of parameters (0.5, 10,000) in the search process takes into account the
expansion and exploration capabilities. As shown in Table 3, j15c5d2 is selected for optimization
analysis at each stage, and each parameter combination is operated independently for 20 times to
obtain an average score. The depth is the distance between the deepest node and the root node, and the
average depth is the average of 20 independent running depths.
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Table 3. Results of improved single-player Monte-Carlo tree search (ISP-MCTS) for the different settings.

(C,D) (0.1, 32) (0.5, 10,000) (1, 20,000)
0–105(j15c5d2) (~10 s)

Average completion time 84.83 85.14 88.27
Standard deviation 0.53 1.27 2.50

Average depth 57 19 11
105–106(j30c5e4) (~100 s)
Average completion time 570.9 567.3 581.1

Standard deviation 3.51 2.77 4.73
Average depth 207 73 14

106–5 × 106(j30c5e1) (~200 s)
Average completion time 482.7 465.3 480.5

Standard deviation 3.56 2.72 3.21
Average depth 289 98 27

As shown in Table 3, in the order of magnitude of 105–106, 106–5 × 106 within the specified time
limit, the ISP-MCTS obtains the minimum average completion time and standard deviation, when the
parameter combination is (0.1, 32). When applying the parameter combination (0.1, 32), the ISP-MCTS
finds the minimum average completion time. The average depth of the search tree at the parameter
combination (0.1, 32) is 57, then most of the nodes generated in the scheduling of the 15 jobs of 5 stages
have been extended to the tree by the ISP-MCTS. Compared with the other two sets of parameters (0.5,
10,000) and (1, 20,000), the parameter combination (0.1, 32) expands the node deeper.

In the order of magnitude 105~106, 106~5 × 106 within the specified time limit, when the parameter
combination is (0.5, 10,000), the ISP-MCTS finds that the average minimum completion time is optimal,
and the algorithm stability is better than other combinations.

With the increasing magnitude and search time, the exploratory parameter combination advantage
becomes more and more obvious. Therefore, at the order of magnitude of 106–5 × 106, the exploration
parameter (1, 20,000) was significantly better than the parameter combination (0.1, 32).

It can be observed from the above that the order of magnitude is 0–105 within the specified time
limit. When the parameter combination is (0.1, 32), the ISP-MCTS algorithm has the highest solution
quality and the best stability. Therefore, when the order of magnitude is 105~106 or 106~5 × 106,
the algorithm selects the parameter combination (0.5, 10,000).

5. Calculation Results and Analysis

According to the machine layout, the Benchmark problems is divided into two groups: (1) 47 a and
b problems; and (2) 30 c and d problems. The ISP-MCTS algorithm was programmed in MATLAB 2016a
and run on a central processing unit (CPU)-i5-3470(3.20GHZ) with 4.0 GB Main Memory. Six algorithms
HVNS [20], IDABC [21], particle swarm optimization (PSO) [17], AIS [25], genetic algorithm (GA) [16]
and B&B [8] are selected as comparison algorithms. The calculation results of the above comparison
algorithm are obtained from the source literature. The HVNS algorithm sets the maximum running
time to 100 s and takes the minimum completion time of 20 independent results under the same
conditions. The IDABC algorithm also limits their runtime to 1600 s and runs 20 times independently.
The maximum running time of the algorithms B&B, AIS, GA and PSO in the literature is limited to
1600 s. The minimum Cmax is obtained as the final solution by independently operating 20 times under
the same conditions, and thus the CPU time corresponding to Cmax is recorded for each problem.
The performance of each algorithm is compared by “%Deviation”, and the deviation between the
lower bound LB and each algorithm Cmax is obtained by using Equation (16), as shown in Tables 4
and 5. The statistical analysis results are shown in Table 6:

%deviation =
(Cmax − LB

LB

)
× 100% (16)
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Table 4. Comparison results for the type a and type b problems.

Problem LB
ISP-MCTS IDABC HVNS PSO GA AIS B&B

Cmax CPU Cmax CPU Cmax CPU Cmax CPU Cmax CPU Cmax CPU Cmax CPU

j10c5a2 88 88 0.003 88 0.002 88 0.004 88 0.002 88 0.000 88 1 88 13
j10c5a3 117 117 0.003 117 0.003 117 0.004 117 0.002 117 0.000 117 1 117 7
j10c5a4 121 121 0.002 121 0.003 121 0.002 121 0.003 121 0.015 121 1 121 6
j10c5a5 122 122 0.004 122 0.005 122 0.003 122 0.013 122 0.000 122 1 122 11
j10c5a6 110 110 0.022 110 0.009 110 0.024 110 0.174 110 0.015 110 4 110 6
j10c5b1 130 130 0.003 130 0.003 130 0.003 130 0.003 130 0.000 130 1 130 13
j10c5b2 107 107 0.003 107 0.004 107 0.003 107 0.003 107 0.000 107 1 107 6
j10c5b3 109 109 0.003 109 0.003 109 0.003 109 0.012 109 0.000 109 1 109 9
j10c5b4 122 122 0.003 122 0.003 122 0.004 122 0.025 122 0.000 122 2 122 6
j10c5b5 153 153 0.003 153 0.003 153 0.003 153 0.001 153 0.000 153 1 153 6
j10c5b6 115 115 0.003 115 0.004 115 0.002 115 0.001 115 0.000 115 1 115 11
j10c10a1 139 139 0.031 139 0.009 139 0.227 139 0.055 139 0.015 139 1 139 41
j10c10a2 158 158 0.337 158 0.009 158 0.354 158 0.87 158 0.125 158 18 158 21
j10c10a3 148 148 0.036 148 0.008 148 0.225 148 0.017 148 0.047 148 1 148 58
j10c10a4 149 149 0.010 149 0.007 149 0.007 149 0.085 149 0.141 149 2 149 21
j10c10a5 148 148 0.006 148 0.006 148 0.006 148 0.102 148 0.000 148 1 148 36
j10c10a6 146 146 0.282 146 0.008 146 0.264 146 0.239 146 0.156 146 4 146 20
j10c10b1 163 163 0.006 163 0.007 163 0.006 163 0.013 163 0.000 163 1 163 36
j10c10b2 157 157 0.114 157 0.009 157 0.104 157 0.221 157 0.131 157 1 157 66
j10c10b3 169 169 0.007 169 0.007 169 0.006 169 0.014 169 0.000 169 1 169 19
j10c10b4 159 159 0.012 159 0.005 159 0.068 159 0.021 159 0.015 159 1 159 20
j10c10b5 165 165 0.007 165 0.007 165 0.005 165 0.037 165 0.016 165 1 165 33
j10c10b6 165 165 0.008 165 0.006 165 0.005 165 0.056 165 0.016 165 1 165 34
j15c5a1 178 178 0.007 178 0.016 178 0.006 178 0.060 178 0.031 178 1 178 18
j15c5a2 165 165 0.005 165 0.018 165 0.005 165 0.005 165 0.015 165 1 165 35
j15c5a3 130 130 0.008 130 0.017 130 0.005 130 0.006 130 0.015 130 1 130 34
j15c5a4 156 156 0.010 156 0.019 156 0.005 156 0.013 156 0.015 156 2 156 21
j15c5a5 164 164 0.005 164 0.016 164 0.003 164 0.004 164 0.046 164 1 164 34
j15c5a6 178 178 0.007 178 0.016 178 0.005 178 0.006 178 0.032 178 1 178 38
j15c5b1 170 170 0.007 170 0.012 170 0.005 170 0.003 170 0.015 170 1 170 16
j15c5b2 152 152 0.005 152 0.015 152 0.003 152 0.005 152 0.015 152 1 152 25
j15c5b3 157 157 0.006 157 0.014 157 0.006 157 0.030 157 0.015 157 1 157 15
j15c5b4 147 147 0.010 147 0.017 147 0.007 147 0.000 147 0.015 147 1 147 37
j15c5b5 166 166 0.100 166 0.020 166 0.088 166 0.086 166 0.016 166 2 166 20
j15c5b6 175 175 0.007 175 0.018 175 0.004 175 0.016 175 0.015 175 1 175 23
j15c10a1 236 236 0.011 236 0.033 236 0.008 236 0.018 236 0.015 236 1 236 40
j15c10a2 200 200 0.120 200 0.048 200 0.339 200 0.214 200 0.015 200 30 200 154
j15c10a3 198 198 0.130 198 0.032 198 0.313 198 0.171 198 0.063 198 4 198 45
j15c10a4 225 225 0.070 225 0.034 225 0.212 225 0.072 225 0.031 225 12 225 78
j15c10a5 182 182 0.011 182 0.036 182 0.008 182 0.509 182 0.016 182 2 183 c
j15c10a6 200 200 0.052 200 0.033 200 0.024 200 0.468 200 0.031 200 2 200 44
j15c10b1 222 222 0.026 222 0.048 222 0.009 222 0.017 222 0.031 222 3 222 70
j15c10b2 187 187 0.009 187 0.044 187 0.008 187 0.012 187 0.047 187 1 187 80
j15c10b3 222 222 0.009 222 0.039 222 0.008 222 0.007 222 0.015 222 1 222 80
j15c10b4 221 221 0.009 221 0.037 221 0.008 221 0.007 221 0.016 221 1 221 84
j15c10b5 200 200 0.109 200 0.048 200 0.045 200 0.135 200 0.094 200 1 200 84
j15c10b6 219 219 0.010 219 0.037 219 0.009 219 0.006 219 0.031 219 1 219 67

AVE 0.035 0.017 0.052 0.082 0.028 2.574 35.674

Notes: CPU: The CPU time of the algorithm in seconds. ISP-MCTS: Improved single-player Monte-Carlo tree search.
IDABC: Improved discrete artificial bee colony algorithm. HVNS: Hybrid variable neighborhood search. PSO:
Particle swarm optimization. GA: Genetic algorithm. AIS: Artificial immune system. B&B: Branch-and-bound
algorithm. GAR: Genetic algorithm (Ruiz, R). ISA: Improved simulated annealing. ABCP: Artificial bee colony
algorithm with permutation.
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Table 5. Comparison results for type c and d problems.

Problem LB
ISP-MCTS IDABC HVNS PSO GA AIS B&B

Cmax CPU Cmax CPU Cmax CPU Cmax CPU Cmax CPU Cmax CPU Cmax CPU

j10c5c1 68 68 0.275 68 0.017 68 0.792 68 0.332 68 0.031 68 32 68 28
j10c5c2 74 74 0.633 74 0.055 74 0.752 74 0.535 74 0.016 74 4 74 19
j10c5c3 71 71 0.752 72 a 72 0.141(a) 71 36.997 71 0.016 72 a 71 240
j10c5c4 66 66 0.161 66 0.005 66 0.631 66 0.215 66 0.031 66 3 66 1017
j10c5c5 78 78 0.382 78 0.004 78 0.129 78 0.122 78 0.094 78 14 78 42
j10c5c6 69 69 0.527 69 0.004 69 0.226 69 0.405 69 0.000 69 12 69 4865
j10c5d1 66 66 0.268 66 0.005 66 0.148 66 0.185 66 0.046 66 5 66 6490
j10c5d2 73 73 0.271 73 0.069 73 0.142 73 1.158 73 0.110 73 31 73 2617
j10c5d3 64 64 0.277 64 0.007 64 0.157 64 0.098 64 0.015 64 15 64 481
j10c5d4 70 70 0.895 70 0.003 70 0.675 70 0.337 70 0.000 70 5 70 393
j10c5d5 66 66 1.576 66 0.009 66 1.382 66 0.515 66 0.031 66 1446 66 1627
j10c5d6 62 62 0.276 62 0.009 62 0.135 62 0.383 62 0.062 62 8 62 6861
j10c10c1 113 114 2.822(a) 115 a 115 0.571(a) 115 a 115 a 115 a 127 c
j10c10c2 116 117 0.414(a) 119 a 117 0.448(a) 117 a 117 a 119 a 116 1100
j10c10c3 98 108 2.706(a) 116 a 116 0.698(a) 116 a 116 a 116 a 133 c
j10c10c4 103 112 2.315(a) 120 a 120 0.461(a) 120 a 120 a 120 a 135 c
j10c10c5 121 125 2.831(a) 125 a 125 2.125(a) 125 a 125 a 126 a 145 c
j10c10c6 97 105 2.663(a) 106 a 106 0.343(a) 106 a 106 a 106 a 112 c
j15c5c1 85 85 1.179 85 0.127 85 1.128 85 4.205 85 0.031 85 774 85 2131
j15c5c2 90 90 0.785 90 27 90 0.491 90 1198 91 a 91 a 90 184
j15c5c3 87 87 0.511 87 0.048 87 0.502 87 2.398 87 0.109 87 16 87 202
j15c5c4 89 89 0.653 89 0.038 89 0.569 89 2.208 89 0.000 89 317 90 c
j15c5c5 73 74 2.197(a) 74 a 74 1.968(a) 74 a 75 a 74 a 84 c
j15c5c6 91 91 0.370 91 0.027 91 0.180 91 0.191 91 0.047 91 19 91 57
j15c5d1 167 167 0.005 167 0.020 167 0.004 167 0 167 0.015 167 1 167 24
j15c5d2 82 84 1.133(a) 84 a 84 0.915(a) 84 a 84 a 84 a 85 c
j15c5d3 77 82 2.171(a) 82 a 82 1.356(a) 82 a 83 a 83 a 96 c
j15c5d4 61 84 0.672(a) 84 a 84 1.325(a) 84 a 84 a 84 a 101 c
j15c5d5 67 79 1.559(a) 79 a 79 0.585(a) 79 a 80 a 80 a 97 c
j15c5d6 79 81 1.683(a) 81 a 81 1.123(a) 81 a 82 a 82 a 87 c

AVE 0.544 1.615 0.473 73.43 0.038 168.88 455.23

Table 6. Performance summary of the different algorithms.

Algorithm a and b Problems c and d Problems

Solved Deviation Solved Deviation

ISP-MCTS 47 0 18 3.40%
IDABC 47 0 17 4.00%
HVNS 47 0 17 4.00%
PSO 47 0 18 3.95%
GA 47 0 17 4.17%
AIS 47 0 16 4.26%
B&B 46 0.12% 18 9.32%

5.1. Comparison of Carlier and Neron’s Benchmarks

From Tables 4 and 5, only the B&B algorithm does not obtain the optimal solution when solving
the problem of j15c10a5 in the 47 a and b problems. The PSO and B&B algorithms, respectively, solve
the optimal solutions of 18 problems in 30 c and d problems, and the average deviation of the solutions
is 3.95% and 9.32%, respectively. As shown in Table 6, the IDABC, HVNS and GA algorithms solve the
optimal solutions for the 17 problems in the 30 c and d problems, and the average deviation of the
solutions are 4.00%, 4.00% and 4.17%, respectively. The AIS algorithm solves the optimal solution of 16
problems in 30 c and d problems, and the average deviation of the solution is 4.26%. The ISP-MCTS
algorithm proposed in this paper solves the optimal solution of 18 problems in 30 c and d problems,
and the average deviation of the solution is 3.4%. Therefore, the solution quality of the ISP-MCTS
algorithm for solving c and d problems is better than the other six algorithms. It can be seen from
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Tables 4 and 5 that the average CPU time of the ISP-MCTS algorithm is much smaller than that of
the the PSO and B&B algorithms. From the above comparison, the ISP-MCTS algorithm has a better
solution and efficient optimization ability than the other six algorithms when solving Carlier and
Neron problems.

5.2. Comparison of Liao’s Benchmarks

From the discussion in Section 5.1, the average completion time of the three algorithms of
IDABC, HVNS and PSO for solving Carlier and Neron’s benchmarks is smaller than that of GA, AIS,
and B&B algorithms. Therefore, the algorithms IDABC, HVNS and PSO are selected as the comparison
algorithms to solve the Liao problems in this section. In the source literature, the IDABC algorithm was
coded in Visual C++ and run on an Intel Pentium 3.06 GHz PC with 2 GB RAM under the Windows 7
operating system, and each problem was tested 20 times and the termination criterion for all the tests
was the computation time 100 s. The running environment of the HVNS algorithm in the literature [20]
was Intel Core i5 3.3 GHz PC with 4 GB of memory. The algorithm PSO was used to solve the Liao
problems, and the algorithm limited its run time to 200 s and each problem runs 20 times independently.
The ISP-MCTS algorithm is used to solve the Liao problems in the computer running environment
proposed in this paper, and the execution time for each problem is limited to 200 s.

As shown in Table 7, the average completion time of the ISP-MCTS solution is smaller than
that of the IDABC, HVNS and PSO, and the ISP-MCTS further updates the best solution of the three
problems in Liao problems. The nonparametric test is proposed, and the null hypothesis H0 assumes
that µISP-MCTS ≥ µIDABC, and the alternative hypothesis H1: µISP-MCTS < µIDABC with 0.05 significance
level. Similarly, the hypotheses H0’:µISP-MCTS ≥ µHVNS, H1’:µISP-MCTS < µHVNS. H0”:µISP-MCTS ≥ µPSO,
H1”:µISP-MCTS < µPSO. As shown in Table 8, the ISP-MCTS algorithm performs significantly better than
the PSO and AIS algorithms, and has certain advantages in terms of solution quality and stability
compared with the HVNS algorithm.

Table 7. Comparison results for the ten harder problems.

Problem
ISP-MCTS IDABC HVNS PSO

Ave. Min. Std. CPU Ave. Min. Std. CPU Ave. Min. Std. CPU Ave. Min. Std. CPU

j30c5e1 463.2 462 0.81 14.52 465.2 463 1.80 57 465.41 464 1.34 29.16 474.70 471 1.42 96.16
j30c5e2 616.0 616 0 10.32 616.0 616 0 2 616.22 616 0.32 11.69 616.25 616 0.44 55.28
j30c5e3 594.7 593 0.97 20.37 596.4 593 1.70 49 598.51 595 3.32 27.33 610.25 602 4.70 64.56
j30c5e4 565.3 563 1.23 18.53 566.2 565 1.60 39 568.32 566 1.44 37.00 577.10 575 1.52 86.98
j30c5e5 600.9 600 0.77 17.23 602.0 600 1.60 58 603.75 601 1.26 21.32 606.80 605 1.11 79.84
j30c5e6 602.8 600 1.44 17.06 603.1 601 1.80 55 607.01 603 3.32 33.39 612.50 605 3.49 67.99
j30c5e7 626.4 626 0.31 18.23 626.0 626 0 19 627.34 626 0.83 27.37 630.60 629 0.75 87.18
j30c5e8 674.4 674 0.69 22.69 674.7 674 0.90 55 676.40 674 2.23 31.40 684.20 678 2.50 97.67
j30c5e9 643.1 642 0.76 21.37 643.7 642 1.00 67 645.28 643 1.66 33.81 654.65 651 1.87 83.80

j30c5e10 574.2 573 1.09 23.81 576.3 573 1.50 76 581.33 577 3.97 29.72 599.75 594 5.28 77.46
Ave. 596.1 594.9 0.83 18.41 596.9 595.3 1.19 47.7 598.96 596.5 1.97 28.22 606.68 602.6 2.31 79.69

Table 8. Comparison results for the ten harder problems.

ISP-MCTS and IDABC ISP-MCTS and HVNS ISP-MCTS and PSO

p-Value 0.12 0.018 0
Significant? (p < 0.05) NO Yes Yes

The six effective algorithms for solving HFSSP in recent years were selected for comparison with
ISP-MCTS. The algorithms were: HVNS [20], IDABC [21], PSO [17], GAR [2], ISA [43] and artificial
bee colony with permutation (ABCP) [21]. In the computer operating environment of this study,
each algorithm solved 150 problems in Section 4.1. For the comparison algorithms, HVNS, DABC, and
PSO solved the same problems as reported in the literature, whereas GAR, ISA, and ABCP were used
to solve complex HFSSP, and the ability to solve these algorithms was verified. The above algorithms
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directly select the optimal parameter combination of the source literature. All the algorithm runtimes
were limited to the maximum CPU (t = ρ mn s) time, and ρ is: 10, 20, 30. All the above algorithms
are programmed in MATLAB 2016a, and each of the 150 examples is run independently for 10 times,
and the average of 10 running results is taken as the solution of each example. When ρ = 30, the
best solution Cmin found by any algorithm is used to calculate the relative percentage increase (RPI).
The results are shown in Tables 9–11.

Table 9. Computational results of the algorithms (ρ = 10).

Problem ISP-MCTS IDABC HVNS PSO GAR ISA ABCp

20 × 4 0.03 0.03 0.31 0.71 1.01 0.68 0.38
20 × 6 0.12 0.11 0.24 0.77 1.27 0.78 0.69
20 × 8 0.33 0.34 0.61 1.03 1.21 1.18 0.82
40 × 4 0.03 0.03 0.22 0.31 0.52 0.34 0.49
40 × 6 0.04 0.03 0.15 0.22 0.71 0.29 0.77
40 × 8 0.17 0.18 0.66 0.98 1.39 1.12 1.13
60 × 4 0.11 0.13 0.11 0.33 0.51 0.35 0.48
60 × 6 0.16 0.16 0.23 0.41 0.61 0.47 0.55
60 × 8 0.21 0.25 0.42 0.67 1.10 0.71 1.04
80 × 4 0.06 0.06 0.11 0.20 0.35 0.21 0.33
80 × 6 0.20 0.21 0.24 0.46 0.65 0.52 0.60
80 × 8 0.12 0.12 0.33 0.55 0.61 0.32 0.52

100 × 4 0.00 0.01 0.03 0.05 0.18 0.05 0.11
100 × 6 0.05 0.05 0.10 0.23 0.41 0.27 0.38
100 × 8 0.09 0.11 0.18 0.51 0.62 0.35 0.57

Ave. 0.115 0.121 0.263 0.495 0.743 0.509 0.591

Table 10. Computational results of the algorithms (ρ = 20).

Problem ISP-MCTS IDABC HVNS PSO GAR ISA ABCp

20 × 4 0.02 0.01 0.27 0.62 0.88 0.57 0.29
20 × 6 0.04 0.06 0.16 0.68 1.03 0.66 0.57
20 × 8 0.21 0.23 0.47 0.89 0.96 1.01 0.44
40 × 4 0.02 0.03 0.15 0.24 0.41 0.29 0.36
40 × 6 0.01 0.02 0.11 0.15 0.56 0.17 0.51
40 × 8 0.10 0.13 0.53 0.73 1.15 1.01 0.99
60 × 4 0.05 0.07 0.09 0.21 0.47 0.31 0.42
60 × 6 0.06 0.10 0.17 0.33 0.48 0.36 0.51
60 × 8 0.12 0.13 0.31 0.42 0.92 0.62 0.93
80 × 4 0.02 0.02 0.08 0.11 0.29 0.18 0.31
80 × 6 0.09 0.13 0.17 0.23 0.65 0.46 0.48
80 × 8 0.05 0.09 0.25 0.33 0.47 0.28 0.42

100 × 4 0.00 0.00 0.02 0.03 0.13 0.03 0.09
100 × 6 0.02 0.02 0.07 0.11 0.28 0.16 0.31
100 × 8 0.06 0.06 0.21 0.39 0.46 0.31 0.48

Ave. 0.058 0.073 0.204 0.365 0.609 0.428 0.474
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Table 11. Computational results of the algorithms (ρ = 30).

Problem ISP-MCTS IDABC HVNS PSO GAR ISA ABCp

20 × 4 0.00 0.00 0.15 0.43 0.76 0.49 0.22
20 × 6 0.03 0.03 0.12 0.51 0.97 0.58 0.52
20 × 8 0.17 0.21 0.29 0.77 0.82 0.91 0.41
40 × 4 0.00 0.01 0.11 0.12 0.33 0.21 0.27
40 × 6 0.01 0.01 0.09 0.11 0.41 0.14 0.42
40 × 8 0.06 0.09 0.35 0.62 0.95 0.75 0.86
60 × 4 0.02 0.02 0.06 0.17 0.36 0.26 0.36
60 × 6 0.04 0.05 0.13 0.31 0.41 0.27 0.44
60 × 8 0.05 0.06 0.18 0.37 0.75 0.45 0.74
80 × 4 0.00 0.00 0.07 0.09 0.24 0.11 0.26
80 × 6 0.03 0.05 0.14 0.18 0.55 0.32 0.37
80 × 8 0.05 0.05 0.16 0.27 0.43 0.19 0.34

100 × 4 0.00 0.00 0.02 0.03 0.09 0.01 0.08
100 × 6 0.01 0.01 0.06 0.09 0.26 0.11 0.28
100 × 8 0.04 0.04 0.19 0.32 0.35 0.18 0.41

Ave. 0.034 0.042 0.141 0.293 0.512 0.332 0.399

As shown in Tables 9–11, the ISP-MCTS solution quality is better than that of the other six
algorithms. When ρ = 10, the average deviation of ISP-MCTS in the seven algorithms is the smallest,
and the value is 0.115. The average deviation of the ISP-MCTS algorithm is less than IDABC (0.121),
HVNS (0.263), PSO (0.495), GAR (0.743), ISA (0.509), and ABCP (0.591). Therefore, the solution quality
of the ISP-MCTS algorithm is better than the other six algorithms. When ρ = 20 and ρ = 30, the average
deviation of all algorithms is improved through comparing to ρ = 10. At the same time, the ISP-MCTS
algorithm still has the smallest deviation among all algorithms, so the validity of the ISP-MCTS
algorithm can be verified.

Here, a multi-factor analysis of variance was used to further compare the seven algorithms, and
the algorithm type and ρ were taken as factors. From the mean graph and the two-factor Tukey HSD
test (95% confidence interval) as shown in Figure 3, the ISP-MCTS algorithm is significantly better
than the HVNS, PSO, GAR, ISA, and ABCP algorithms at different CPU times. According to the above
average variance value, the superiority of the ISP-MCTS algorithm in solving the HFSSP problem
was verified.
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6. Conclusions

1. This paper analyzed the HFSSP operation mechanism, and proposed a tree search algorithm
based on SP-MCTS to solve HFSSP. In order to solve the problem of HFSSP by SP-MCTS
algorithm, the three steps of selection, expansion and simulation were improved respectively.
The improvement of the algorithm included the selection blending standard deviation, the
single-branch expansion strategy and the 4-Rule policy simulation. The results show that
these improvements can quickly and accurately locate high-potential branches, and obtain the
optimal solution.

2. The 4-Rule simulation policy was selected based on a comparative analysis of the problems,
and the 4-Rule can give an accurate evaluation of the leaf nodes during the search process,
thus improving the search efficiency of the algorithm. According to the magnitude of the search,
the combination of the parameters C and D was determined to ensure the convergence speed of
the algorithm.

3. The experimental results of the standard problems show that the ISP-MCTS algorithm is effective,
and the optimal solutions of 47 class a and class b problems can be obtained at 100%. The ISP-MCTS
algorithm solved the optimal solution of 18 problems in the c and d problems, and the average
deviation was 3.4%, which was lower than the other five comparison algorithms. This proves that
the ISP-MCTS algorithm has certain advantages in solving the HFSSP problems. According to the
statistical analysis results of each algorithm to solve the Liao problems, the ISP-MCTS performance
is obviously better than the HVNS and PSO algorithms, and it has a certain superiority in solution
quality and stability compared with the IDABC algorithm.

4. Through the comparison of large-scale random problems, it shows that the ISP-MCTS algorithm
is superior to the comparison algorithms in terms of CPU time, solution quality and stability.

Author Contributions: J.G. introduced the concepts of this paper and collected the corresponding references. P.Z.
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