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Abstract: Diabetic patients are at the risk of developing different eye diseases i.e., diabetic retinopathy
(DR), diabetic macular edema (DME) and glaucoma. DR is an eye disease that harms the retina
and DME is developed by the accumulation of fluid in the macula, while glaucoma damages the
optic disk and causes vision loss in advanced stages. However, due to slow progression, the disease
shows few signs in early stages, hence making disease detection a difficult task. Therefore, a fully
automated system is required to support the detection and screening process at early stages. In this
paper, an automated disease localization and segmentation approach based on Fast Region-based
Convolutional Neural Network (FRCNN) algorithm with fuzzy k-means (FKM) clustering is presented.
The FRCNN is an object detection approach that requires the bounding-box annotations to work;
however, datasets do not provide them, therefore, we have generated these annotations through
ground-truths. Afterward, FRCNN is trained over the annotated images for localization that
are then segmented-out through FKM clustering. The segmented regions are then compared
against the ground-truths through intersection-over-union operations. For performance evaluation,
we used the Diaretdb1, MESSIDOR, ORIGA, DR-HAGIS, and HRF datasets. A rigorous comparison
against the latest methods confirms the efficacy of the approach in terms of both disease detection
and segmentation.
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1. Introduction

Diabetes is a disease in which blood sugar levels are too high. Victims are at the risk of
developing different eye diseases i.e., diabetic retinopathy (DR) [1], diabetic macular edema (DME) [2],
and glaucoma [3] that may result in a form of complete vision loss. DR is a disease that damages the
retina, and blurred vision, floaters, and sudden vision loss are the main DR symptoms. Hemorrhages,
microaneurysms, hard and soft exudates are the abnormality signs [4] of DR.

• Hard exudates are bright yellow-colored spots with a waxy appearance on the retina, which are
formed because of the leakage of blood from vessels.
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• Soft exudates are white lesions on the retina that occur due to occlusion of the arteriole.
• Hemorrhages develop due to blood leakage from damaged vessels and appear as dark red spots.
• Microaneurysms developed due to distortions in the boundary of blood vessels and appear as

small red dots on the retina.

DME is another eye disease that occurs when a patient already suffers from DR and is a cause
of vision loss. Additional medical conditions resulting from poor blood sugar control increase the
risk of blindness for people with DME that can occur at any phase of DR, although it is more likely
to occur later as the disease progresses. DME leads to an accumulation of fluid in the macula region
resulting in swelling of the macula, which is the central part of the retina that is dedicated to central
vision. Loss of central vision occurs due to any damage in the macula region. Blurry vision, double
vision, floaters and blindness are the common symptoms of DME if untreated [5].

Glaucoma is an eye disease that damages the optic disk (OD) and optic cup (OC) and causes vision
loss in advanced stages, calculated to affect approximately 80 million people around the world [6,7].
Some basic structural glaucoma signs are disc size, cup to disc ratio (CDR), the ratio of neuroretina rim
in the inferior, superior, nasal and temporal quadrants, and peripapillary atrophy etc. are typically
focused on the OD. OD is the morphological structure seen in the cross-sectional view of the optic
nerve linking to the retina, and OC is the central part of OD. Glaucoma damages the optic nerve due
to the imbalance in intraocular pressure (IOP) inside the eye. The affected nerve fibers deteriorates
the retinal layer and increases the CDR and OD [8]. IOP causes injury to the nerve fibers comprising
the optic nerve, and the OD initiates formation of a crater like-hole in front of the optic nerve head.
Glaucoma causes the boundary of the disc to enlarge and its color changes from pink to pale.

Eye diseases are normally diagnosed by measuring IOP, obtaining a patient’s medical history,
performing visual field loss tests accompanied by visual evaluation of disease through ophthalmoscopy
to analyze the color, size, and shape of the optic nerve [8]. Therefore, segmentation of the affected
region is not only beneficial for further intensive clinical evaluation by experts but also effective for
preparing a computer-based automatic procedure for classification and is further robust to localization
errors [9]. Initially, ophthalmologists diagnose eye diseases through visual checkup of DR lesions, OD,
by determining the CDR, diameter, and ratio of disc area, and border irregularity. However, because
of the limited number of available ophthalmologists, early disease diagnosis is usually delayed [10],
when the timely diagnosis and cure of disease have the potential to avoid vision loss. To deal with
these shortcomings, research is aiming for automated glaucoma detection through computer-aided
diagnosis (CAD)-based solutions.

For automated detection of eye diseases, handcrafted features have been used to differentiate
between affected and normal regions of the images [11–25]. However, these features cannot effectively
represent the DR, DME and glaucoma regions because of color, size, higher intra-class variations, bright
regions other than OD, thus resulting in unsatisfactory results of CAD solutions [26]. For performance
optimization of CAD systems, glaucoma classification is performed through a correctly segmented
glaucoma region called region of interest (ROI), which enhances the detection ability, as the affected
region gives a good representation of the glaucoma characteristics. Therefore, the segmentation is the
main phase before the classification for the performance improvement of CAD systems.

Various computer vision and deep learning-based approaches were employed for DR
detection [14,15,27,28] and classification, DME detection [2,5,29–31] and identify glaucoma signs
from the retinal images [32–39]. A literature review of important methods to detect DR, DME and
glaucoma is summarized in Table 1.
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Table 1. A comparison of diabetes-based eye diseases methods.

Reference Method Findings Shortcomings

Pan et al. [15] The model is based on DenseNet,
ResNet50, and VGG16 models

Detection of DR lesions
and the method is

computationally robust.

The method may not classify
microaneurysms efficiently

because these are easily
misclassified under the
pervading presence of

fluorescein

Zeng et al. [28]

A Siamese-like CNN framework
by employing the concept of

weigh-sharing layers based on
Inception V3.

The work exhibits
promising results for DR

prediction with kappa
score of 0.829.

It may not perform well for
those sample databases where
paired fundus images are not

available.

Qummar et al. [14]

Five different frameworks of CNN
named Dense169, Inception V3,

Resnet50, Dense121, and Xception
were employed.

To locate and classify the
DR lesions into different
classes according to the
severity level of moles.

The method suffers from high
computational cost.

Zhang et al. [40]

A DL framework named DeepDR
was presented for DR detection.
In addition, a new database for

DR labelled DR images was also
introduced.

The proposed network has
attained the sensitivity

value of 97.5%, along with
the specificity value of

97.7%.

The introduced model needs to
be evaluated on more complex

and larger dataset.

Torre et al. [41]

A DL based method was used to
predict the expected DR class and
assign scores to individual pixels
to exhibit their relevance in each
input sample. The assigned score

was employed to take final
classification decision.

The introduced DL
framework acquired more
than 90% of sensitivity and

specificity values.

The evaluation performance of
the presented algorithm can be
improved through appropriate

measures.

Rekhi et al. [2]

The method was based on
geometrical, morphological, and

orientation features. The
classification was performed

through SVM.

Grading and classification
of DME from fundus

images with an accuracy of
92.11%.

The detection accuracy needs
further improvement.

Kunwar et al. [5] The method was based on texture
features and the SVM classifier.

high-risk DME detection
with accuracy of 86%.

Experiments were performed on
small dataset.

Marin et al. [30]
The method was based on

thresholding and regularized
regression techniques.

DME risk detection with
0.90 sensitivity.

The detection performance
requires improvement.

Perdomo et al. [31] The presented method was
composed of two-stage CNNs

The method detects
regions of interest in the
retinal image and then

predicts its class of DME

The technique is
computationally complex.

Jiang et al. [32]

The end-to-end Region- based
Convolutional Neural Network

was used for OD and OC
segmentation.

OD and OC segmentation
with AUC of 0.901. The

method is robust to
glaucoma detection.

The method is computationally
complex because it employs two
separate RCNNs to compute the

bboxes of the OC and OD,
respectively.

Bajwa et al. [37]

The localization was achieved
through RCNN, while the other
stage used deep CNN to classify

the computed disc into
glaucomatous or healthy.

Localization and
classification of glaucoma

with AUC of 0.874.

The method is computationally
complex as it takes two-stage

framework to localize and
classify the glaucoma. The
performance is affected by

increasing the network hierarchy
as it results in losing the

discriminative set of features.

Zheng Lu et al. [38]

The Modified U-Net model was
improved by minimizing the

original U-shape structure
through adding 2-dimensional

convolutional layer.

Before OD segmentation,
the ground-truths were
generated through the

GrabCut method.

The presented technique
requires less training, however,

shows lower segmentation
accuracy as compare latest

approaches because of missing
ground truths.

Ramani et al. [39]

The region-based pixel density
calculation method based on

Circular Hough Transform with
Hough Peak Value Selection and

Red Channel Super-pixel method.

The technique is robust
and efficient to optic disc

segmentation.

The detection accuracy is
affected over the images having

pathological distractions.
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In the presented work, we present a deep learning (DL) approach that detects the bounding
box (bboxes) of disease regions. Finally, instead of segmenting the whole image, we segment the
localized regions. Experimentation proved that this approach is efficient to both complexity and time
consumption. The proposed method is based on FRCNN and FKM clustering.

Our proposed method deals with the inadequate sample problem using unsupervised pre-training
and supervised fine-tuning regions for localization. FRCNN is a single-stage training technique
that classifies region proposals and refines their localization. In the test phase, FRCNN produces
some class-independent region proposals of images and gets a fixed-size feature descriptor form each
proposal using a CNN; afterward, the softmax layer classifies the regions accurately. Finally, FKM
clustering precisely extracts the regions from localized regions. The proposed method detects the
abnormalities of DR, DME, and Glaucoma regions simultaneously using FRCNN.

The contributions of our work are given below:

• Early and automated detection of diabetes-based eye diseases regions using machine
learning-based segmentation is a complex task. In the presented methodology, we used
the FRCNN-based method for localization of disease regions. Our findings conclude that the
combination of FRCNN with FKM clustering results in accurate localization of the affected areas,
which ensure the precise recognition of the disease in an automated manner.

• To accomplish the human-level performance over the challenging dataset i.e., ORIGA and
MESSIDOR, the retinal images are represented by the FRCNN deep features, that are then
segmented through the FKM clustering.

• The proposed method can detect the signs of disease including early signs simultaneously and
has no issue in learning to detect an image of a healthy eye.

• The available datasets do not have bbox ground truths, so first, we developed the bbox annotations
from given ground truths of the dataset which are necessary for the training of FRCNN.

The rest of our paper is organized as follows: Section 2 briefly explains the proposed architecture
i.e., localization and segmentation of localized regions. In Section 3, the experimental results and
their discussion are presented to highlight the significance of findings. Section 4 presents the general
discussion and the last section follows with the conclusions and future work suggestions.

2. Proposed Methodology

Diabetes-based eye diseases detection from fundus images is considered a two-way method.
The first is the detection and localization of disease, and the second step is the segmentation of localized
regions using the FKM clustering. In the localization step, we utilize the FRCNN method. We develop
the annotations for three diseases and passes to the FRCNN training which extracts the features
from images and passes to the RoI pooling layer as an input of the group and bbox regression fully
connected layer. The model is evaluated by using the test images to localize the affected portions with
a score of regression confidence. At the last, FKM clustering is applied for the segmentation, which is
considered as a robust method, especially for image segmentation. Figure 1 shows the framework of
the proposed method.
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Figure 1. Framework of the proposed method. In the object detection phase, the ROI for the concerned 
disease is detected using FRCNN. In the segmentation phase, the detected regions of all three diseases 
are segmented out through FKM clustering. 

2.1. Ground Truth Generation 

The ground-truth bbox against each image is required to identify the affected region for the 
training process. The LabelImg [42] tool is used to annotate the retinal images and manually create a 
bboxes for each image. Error! Reference source not found. shows an example of an original image 
and the corresponding ground truth image. The annotations are saved in .xml files which includes 
the class of object and their bbox values i.e., xmin, ymin, xmax, ymax, width and height. Xml file is 
created against each image and these files are used to create the csv file, train.record file is created 
from csv file which is later used in the training process. 

 
Figure 2. Sample annotated images for all three diseases. (a) represents the image annotations for DR 
signs/objects i.e., microaneurysms, soft exudates, hard exudate, hemorrhages. (b) represents the DME 
sign (macula) (c) represents the image annotations for Glaucoma i.e., OC and OD. 

We have generated the annotations of three diseases according to their signs, as shown in Error! 
Reference source not found.. The DR affected image has the five classes i.e., microaneurysms, soft 
exudates, hard exudate, hemorrhages, and background, DME has the two classes i.e., DME and 
background. The third disease glaucoma has the three classes i.e., OD, OC, and background class. 

Figure 1. Framework of the proposed method. In the object detection phase, the ROI for the concerned
disease is detected using FRCNN. In the segmentation phase, the detected regions of all three diseases
are segmented out through FKM clustering.

2.1. Ground Truth Generation

The ground-truth bbox against each image is required to identify the affected region for the
training process. The LabelImg [42] tool is used to annotate the retinal images and manually create a
bboxes for each image. Figure 2 shows an example of an original image and the corresponding ground
truth image. The annotations are saved in .xml files which includes the class of object and their bbox
values i.e., xmin, ymin, xmax, ymax, width and height. Xml file is created against each image and
these files are used to create the csv file, train.record file is created from csv file which is later used in
the training process.
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Figure 2. Sample annotated images for all three diseases. (a) represents the image annotations for DR
signs/objects i.e., microaneurysms, soft exudates, hard exudate, hemorrhages. (b) represents the DME
sign (macula) (c) represents the image annotations for Glaucoma i.e., OC and OD.

We have generated the annotations of three diseases according to their signs, as shown in
Table 2. The DR affected image has the five classes i.e., microaneurysms, soft exudates, hard exudate,
hemorrhages, and background, DME has the two classes i.e., DME and background. The third disease
glaucoma has the three classes i.e., OD, OC, and background class.
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Table 2. Classes of eye diseases.

DR DME Glaucoma

0. Background 1. Microaneurysms
2. Soft Exudates 3. Hard Exudates

4. Hemorrhages

0. Background
1. Macula Region

0. Background
1. OD
2. OC

2.2. Localization Phase

The nature of the tasks is same i.e., to localize objects, therefore, the procedure applied remain
consistent. Only difference comes in form of the number of classes that varies for all the three diseases.

2.2.1. Localization of DR Regions

The FRCNN takes the images and the region proposals as an input. Our method uses max-pooling
and convolutional (Conv) layers to processes the whole image and produces the feature map of Conv.
From the Conv feature map, fixed-size feature vectors are extracted using the ROI pooling layer.
And then supplied into a series of fully connected (fc) layers before branching into separate output
layers, the first layer computes Softmax-probability estimates over k = 5 region classes and the other
layer produces four real-valued numbers for five region classes which represent a position of the bbox
for one of the five classes [43]. We have trained the model for multi-class DR object detection using
FRCNN, which can accurately localize the multiclass objects from an image. For DR localization,
there are 4 + 1 classes in total i.e., hemorrhages, microaneurysms, soft-, and hard- exudates, plus one
background class.

The RoI pooling layer resizes the features into a fixed-size of hyper-parameters h × w (i.e., 7 × 7)
by using the max-pooling process. In our proposed method, the RoI consists of a four-sided (d,e,f,g))
quadrilateral window, where (f,g) represent the height and width and (d,e) represent the top left corner.
The max-pooling layer divides f × g, the window of the RoI, into F × G, a sub-division grid of size
f /F × G/G, and then max-pooling applied independently in the sub-division values into corresponding
output cell. The RoI pooling layer is an extraordinary instance of spatial pyramid layer utilized in
SPPnets [44], in which there is just one pyramid pooling level. We utilized the calculation of pooling
sub-window given in [44].

2.2.2. Localization of DME Region

FRCNN can be train to localize the binary class objects, we have used FRCNN for the localization
of macula region from retinal image. In this case, we have two region classes i.e., background and
macula region which are represented by 0 or 1. The region inside the bbox represents the macula and
other portion of the image is considered as background.

Th max-pooling and Conv layers are used to processes the whole image and produces the feature
map. From Conv feature map, fixed-size feature vectors are extracted using the ROI pooling layer.
And then supplied into a series of fc layers before branching into separate output layers, the first layer
computes softmax-probability estimates over k = 2 region classes and the other layer produces four
real-valued numbers for two region classes of DME which represent a position of the bbox for one of
the DME classes.

2.2.3. Localization of Glaucoma Regions

For recognition of the third eye disease i.e., glaucoma, we have trained our method for three
classes i.e., OD, OC, and background. FRCNN localized the OD and OC regions, and rest of the
portion of retinal image is considered as background. The max-pooling and Conv layers produces the
feature map, fixed-size feature vectors are extracted using the ROI pooling layer from the Conv feature
map. And then supplied into a series of fc layers before branching into separate output layers, the first
layer computes Softmax-probability estimates over k = 3 region classes and the other layer produces
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four real-valued numbers for three region classes which represent a position of the box for one of the
glaucoma classes.

Feature Extraction

Object localization approaches employ a sliding window to identify the region of interest, i.e.,
vehicles, buildings, etc. However, advances of DL methods like CNN have replaced the earlier
detection approaches with good performance. However, these techniques are economically expensive
as they stick to the sliding window method for localizing the objects, so FRCNN proposes regions
by a selective search approach to improve the performance and can train all network weights with
backpropagation. FRCNN is initialized by the CNN network and experiences three conversions:
(i) the RoI layer substitutes the max-pooling layer with h = w = 7 for VGG16. (ii) the f c and softmax
layers are changed with two sibling output layers which are the f c and Softmax over the k + 1 category
and bbox regressor. (iii) Our proposed method takes two inputs: the list of images I(x,y) and the list of
ROIs from the input images [45].

FRCNN can train all weights with backpropagation, which does not appear in SPPnet [26] because
the SPP layer becomes inefficient when RoI derives from different sample images. In FRCNN training,
mini-batches are sampled by using the “stochastic gradient descent” (SGD), first N images, and then
R/N ROIs are sampled through every retinal sample. Mini-batch computation decreases as N decreases.
For example, If N = 2, R = 128, and R/N become 64, which means the training method is 64 times faster
than sampling a single RoI from 128 diverse samples (i.e., RCNN and SPPnets) [44].

Multi-Task Loss

FRCNN is the end-to-end learning framework that uses multi-task loss function to learn the class
of region and the related bbox position and size. Each ROI is labeled with class name u and bbox
regression target v. let p be the output of Softmax sibling layer that is the probability distribution over
k classes including background class, and t be the result of regressor sibling layer that is bbox tuple for
each class k [46].

We used a multi-task loss L on each labeled ROI to jointly train for classification loss and bbox
regression loss as shown in Equation (1):

L(p, u, tu, v) = Lcls(p, u) + λ[u ≥ 1]Lloc(tu, v) (1)

The log loss for true class u is Lcls(p,u) = –logpu and Lloc(tu,v) denotes a smooth L1 loss (SL1) for
regression output as in Equation (2):

Lloc(tu, v) =
∑

i∈{x,y,w,h}

SL1(ti
u
− vi) (2)

where:

SL1(x) =
{

0.5x2 i f
∣∣∣x∣∣∣ < 1

|x|−0.5 otherwise

}
(3)

In Equation (1), λ denotes a hypermeter that determines the relative weight of the regression loss
versus the classification loss to the overall loss. we used λ = 1 for all experiments. The [u > = 1] means
that there is no Lloc defined for the background class. In Equation (3), x will be the distance between
vectors. The RoI pooling layer uses backpropagation to transmit the derivatives as used in [47].

SGD Hypermeters

In the SGD hyperparameters process, fc layers of FRCNN use zero-mean Gaussian distributions
along with standard deviations 0.01 and 0.001, respectively. In the initial step the values of biases
are set to 0. Global learning rate (LR) for all layers is set to 0.001, and we execute SGD for iterating k
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mini-batches. The parameter decay of 0.0005 and the value of momentum is 9 that is used on weights
and biases.

Testing through FRCNN

Once the FRCNN model is trained, the localization expands by little extra than performing a
forward pass, and object proposals are computed. The framework inputs the image and a list of R
objects proposals to score. We used the probabilities of Softmax cross-entropy [48] to detect the DR
affected regions, macula region, and glaucoma regions i.e., OD and OC. Each region has i-ths class,
score and bbox value. To have a precise localization, the obtained proposals are applied to consider the
region having a higher level IoU overlap.

2.3. Segmentation of Regions through Fuzzy K-Means Clustering

The localized regions are cropped using calculated coordinates to determine the accurate affected
region’s boundary. We have used the fuzzy k-means (FKM) technique separately for the segmentation
of regions of three eye diseases. In the case of DR segmentation, the localized regions are segmented
separately. The localized regions are set to foreground and the value of other portion is set to zero
means black color. Similarly, the localized macular region is segmented through FKM clustering
method. At last, we segmented the glaucoma localized regions i.e., OD and OC separately. The FKM
method is described as follows: The method [49] divides the image into k regions where Ri, (l = 1, 2,
3, . . . , k) are related to the cluster centered Cr. There is a fuzzy relationship between regions and image
data. The FKM method is based on minimizing distortion given by Equation (4):

L =
k∑

j=1

N∑
i=1

b f
i, jgi, j (4)

Here k is the number of clusters while the f is fuzzifier parameter that pointedly manipulates the
data points and resultant clusters. While for a given data point Xi and a cluster Cj, bi, j∈ [0,1] represents
the belongings among the centers of the cluster Cj and Xi, while gi,j represents the distance among Cj
and Xi.

FKM clustering improves by mapping illustrative vectors and partitioning of data points [50].
It performs the following steps:

(1) Specify the number of clusters C j.
(2) Set Cj(0) to the initial clusters.
(3) Compute the membership b(i, j) of all datapoints Xi for each C j using following equation:

b(i, j) = ((g(i, j)
(1/m−1)

k∑
l=1

(
1
gil

)

1
m−1

))−1 (5)

where m is the fuzzification coefficient.
(4) Update cluster centers using following equation:

C j(p) =

∑N
j=1 bi, j

mXi∑N
j=1 bi, jm

(6)

(5) Repeat from step 3, till the FKM is converged (the centroids updated between two passes is not
greater than ε, the defined sensitivity threshold).

Finally, we have clustered the regions into affected and non-affected portions.
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3. Experimental Results

3.1. Datasets

We have employed five open source databases (i.e., Diaretdb1, MESSIDOR, HRF, DRHAGIS
and ORIGA) that we utilized in our experiments for eye diseases detection, which do not have bbox
ground truths, so we first developed the bbox annotations of the datasets which are necessary for the
FRCNN training.

Diaretdb1 [51] is the dataset used for benchmarking of DR identification from retinal images.
The Diaretdb1 database comprises 89 fundus samples of which 84 images contain the DR signs and the
five remaining samples are considered as normal, that means they have no sign of DR. DR lesions
are characterized by the following signs; hemorrhages, microaneurysms, hard and soft exudates.
The images are of size 1500*1125 pixels and were taken with a fundus camera utilizing the same
50-degree field-of-view (FOV) with different image settings. The MESSIDOR database comprises
1200 images having two grades DR and DME. The images were captures with a 3CCD camera with a
45-degree FOV with a resolution of 2304 × 1536, 2240 × 1488, and 1440 × 960 pixels.

HRF stands for a high-resolution fundus database developed by the ophthalmology department,
at Friendrich Alexander University Erlangen-Nuremberg (Erlangen, Germany) and the Brno University,
Faculty of Electrical Engineering and Communication, Department of Biomedical Engineering, Brno
(Czech Republic). The HRF database has a total of 45 images in which 15 images are of healthy patients,
15 images of patients with DR, and 15 images are from glaucomatous patients [52]. DRHAGIS stands for
Diabetic Retinopathy Hypertension Age-related macular degeneration and Glaucoma images database,
and was developed by Health Intelligence (Sandback, UK). The database consists of 40 images in
which 10 images are affected with glaucoma [53]. ORIGA is the Online Retinal Fundus Image Database
for Glaucoma analysis, with 650 data samples, containing 168 glaucomatous and 482 normal images.
The images were collected from the Singapore Eye Research Institute [54] and were annotated by
medical experts.

3.2. Evaluation Metrics

For analyzing the efficiency of our proposed technique, we have considered the following
evaluation metrics:

FRCNN performed the localization of eye-diseases by using the greedy intersecting measure of
the predicted box and ground truth called Intersection over Union (IoU). The correct prediction is true
positive TP and the other is a false positive:

IoU =
TP

FN + FP + TP
× 2 (7)

To calculate the average precision (AP) we iterate through test images as per precision. Equation (8)
represents the mean average precision (mAP):

mAP :=
T∑

i=1

AP(ti)/T (8)

Here T is the number of test images, AP(ti) is the average precision for given test image category.
This means that we calculate the AP for each category for given test image category, ti, and then the
average of each category across all test images. Then all AP scores would then give us a single number
which is mAP [55], it describes how good the trained model is for detecting bboxes with respect to
bboxes of ground truth.
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For segmentation, we have utilized the specificity (SP), sensitivity (SE), area under the curve
(AUC), accuracy (Acc) and Dice coefficient (Dc) as the evaluation measures:

Dc =
2× TP

2× TP + FN + FP
(9)

3.3. Results

This part demonstrates the proposed method results and the evaluation of the introduced technique
with latest approaches.

3.3.1. Evaluation of FRCNN

To analyze the evaluation power of FRCNN, we evaluated it with other techniques like RCNN [56],
and SPPnet [44], which use a similar pre-trained framework and bbox regression. SPPnet uses five
scales in training and testing while FRCNN uses single scale testing and training. The RCNN technique
achieves good performance by using a deep ConvNet, however, it has some limitations: i.e., training is
expensive in time and space, ConvNet to SVMs to bbox regressors and the detection of objects is slow.
We used FRCNN, that utilizes the ideas from SPP-net and RCNN and fixes the key issue in SPPnet by
sharing computation of Conv layers among various proposals and exchanging the order of producing
region proposals and running the CNN. FRCNN utilizes a backpropagation estimation, also added
the bbox regression and classification head, and trained the model with a multi-task loss. FRCNN
approach has a large improvement in mAP because of the fine-tuning process of Conv layers and
reduces the disk storage due to no need for cache features. The proposed method achieves the precise
localization of disease regions with mAP of 0.94 (in Table 3) in comparison with other approaches.

Table 3. Performance comparison of the presented technique with other approaches.

Technique mAP

SPPnet [44] 0.85
RCNN [56] 0.89

FRCNN (Proposed) 0.94

3.3.2. Localization of DR Regions

For localization of the DR signs (i.e., hemorrhages, microaneurysms, hard and soft exudates),
the affected regions are considered a positive example while other portion and background are
considered a negative example. The overlapped region is labeled through the threshold value IoU,
less than 0.3, considered the region as background. Similarly, IoU value greater than 0.7 the regions are
considered as affected regions.

We adopted the FRCNN method for DR lesions localization. The localization outcome of FRCNN
as shown Figure 3 having 16 test retinal images with a confidence score. The test results show a higher
score which is greater than 0.89 and up to 0.99.
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3.3.3. Localization of DME Regions

For performance evaluation of DME detection from retinal images, we have used the MESSIDOR
dataset. FRCNN precisely localized the macula region and Softmax layer classify normal and DME-
affected regions. Visualization results of DME localization are shown in Figure 4, FRCNN localized the
macular edema region at regressor layer with a mean average precision of 0.943.
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3.3.4. Localization of Glaucoma Regions

We adopted the FRCNN method for glaucoma localization. Given an image for the glaucoma
region, RPN generates several random rectangular region proposals with associated region scores.
The glaucoma localization outcome of FRCNN as shown in Figure 5 having 35 test images from three
datasets. The test results show a higher score which is greater than 0.84 and up to 0.94. The precision
of glaucoma localization is reported in Table 4 on three datasets i.e., HRF, DR-HAGIS, and ORIGA
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(i.e., 0.946, 0.940, and 0.938 respectively) Our method achieved mAP over all datasets is 0.940, we can
say our method can localize the glaucoma regions accurately.
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Table 4. Glaucoma results.

Dataset Img1 Img2 Img3 Img4 Img5 Img6 Img7 Img8 mAP

HRF 0.949 0.942 0.963 0.935 0.99 0.891 0.953 0.941 0.946
DR HAGIS 0.937 0.94 0.975 0.891 0.912 0.939 0.99 0.933 0.940
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3.3.5. Segmentation Results

Extracting the localization of the affected regions not only generates a low dimensional initial
sample that is economically effective but also enables deep NN to emphasis on the significant portion
of the image.

The pixel-wise segmentation results of DR signs are presented in Figure 6. All four signs of DR
are segmented separately which are localized through the FRCNN method. The segmented images are
then compared with ground truth images. The proposed method results are evaluated by using the SE,
SP, and Acc for all images of the test dataset. Table 5 shows that the proposed system obtained average
scores of SE as 0.961, SP as 0.965, and Acc as 0.952. Our proposed method shows good performance
due to the accurate localization of lesions by using FRCNN.

The localized macula region is segmented through FKM clustering. The visual segmentation
results of DME are presented in Figure 7, which clearly shows the abnormalities i.e., exudates in
macula region. The presented work achieved the average values of acc, SP, and SE as 0.958, 0.958,
and 0.96, respectively.
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Figure 8 depicts the segmentation results of the glaucoma regions of three datasets. Table 6
demonstrates that the proposed system attained average values of SE as 0.951, SP as 0.961, Acc as 0.952,
and Di as 0.928. It is observed that the proposed methodology shows good segmentation performance
due to the accurate localization of OD and OC by using FRCNN.

The proposed method achieved good performance due to the accurate localization of OD and OC
regions using FRCNN. However, in few images FRCNN detected the false OD regions (as shown in
Figure 9 due to following reasons: (i) visual similarity of OD with brighter regions. (ii) Fails to detect
the OC at low intensity areas.
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3.4. Comparative Studies

In this section we compare our method for the DR, DME, and glaucoma detection against
state-of-the-art methods. For DR detection we compared our method against the works of Zeng et al. [28],
Gulshan et al. [57], Zhou et al. [58], Kaur et al. [59], Abbas et al. [60], and Colomer et al. [61] using a
10-fold cross validation scheme. The proposed method was implemented using Matlab-2019 and run
on an Nvidia GTX1070 GPU-based system. The comparative results using accuracy (Acc), specificity
(SP), sensitivity (SE), and area under the curve (AUC) are reported in Table 7. From the results it
can be observed that our method achieved 95% accuracy, which is highest then all the compared
methods. In terms of specificity, the work of Kaur et al. [59] was the closest to our method where
the difference is just 0.5%. However, this method exhibited the lower sensitivity, where our method
supersedes this approach by a significant margin of 8%. Although, the method of Zhou et al. [58]
showed higher sensitivity then our method, where performance difference is 3%; but contrary to this,
the method showed approximately 10% more performance loss than our method in terms of specificity.
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The higher sensitivity rate with lower specificity rate reflects that the method by Zhou et al. [58]
mislabel the non-DR signs as DR, which may lead towards the imprecise diagnosis for the healthy
patients. Similarly, in terms of AUC our method also outperformed all the comparative approaches.
The consistent performance of the proposed method is attributed towards the low-resolution feature
map generation based on the region proposals. The region proposals assist in accurate localization of
the DR even for the images suffering from the low illumination. Hence, based on the results it can be
concluded that our method is more precise for DR sign detection as compared to the other approaches
used for the comparison.

Table 7. Performance comparison against DR detection methods.

Technique SP SE Acc AUC

Zeng et al. [28] 0.635 0.77 - 0.94
Gulshan et al. [57] 0.91 - 0.913 0.96

Zhou et al. [58] 0.863 0.995 - -
Kaur et al. [59] 0.96 0.88 0.93 -

Colomer et al. [61] 0.818 0.81 0.93 -
Abbas et al. [60] 0.94 0.92 - 0.92

Proposed 0.965 0.961 0.95 0.967

For DME detection we have compared our method against the works of Li et al. [62],
Deepak et al. [63], Medhi et al. [64], Rekhi et al. [2], Lim et al. [65], Rahim et al. [66], Syed et al. [67],
Varadarajan et al. [68] and Xiaodong et al. [69] using the MESSIDOR dataset. The results of the
comparison are presented in Table 8. In terms of sensitivity, our method has achieved the SE of 0.96
which is equal to Syed’s method. However, in terms of specificity and accuracy, our method performed
better than Syed’s method and all other methods. Significant difference in terms of sensitivity can be
observed against Li et al. [62], Lim et al. [65], and Rahim et al. [66], where this difference ranges from
11–26%. The method Lim et al. [65] which showed higher specificity in comparison to the sensitivity
shows that the method considered the DME regions as non-DME regions, whereas, the methods, i.e.,
Rahim et al. [66] where sensitivity is higher than the specificity reflect that the method considered even
the non-DME regions as DME. According to the Table 8, our method has achieved the SP of 0.958
which is higher than other methods (i.e., 0.55–0.95), although SP of Xiaodong’s method is 0.97 but
its SE value is lower than our method. Hence, the performance comparison reflects that our method
reliably detects the DME.

Table 8. Performance comparison against DME detection methods over MESSIDOR dataset.

Method SE SP Acc

Li et al. [62] 0.70 0.76 0.912
Deepak et al. [63] 0.95 0.90 -
Medhi et al. [64] 0.95 0.95 -
Rekhi et al. [2] - - 0.921
Lim et al. [65] 0.80 0.90 -

Rahim et al. [66] 0.85 0.55 -
Syed et al. [67] 0.96 0.95 0.935

Varadarajan et al. [68] 0.85 0.80 -
Xiaodong et al. [69] 0.959 0.97 -

Proposed 0.96 0.958 0.958

For glaucoma detection, we compared our method against the works of Liao et al. [70],
Chen et al. [71], Xu et al. [72], Li et al. [73], Bajwa et al. [37], Ramani et al. [39], Parakash et al. [74] and
Krishna et al. [12]. The comparison results using ORIGA, HRF, and DR HAGIS datasets are reported in
Table 9. For glaucoma detection, the comparative methods have applied different sets of performance
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evaluation measures. For fair comparison, we have reported the performance of our method using all
the performance evaluation measures i.e., SE, SP, AUC, dice score (Dc), and computation test time over
all the three datasets. From the results we can observe that, our method has acquired the highest SE and
AUC rates i.e., 0.945, and 0.947, respectively, that signifies the reliability of our approach. The proposed
method achieved the specificity of 0.96 which is slightly lower (only for the HRF dataset) than the
methods presented in [39] and [74], but both methods showed lower sensitivity rates, which clearly
shows their inability to detect the glaucoma signs.

Table 9. Performance comparison of the Proposed Method with latest techniques.

Method Year Dataset SE SP AUC Dc Time

Liao et al. [70] 2019 ORIGA - - 0.88 0.9 -
Chen et al. [71] 2015 ORIGA - - 0.838 - -

Xu et al. [72] 2013 ORIGA 0.58 - 0.823 - -
Li et al. [73] 2016 ORIGA - - 0.8384 - -

Bajwa et al. [37] 2019 ORIGA 0.71 - 0.868 - -
Ramani et al. [39] 2020 HRF 0.849 0.999 - - 1.49 s

N.B Parakash et al. [74] 2017 HRF 0.7025 0.997 - - -
Krishna et al. [12] 2019 DR HAGIS 0.94 - - - -

Proposed
ORIGA 0.941 0.945 0.94 0.943 0.9 s

HRF 0.95 0.96 0.963 0.952 0.9 s
DR HAGIS 0.945 0.941 0.94 0.89 0.9 s

In terms of SE over HRF dataset our method showed an approximately 10% performance gain
over the work of Ramani et al. [39], and approximately 24% performance gain over the work of
Parakash et al. [74]. In terms of AUC, and SE our method showed significant performance gain than
all the comparative approaches. Liao et al. [70] also reported the performance of their method using
Dc measure, where our method also outperformed their work. Moreover, our technique can easily
run on CPU or GPU machines and each image test time is 0.9 s which is faster than the work of
Ramani et al. [39], which take 1.49 s. Hence, based on the result it can be concluded that our method is
also equally reliable for the glaucoma detection.

4. Discussion

We have applied af RCNN technique for the localization and recognition of the diabetes-based eye
diseases. Our method is based on fast RCNN and Fuzzy k-means clustering. Our main contribution is
to present a consolidated model to target three eye diseases i.e., diabetic retinopathy, diabetic macular
edema and glaucoma. In localization, the proposed model achieved mAP of 0.945, 0.943 and 0.941 for
DR, DME and glaucoma, respectively. FRCNN utilizes a backpropagation estimation, also added the
bbox regression and classification head, and trained the model with a multi-task loss. The proposed
method detects the abnormalities of DR, DME, and glaucoma regions simultaneously using FRCNN
and lastly, FKM clustering precisely extracts the regions from localized regions. For segmentation we
have achieved the accuracy of 0.952, 0.958 and 0.9526 for DR, DME and glaucoma regions, respectively.

The existing literature emphasized on the recognition of these diseases individually and there is
very limited amount of work available which expands the scope of the modern machine/deep learning
models to simultaneously detect multiple eye diseases. The fundamental reason is that each disease
is based on different abnormality signs which are specific to that particular eye disease. Moreover,
the model which is optimized for one disease may give bad performance for other diseases. However,
with this work we have addressed this misconception and came-up with a robust approach in the
form of a model which can detect and recognize three different eye diseases with very high accuracy.
Therefore, with this work we have proved that the deep learning models have the potential to detect
multiple eye diseases just like an ophthalmologist. Moreover, this work is more towards the application
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end of the computer vision and our target audience is the engineers and manufacturers particularly
those developing intelligent CAD systems.

5. Conclusions

In the presented work, a novel methodology is proposed based on FRCNN with FKM clustering
for automated localization and recognition of diabetes-based eye diseases, i.e., glaucoma, DR and
DME in retinal images. The proposed technique is composed of two phases: a disease detection
and localization phase and the other is the segmentation of the localized regions through the FKM
clustering. The FRCNN technique can extract the deep features with an optimal representation of
eye diseases and increases the performance of segmentation in contrast with the latest solutions.
The results demonstrate that the proposed solution achieved the mean IoU of 0.95 and mAP value
above 0.94 into three diseases. Moreover, our proposed approach can also be utilized to resolve the
different segmentation complexities of medical imaging as well. The research work will be extended
by addressing other retinal image diseases i.e., cataracts, age-related macular edema degeneration, etc.
in the future.
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