
applied
sciences

Article

Development of a Framework to Understand Tables
in Engineering Specification Documents

Valentin Agossou 1, Hyo-Won Suh 2, Heejung Lee 3 and Jae Hyun Lee 1,*
1 Department of Industrial Engineering, Daegu University, 201 Daegudae-ro, Jinryang-eup, Kyongsan-si,

Kyongbuk 712-714, Korea; valentin@daegu.ac.kr
2 Department of Industrial and System Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141,

Korea; hw_suh@kaist.ac.kr
3 Division of Interdisciplinary Industrial Studies, Hanyang University, 222 Wangsimni-ro, Seongdong-gu,

Seoul 04763, Korea; stdream@hanyang.ac.kr
* Correspondence: jaehyun.lee@daegu.ac.kr; Tel.: +82-53-850-6544

Received: 23 July 2020; Accepted: 3 September 2020; Published: 5 September 2020
����������
�������

Abstract: Several works have been done in the last decades for understanding tables in documents,
but most of them were not specifically designed to understand tables in engineering specification
documents. Tables in engineering specifications have characteristics such as various table structures
with restricted terms. A framework is developed to address the issues in understanding tables
in engineering specification documents. The framework consists of three steps: (1) Identifying
minimal tables, (2) classifying cells, and (3) extending a domain knowledge map. A modified XY-tree
algorithm was developed to find minimal tables, and a neural network algorithm was adopted to
classify cells into labels and data. Then, specific domain rules were developed to discover concepts
and relationships from terms in the classified cells. It is assumed a domain ontology is given,
and it is extended with new concepts and relationships extracted from tables. We illustrated how
each step performed with engineering table examples. The proposed framework could be used for
searching product specification and for discovering hidden knowledge from tables in engineering
specification documents.

Keywords: engineering specification documents; table understanding; domain knowledge map

1. Introduction

Engineers create and exchange engineering specification documents to develop a product. One of
the efficient ways of representing product specification in engineering specification documents is
a table. A table is a physical and logical representation to organize structured data [1]. Tables in
documents provide a compact method for presenting relational information in an immediate and
intuitive manner, while simultaneously organizing and indexing the information.

In the case of engineering specification documents, tables are frequently used to represent an
organized product specification explicitly. Table format for product specification helps engineers
to understand the meaning of the product specification quickly. Generally, tables are designed in
so many graphically different ways such as simple hierarchies of strings, relational structures like
database tables, or any combinations of them. This paper only focused on tables which are structured
for product specification, so that they must have graphical lines to represent cells in a table and each
cell has only one content. Figures 1 and 2 are table examples illustrating the restricted table forms.
They have horizontal and vertical lines, and they present a set of relations holding between hierarchical
concepts for product specifications.

Appl. Sci. 2020, 10, 6182; doi:10.3390/app10186182 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-8778-8707
http://dx.doi.org/10.3390/app10186182
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/18/6182?type=check_update&version=2

Appl. Sci. 2020, 10, 6182 2 of 13

Appl. Sci. 2020, 10, x FOR PEER REVIEW 2 of 13

The table in Figure 1 has nested multiple rows of column headers (labels) to explain the
meanings of data in numbers. As shown in the title of the table in Figure 1, the table explains speed
rating of two different pumps with different ranges of stroke length. The data in the table shows
speed rating in two different units; rpm and m/s. Engineers can easily understand the table by
recognizing the structure of the table and by catching the meaning of terms in the table. Figure 2
shows a table example in an engineering specification drawing. Tables in engineering drawings
include meta-information of drawings such as drawing version, people involved in the drawing,
related project information, and so on. Tables in an engineering specification drawing are fitted into
one big rectangle to minimize the size of tables. Engineers can classify different information in the
big rectangle by separating sub-tables with geometric line and space patterns. Then, engineers can
understand each sub-table as they did for the table in Figure 1.

Figure 1. A table example in an engineering specification document.

Figure 2. A table example in an engineering specification drawing.

Figure 1. A table example in an engineering specification document.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 2 of 13

The table in Figure 1 has nested multiple rows of column headers (labels) to explain the
meanings of data in numbers. As shown in the title of the table in Figure 1, the table explains speed
rating of two different pumps with different ranges of stroke length. The data in the table shows
speed rating in two different units; rpm and m/s. Engineers can easily understand the table by
recognizing the structure of the table and by catching the meaning of terms in the table. Figure 2
shows a table example in an engineering specification drawing. Tables in engineering drawings
include meta-information of drawings such as drawing version, people involved in the drawing,
related project information, and so on. Tables in an engineering specification drawing are fitted into
one big rectangle to minimize the size of tables. Engineers can classify different information in the
big rectangle by separating sub-tables with geometric line and space patterns. Then, engineers can
understand each sub-table as they did for the table in Figure 1.

Figure 1. A table example in an engineering specification document.

Figure 2. A table example in an engineering specification drawing. Figure 2. A table example in an engineering specification drawing.

The table in Figure 1 has nested multiple rows of column headers (labels) to explain the meanings
of data in numbers. As shown in the title of the table in Figure 1, the table explains speed rating of
two different pumps with different ranges of stroke length. The data in the table shows speed rating
in two different units; rpm and m/s. Engineers can easily understand the table by recognizing the
structure of the table and by catching the meaning of terms in the table. Figure 2 shows a table example
in an engineering specification drawing. Tables in engineering drawings include meta-information of
drawings such as drawing version, people involved in the drawing, related project information, and so
on. Tables in an engineering specification drawing are fitted into one big rectangle to minimize the size
of tables. Engineers can classify different information in the big rectangle by separating sub-tables

Appl. Sci. 2020, 10, 6182 3 of 13

with geometric line and space patterns. Then, engineers can understand each sub-table as they did for
the table in Figure 1.

Keyword-based search is frequently used by engineers to find product specification. Although
engineers may obtain data they are looking for, the keyword-based search technique has two issues.
First, it may return the overload search results. The overload results require engineers to spend more
time on information acquisition. Second, if computers could not establish correct relationships among
the searching keywords, they cannot return the specification engineers want. The problems are a
consequence of the inability of the machine to capture the logical representation of tables in engineering
specification documents. If tables in engineering specifications are handled separately from other texts,
and if a computer can understand logical relationships among data in a table, engineers get benefits on
searching product specification from engineering documents.

Table understanding means recovering relationships among data values, labels (attributes),
and domains (dimensions) in the table [1]. As defined in [2], the understanding table involves five
sub-problems; (1) table detection (to detect positions of a table inside a source), (2) table recognition
(to recover individual cells), (3) table functional analysis (to find labels and data in cells), (4) table
structural analysis (to learn relationships between cells), and (5) table interpretation (to learn facts
from a table). The proposed framework focused on the last four sub-problems except for the first
sub-problem. Algorithms for table detection are heavily affected by the types of electrical formats
of engineering documents [3], but the first problem becomes rather a simple issue if lines of a table
fully exist and only well formatted text exists. Most engineering specification tables have solid lines
and well formatted text for engineers to easily understand tables and to distinguish tables from other
drawing images or descriptions of products. Once a table is detected with table’s boundary lines,
table recognition to find individual cells also becomes simple to find sub-tables from a complex table.

Many previous works tackled the functional analysis and structural analysis of tables. Rule-based
approach [4–6], classification approach [7], deep learning approach [8], and natural language processing
approach [9] were applied to the functional analysis and structural analysis of tables.

Most of the tables in engineering specification documents do not have a highly complex structure,
but their structures vary depending on the context of product specifications. An engineering table
understanding framework was proposed in this paper, and it consisted of three steps: (1) Identification
of minimal tables, (2) Classification of cells into labels and data, (3) Extending a domain knowledge
map. The first step is pre-processing and functional analysis of tables. The XY-tree algorithm was
adopted to find sub-tables in a complex engineering table. The second step is structural analysis of
table, which used a neural network algorithm to classify cells into labels and data. The last step is
interpretation of tables using rule-based ontology extending algorithm. Ontology and rule-based
approaches were adopted for the table interpretation like previous works [2,9,10], but the proposed
approach incorporated natural language processing of the terms in tables with rule-based approach to
extend a domain ontology.

This paper is organized as follows. Previous works are explained in Section 2. Section 3 presents
an overview of the proposed framework to understand tables in engineering specification documents.
Section 4, Section 5, and Section 6, respectively, describe each step in the proposed framework.
Each step is illustrated with table understanding examples. Finally, the conclusions and future works
are presented in Section 7.

2. Previous Works

Previous works developed different approaches for table functional analysis, table structural
analysis, and table interpretation [11]. Each approach was depending on its context and the source of
tables. Table 1 shows approaches of previous works and their application context.

Douglas et al. [9] suggested a method for interpretation and canonicalization of tables, which are
contained in specifications used in the construction industry. Hu et al. [12] introduced a hierarchical
clustering algorithm to group the words in a table according to the closeness of their beginning and

Appl. Sci. 2020, 10, 6182 4 of 13

end positions. E Silva et al. [13] developed domain rules for functional and structural analysis of
tables. Kim and Lee [14] also proposed a rule-based approach for extracting logical structures from
HTML tables and transforming them into an XML representation. Tijerino et al. [10] addressed the
creation of ontologies from tables in a web page. They suggested heuristic rules to create ontologies
based on WordNet and domain ontologies. Embley et al. [15] used domain ontology to understand
tables in web pages. Wang et al. [16] also used domain ontology to understand structure of tables
in web pages, but it is limited to structural analysis of tables. Shigarov [5,6] used a rule engine
to convert unstructured tabular data to a structured form of databases. Domain-specific natural
language information and domain-independent graphical information were used to functional and
structural analysis of tables. Chen and Cafarella [17] used CRF (Conditional Random Field) and
classification algorithms to find labels and their hierarchical structure in spreadsheets on web pages.
Rastan et al. [18] studied the patterns that commonly occur in table layouts based on observation
from a variety of tables in public table dataset and described automatic table processing systems.
Recently, deep learning and word embeddings are used to learn a real-valued vector representation
for tables in different Natural Language Processing tasks. Schreiber et al. [8] adopted deep learning
algorithms for table functional and structural analysis. Nishida et al. [19] proposed a hybrid deep
neural network architecture combining an RNN (Recurrent Neural Network) and CNN (Convolutional
Neural Network) for table type classification, and Chen et al. [20] proposed a semantic annotation
framework combining knowledge lookup and machine learning to predict a column type.

Table 1. Table understanding approaches.

Author

Tasks
Functional Analysis Structural Analysis Interpretation Context

Douglas et al. [9] Heuristic rule Heuristic rule Engineering documents

Hu et al. [12] Similarity comparison Similarity comparison General documents

E Silva et al. [13] Similarity comparison Heuristic rule Ontology + rules General documents

Kim and Lee [14] Classification rule Heuristic rule HTML documents

Tijerino et al. [10] HTML tags Heuristic rule Ontology HTML documents

Embley et al. [15] HTML tags Heuristic rule Ontology + rules HTML documents

Wang et al. [16] HTML tags Ontology + rules HTML documents

Shigarov [5,6] Rule-based Rule-based Ontology + rules Financial documents

Chen and Cafarella [17] HTML tags CRF + Classification HTML documents

Rastan et al. [18] Pattern analysis Heuristic rule General documents

Schreiber et al. [8] Deep learning Deep learning General documents

Nishida et al. [19] Word embedding Word embedding HTML documents

Chen et al. [20] Word embedding Word embedding General documents

Proposed framework Heuristic rule Neural network Ontology + rules Engineering documents

The existing approaches for table understanding described above were based on different methods,
e.g., heuristic, probabilistic, dynamic programming, or machine learning methods. They used different
assumptions about table structures to reduce the complexity of their own tasks. Those assumptions
were embedded in their algorithms and restricted types of tables that could be processed. The previous
works focused on tables in a pre-defined form, or tables in HTML documents or financial documents.
They did not consider the characteristics of tables in engineering specification.

Structure of tables in engineering documents is relatively simple compared to the structure of
financial statistical tables, but location of labels and relationships between labels and data are relatively
diverse. It means the structures of tables in engineering documents could be different for every table in
an engineering document. The variations of table structures make it hard to create a set of rules for
different structures so that existing rule-based approaches were limited to do structural tables analysis
in engineering specifications. Machine learning approaches like Schreiber et al. [8] are necessary for
functional and structural table analysis in engineering documents. A deep learning algorithm requires

Appl. Sci. 2020, 10, 6182 5 of 13

a lot of training data to work well, but tables in engineering specifications are domain dependent
so that it could be difficult to gather such many training data from one company. The proposed
framework suggested using heuristic rules and neural network approach for functional table analysis
and structural table analysis, respectively.

Interpretation of tables in engineering documents requires understanding the meaning of terms
used in tables. Domain ontologies help to specify the meaning of concepts and relationships. Computers
can understand the terms in tables by mapping the terms to concepts and relationships in domain
ontologies. Rules were used to find the mapping relationships between terms in tables and concepts
in ontologies. Domain ontology for engineering specification should be extendable because a new
concept related to an existing product or part might be introduced in tables. As many previous works
applied ontologies and rules for table interpretation, the proposed framework also used ontologies and
rules for table interpretation. In addition, the proposed framework suggested rules with text analysis
to extend domain ontologies for the new terms in tables.

In the next section, the proposed framework will be presented and explained how to address the
characteristics of engineering specification tables in order to make computers understand tables.

3. Overview of the Proposed Approach

Recognizing cells in engineering tables is relatively easy if engineering tools create the patterns
of tables with lines and blank space. Tables created by engineers are also simple enough to find the
patterns, but the location of labels and the relationships between labels and data are relatively diverse.
The proposed framework addresses the issues with the following steps in Figure 3.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 13

relatively diverse. It means the structures of tables in engineering documents could be different for
every table in an engineering document. The variations of table structures make it hard to create a set
of rules for different structures so that existing rule-based approaches were limited to do structural
tables analysis in engineering specifications. Machine learning approaches like Schreiber et al. [8] are
necessary for functional and structural table analysis in engineering documents. A deep learning
algorithm requires a lot of training data to work well, but tables in engineering specifications are
domain dependent so that it could be difficult to gather such many training data from one company.
The proposed framework suggested using heuristic rules and neural network approach for functional
table analysis and structural table analysis, respectively.

Interpretation of tables in engineering documents requires understanding the meaning of terms
used in tables. Domain ontologies help to specify the meaning of concepts and relationships.
Computers can understand the terms in tables by mapping the terms to concepts and relationships
in domain ontologies. Rules were used to find the mapping relationships between terms in tables and
concepts in ontologies. Domain ontology for engineering specification should be extendable because
a new concept related to an existing product or part might be introduced in tables. As many previous
works applied ontologies and rules for table interpretation, the proposed framework also used
ontologies and rules for table interpretation. In addition, the proposed framework suggested rules
with text analysis to extend domain ontologies for the new terms in tables.

In the next section, the proposed framework will be presented and explained how to address the
characteristics of engineering specification tables in order to make computers understand tables.

3. Overview of the Proposed Approach

Recognizing cells in engineering tables is relatively easy if engineering tools create the patterns
of tables with lines and blank space. Tables created by engineers are also simple enough to find the
patterns, but the location of labels and the relationships between labels and data are relatively
diverse. The proposed framework addresses the issues with the following steps in Figure 3.

Figure 3. Overview of the proposed framework.

Rectangular box in Figure 3 represents a step of the proposed framework. Solid arrows represent
inputs and outputs of steps. Dashed arrow represents algorithms or methods applied to each step.
First step is to identify minimal tables from an input table. This step is necessary for tables like Figure
2. The XY-tree algorithm [21] was adopted to find the structure of an input table. Second step is to
classify cells in a minimal table into labels and data. A neural network algorithm was adopted. Rule-
based approach is limited to be adopted because structure of minimal table looks similar, but some
variations always exist. The last step is to interpret terms in labels so that computers can create a
knowledge map of the table with domain ontologies and rules.

Figure 3. Overview of the proposed framework.

Rectangular box in Figure 3 represents a step of the proposed framework. Solid arrows represent
inputs and outputs of steps. Dashed arrow represents algorithms or methods applied to each step.
First step is to identify minimal tables from an input table. This step is necessary for tables like Figure 2.
The XY-tree algorithm [21] was adopted to find the structure of an input table. Second step is to classify
cells in a minimal table into labels and data. A neural network algorithm was adopted. Rule-based
approach is limited to be adopted because structure of minimal table looks similar, but some variations
always exist. The last step is to interpret terms in labels so that computers can create a knowledge map
of the table with domain ontologies and rules.

Each step in the proposed framework is explained in the following Section 4, Section 5, and Section 6.
The table examples in Figures 1 and 2 are used to illustrate the detailed procedures in the step.

Appl. Sci. 2020, 10, 6182 6 of 13

4. Minimal Table Identification

The XY-tree algorithm [21] can make a tree structure of cells in a table. The algorithm utilized
geometric information of lines composing the table in order to separate chunks of cells. The algorithm
was modified to find sub-tables in a complex table. In addition, a blank space between two texts also
gives information to separate cells, the XY-tree algorithm was modified to consider a blank space
between two texts. A minimal table is a rectangular table which has a matrix form. The proposed
algorithm identifies minimal tables with five steps in Figure 4, which shows a flowchart of the five steps.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 13

Each step in the proposed framework is explained in the following sections 4, 5, and 6. The table
examples in Figure 1 and Figure 2 are used to illustrate the detailed procedures in the step.

4. Minimal Table Identification

The XY-tree algorithm [21] can make a tree structure of cells in a table. The algorithm utilized
geometric information of lines composing the table in order to separate chunks of cells. The algorithm
was modified to find sub-tables in a complex table. In addition, a blank space between two texts also
gives information to separate cells, the XY-tree algorithm was modified to consider a blank space
between two texts. A minimal table is a rectangular table which has a matrix form. The proposed
algorithm identifies minimal tables with five steps in Figure 4, which shows a flowchart of the five
steps.

Figure 4. Five steps to find minimal tables.

The input of the proposed algorithm is a set of pre-processed graphical features of a given table
image. The pre-processed graphical data include a list of lines, boxes, and blank spaces. Each line has
geometry data such as a starting point, an end point, and thickness data. Each box represents texts in
the table, and its geometry data include left-top and right-bottom points. Blank space represents an
invisible line in a table so that its data consist of a starting point and an end point. A blank space can
be found if horizontal or vertical spaces between two lines of texts are relatively larger than average
space between two texts. The description of the five steps is elaborated as followings:

1. Find horizontal lines or blank space from end to end from a pre-processed table data.
2. Find vertical lines or blank spaces that cross the end-to-end horizontal line from the top

horizontal line.
3. If there is no such a vertical line or blank space, the next horizontal line or blank space is

recognized as the end of the minimal table. Then, it performs the S2 from the lower horizontal
line or blank space.

4. If there are multiple vertical lines or blank spaces, find the least extensive vertical line or blank
space starting from the same end-to-end horizontal line or blank space. Then, a line or blank
space up to the horizontal line or blank space where the shortest line or blank space meets is
recognized as the end of the minimal table.

5. If the lower horizontal line or blank space is the last, end the algorithm. If it is not the last
horizontal line, perform the S2.

Figure 4. Five steps to find minimal tables.

The input of the proposed algorithm is a set of pre-processed graphical features of a given table
image. The pre-processed graphical data include a list of lines, boxes, and blank spaces. Each line has
geometry data such as a starting point, an end point, and thickness data. Each box represents texts in
the table, and its geometry data include left-top and right-bottom points. Blank space represents an
invisible line in a table so that its data consist of a starting point and an end point. A blank space can
be found if horizontal or vertical spaces between two lines of texts are relatively larger than average
space between two texts. The description of the five steps is elaborated as followings:

1. Find horizontal lines or blank space from end to end from a pre-processed table data.
2. Find vertical lines or blank spaces that cross the end-to-end horizontal line from the top

horizontal line.
3. If there is no such a vertical line or blank space, the next horizontal line or blank space is

recognized as the end of the minimal table. Then, it performs the S2 from the lower horizontal
line or blank space.

4. If there are multiple vertical lines or blank spaces, find the least extensive vertical line or blank
space starting from the same end-to-end horizontal line or blank space. Then, a line or blank
space up to the horizontal line or blank space where the shortest line or blank space meets is
recognized as the end of the minimal table.

5. If the lower horizontal line or blank space is the last, end the algorithm. If it is not the last
horizontal line, perform the S2.

The gross output of this step is a list of minimal tables. This step breaks down a complex structure
of a given table to several sub-tables. Figure 5 shows the outputs of the proposed algorithm when it is
applied to the table in Figure 2. The table in Figure 1 is a minimal table itself.

Appl. Sci. 2020, 10, 6182 7 of 13

From each cell of a minimal table, contents of cells are collected to create a dataset for the next
step, which classifies cells into labels and data.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 13

The gross output of this step is a list of minimal tables. This step breaks down a complex
structure of a given table to several sub-tables. Figure 5 shows the outputs of the proposed algorithm
when it is applied to the table in Figure 2. The table in Figure 1 is a minimal table itself.

From each cell of a minimal table, contents of cells are collected to create a dataset for the next
step, which classifies cells into labels and data.

Figure 5. Minimal tables identified from the table in Figure 2.

5. Cell Classification

Once a minimal table is identified, it is assumed a minimal table consists of labels and data cells.
Labels are texts, while data may be digits and/or texts. Label cells describe domains of data in the
data cells, and data cells have specific data values of the domain.

Tables in engineering specification documents have various forms so that label cells may not
always locate at the top row of a table. It could be found at the bottom row of the table, or left or right
columns of the table. It also could be composed of multiple rows or columns in a nested format. The
variations make it hard to develop a set of rules. Machine learning algorithms are appropriate for the
classification. A neural network algorithm was adopted to distinguish types of cells between two
possible categories: “label” and “data.”

A neural network algorithm was adopted because it is supposed to be more accurate than other
algorithms for the type of data we classified. Decision tree algorithm and Support Vector Machine
algorithm were compared with the neural network algorithm. A neural network algorithm showed
a better accuracy result than the other two algorithms when the neural network has 2 hidden layers
and 20 hidden neurons.

A training dataset for neural network algorithm consists of cell feature vectors. A cell feature
vector characterized geometry features and content features of a cell. A cell feature vector consists of
geometry features vector and data type and text feature vector.

Cell feature vector = [Geometry feature vector] + [Data type and text feature vector].
Geometry feature vector: Table 2 shows geometry features captured in the example. Nine

geometry features were captured for a geometry feature vector, but the number of features is not
restricted. Geometry features can be expanded according to engineering domain characteristics.

Figure 5. Minimal tables identified from the table in Figure 2.

5. Cell Classification

Once a minimal table is identified, it is assumed a minimal table consists of labels and data cells.
Labels are texts, while data may be digits and/or texts. Label cells describe domains of data in the data
cells, and data cells have specific data values of the domain.

Tables in engineering specification documents have various forms so that label cells may not
always locate at the top row of a table. It could be found at the bottom row of the table, or left or
right columns of the table. It also could be composed of multiple rows or columns in a nested format.
The variations make it hard to develop a set of rules. Machine learning algorithms are appropriate for
the classification. A neural network algorithm was adopted to distinguish types of cells between two
possible categories: “label” and “data”.

A neural network algorithm was adopted because it is supposed to be more accurate than other
algorithms for the type of data we classified. Decision tree algorithm and Support Vector Machine
algorithm were compared with the neural network algorithm. A neural network algorithm showed a
better accuracy result than the other two algorithms when the neural network has 2 hidden layers and
20 hidden neurons.

A training dataset for neural network algorithm consists of cell feature vectors. A cell feature
vector characterized geometry features and content features of a cell. A cell feature vector consists of
geometry features vector and data type and text feature vector.

Cell feature vector = [Geometry feature vector] + [Data type and text feature vector].
Geometry feature vector: Table 2 shows geometry features captured in the example. Nine geometry

features were captured for a geometry feature vector, but the number of features is not restricted.
Geometry features can be expanded according to engineering domain characteristics.

Appl. Sci. 2020, 10, 6182 8 of 13

Table 2. Description of geometry feature vector representation.

Vector Value Features

v1 0 or 1 If a cell has another cell on the top side, the value is 1, else the value is 0.
v2 0 or 1 If a cell has another cell on the right side, the value is 1, else the value is 0.
v3 0 or 1 If a cell has another cell on the bottom side, the value is 1, else the value is 0.
v4 0 or 1 If a cell has another cell on the left side, the value is 1, else the value is 0.
v5 0 or 1 If a cell is white, the value is 0, else the value is 1.
v6 0 or 1 If a cell’s top side border is thicker than other borders, the value is 1, else the value is 0.
v7 0 or 1 If a cell’s right side border is thicker than other borders, the value is 1, else the value is 0.
v8 0 or 1 If a cell’s left side border is thicker than other borders, the value is 1, else the value is 0.
v9 0 or 1 If a cell’s bottom side border is thicker than other borders, the value is 1, else the value is 0.

With the description of geometry feature vector in Table 2 above, examples of geometry features
can be described for the cells in the minimal table ‘A’ in Figure 5. The geometry feature vectors of each
cell are shown as Figure 6.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 13

Table 2. Description of geometry feature vector representation.

Vector Value Features
v1 0 or 1 If a cell has another cell on the top side, the value is 1, else the value is 0.
v2 0 or 1 If a cell has another cell on the right side, the value is 1, else the value is 0.
v3 0 or 1 If a cell has another cell on the bottom side, the value is 1, else the value is 0.
v4 0 or 1 If a cell has another cell on the left side, the value is 1, else the value is 0.
v5 0 or 1 If a cell is white, the value is 0, else the value is 1.

v6 0 or 1 If a cell’s top side border is thicker than other borders, the value is 1, else the
value is 0.

v7 0 or 1
If a cell’s right side border is thicker than other borders, the value is 1, else the

value is 0.

v8 0 or 1
If a cell’s left side border is thicker than other borders, the value is 1, else the

value is 0.

v9 0 or 1 If a cell’s bottom side border is thicker than other borders, the value is 1, else the
value is 0.

With the description of geometry feature vector in Table 2 above, examples of geometry features
can be described for the cells in the minimal table ‘A’ in Figure 5. The geometry feature vectors of
each cell are shown as Figure 6.

Figure 6. An example of geometry feature vectors.

Data type and text feature vector: Table 3 shows six coordinates for the data type and text feature
vector. Each coordinate depends on defining data type and text characteristics of the cell content. The
number of coordinates of the data type and text feature vector is not restricted, and it can be extended
according to engineering domain characteristics.

Table 3. Description of data type and text feature vector representation.

Vector Value Features

v1 0 or 1 If the content is only the numbers, the value is 1, if else the value is 0.

v2 0 or 1 If the content is a date, the value is 1, if else the value is 0.
v3 0 or 1 If the content defines a time, the value is 1, if else the value is 0.
v4 0 or 1 If the content is a sign (symbol), the value is 1, if else the value is 0.

v5 0 or 1
If the content has more than three phrases, the value is 1, if else the
value is 0.

v6 0 or 1
If the content has more than three words, the value is 1, if else the
value is 0.

The vectors in Figure 7 illustrate the description of data type and text feature vector for the first
minimal table “A” obtained in Figure 5:

Figure 6. An example of geometry feature vectors.

Data type and text feature vector: Table 3 shows six coordinates for the data type and text feature
vector. Each coordinate depends on defining data type and text characteristics of the cell content.
The number of coordinates of the data type and text feature vector is not restricted, and it can be
extended according to engineering domain characteristics.

Table 3. Description of data type and text feature vector representation.

Vector Value Features

v1 0 or 1 If the content is only the numbers, the value is 1, if else the value is 0.
v2 0 or 1 If the content is a date, the value is 1, if else the value is 0.
v3 0 or 1 If the content defines a time, the value is 1, if else the value is 0.
v4 0 or 1 If the content is a sign (symbol), the value is 1, if else the value is 0.
v5 0 or 1 If the content has more than three phrases, the value is 1, if else the value is 0.
v6 0 or 1 If the content has more than three words, the value is 1, if else the value is 0.

The vectors in Figure 7 illustrate the description of data type and text feature vector for the first
minimal table “A” obtained in Figure 5:Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 13

Figure 7. An example of data type and text feature vectors.

For training and testing a neural network, each cell data should have a correct classification
result. A classification result should be given by domain experts, and it is simply 0 or 1 depending
on classification of the cell. If a cell represents a label, its classification result is 1, and otherwise it is
0.

A list of cell feature vectors for engineering tables was used to train a neural network. A set of
table training data should have four columns: “row_id”, “text”, “cell feature vector”, “classification
result”. In the training stage, a set of training data is prepared to update parameters of a neural
network. After training, a set of test data is provided to evaluate the neural network. A dataset for 80
tables was used, and 60 of them were used for training and the rest were used for testing. The 80
tables were randomly selected from engineering specification documents related to a plant
construction project. The selected tables were expressed in the pdf format so that cell feature vectors
were pre-processed by an image and text processing program. The program was developed using
the C# program language. Classification results of each text are manually given. The set of table data
were prepared in an Excel file. The neural network evaluation result showed that 95% of cells were
classified correctly.

After labels and data were classified, labels should be interpreted as concepts, and then their
relationships should be inferred to understand a table correctly.

6. Domain Knowledge Map Extension

Understanding table occurs when computers understand the semantics of the tables through the
interconnections of concepts in a knowledge base [16]. The labels found in the classification step
should be interpreted as concepts, and they should be related to existing concepts of domain
ontology.

The domain knowledge map extension process consists of three steps: (1) Pre-processing terms
in labels, (2) mapping terms to concepts and finding relationships, and (3) assigning unmatched terms
to new concepts.

6.1. Pre-Processing Terms in Labels

Some terms in engineering documents are expressed in abbreviation, and some terms are
expressed in either plural or singular terms. Expressing a concept with different terms makes
computer hard to match terms to their corresponding concepts. In pre-processing stage, abbreviated
terms should be replaced with full terms, and a plural term should be replaced with its singular term.
A domain specific abbreviation dictionary and plural dictionary should be prepared for the pre-
processing.

In addition, Part-of-Speech (POS) tag of terms should be specified for text processing. Stanford
POS tagger [22] was used to give POS tags on the English terms in labels. For example, a POS tag of
“Project” term is “NN”, which means noun. “Project Number” term has “NN” and “NN” tags, and
it is represented as “NN + NN” in this paper. POS tags help to understand the meaning of terms and
to clarify whether it is a sentence or compound nouns. The POS information is essential to give
mapping relationships between labels and concepts of a domain ontology.

Figure 8 shows a pre-processing result of the table example in Figure 1. Plural term “pumps” is
changed to the singular term “pump.” POS tags, the number of words, existence of preposition “of”
and existence of related data are captured after pre-processing.

Figure 7. An example of data type and text feature vectors.

Appl. Sci. 2020, 10, 6182 9 of 13

For training and testing a neural network, each cell data should have a correct classification
result. A classification result should be given by domain experts, and it is simply 0 or 1 depending on
classification of the cell. If a cell represents a label, its classification result is 1, and otherwise it is 0.

A list of cell feature vectors for engineering tables was used to train a neural network. A set of
table training data should have four columns: “row_id”, “text”, “cell feature vector”, “classification
result”. In the training stage, a set of training data is prepared to update parameters of a neural network.
After training, a set of test data is provided to evaluate the neural network. A dataset for 80 tables was
used, and 60 of them were used for training and the rest were used for testing. The 80 tables were
randomly selected from engineering specification documents related to a plant construction project.
The selected tables were expressed in the pdf format so that cell feature vectors were pre-processed by
an image and text processing program. The program was developed using the C# program language.
Classification results of each text are manually given. The set of table data were prepared in an Excel
file. The neural network evaluation result showed that 95% of cells were classified correctly.

After labels and data were classified, labels should be interpreted as concepts, and then their
relationships should be inferred to understand a table correctly.

6. Domain Knowledge Map Extension

Understanding table occurs when computers understand the semantics of the tables through
the interconnections of concepts in a knowledge base [16]. The labels found in the classification step
should be interpreted as concepts, and they should be related to existing concepts of domain ontology.

The domain knowledge map extension process consists of three steps: (1) Pre-processing terms in
labels, (2) mapping terms to concepts and finding relationships, and (3) assigning unmatched terms to
new concepts.

6.1. Pre-Processing Terms in Labels

Some terms in engineering documents are expressed in abbreviation, and some terms are expressed
in either plural or singular terms. Expressing a concept with different terms makes computer hard
to match terms to their corresponding concepts. In pre-processing stage, abbreviated terms should
be replaced with full terms, and a plural term should be replaced with its singular term. A domain
specific abbreviation dictionary and plural dictionary should be prepared for the pre-processing.

In addition, Part-of-Speech (POS) tag of terms should be specified for text processing. Stanford
POS tagger [22] was used to give POS tags on the English terms in labels. For example, a POS tag of
“Project” term is “NN”, which means noun. “Project Number” term has “NN” and “NN” tags, and it
is represented as “NN + NN” in this paper. POS tags help to understand the meaning of terms and to
clarify whether it is a sentence or compound nouns. The POS information is essential to give mapping
relationships between labels and concepts of a domain ontology.

Figure 8 shows a pre-processing result of the table example in Figure 1. Plural term “pumps” is
changed to the singular term “pump.” POS tags, the number of words, existence of preposition “of”
and existence of related data are captured after pre-processing.

Appl. Sci. 2020, 10, 6182 10 of 13

Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 13

Figure 8. A pre-processing example for the table in Figure 1.

6.2. Mapping Labels to Concepts and Finding Relationships

An ontology has concepts and relationships, and it can explicitly represent meanings of them.
Terms in labels for engineering specification tables should express some concepts related to
engineering specification. Let us assume that a domain ontology was developed and used to
represent product specification as shown in Figure 9.

Figure 9. A partial domain ontology example for product specification.

Rules were developed to find mapping relationships between labels and concepts in the domain
ontology. The rules are applied to POS-tagged labels, and the rules determine whether or not a tagged
label is a sub-concept of “Object”, “Attribute”, or “Unit”. The rules reused existing concepts and their
relationships to introduce a new term as a concept so that they can extend an existing domain
ontology. The rules are shown in the followings:

1. If [NN]* exists in the ontology, then its concept is the existing one. For example, “pump” term is
the concept “pump” which is an object and a sub-concept of “Equipment”.

2. If a label is [NN1] *+ [NN2] *, and [NN1] * includes an object, and [NN2] * is an attribute, then
the object in [NN1] * and [NN2] * attribute are linked with “has_attr.” For example, “central
pump max speed” means “pump” has a “max speed” attribute.

3. If a label is [NN1] *+ [NN2] *, and [NN1] * does not include an object, and [NN2] * is an attribute,
then the [NN1] *+ [NN2] * becomes a sub-concept of [NN2] * attribute. For example, “stroke
length” becomes a sub-concept of “length” attribute.

Figure 8. A pre-processing example for the table in Figure 1.

6.2. Mapping Labels to Concepts and Finding Relationships

An ontology has concepts and relationships, and it can explicitly represent meanings of them.
Terms in labels for engineering specification tables should express some concepts related to engineering
specification. Let us assume that a domain ontology was developed and used to represent product
specification as shown in Figure 9.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 13

Figure 8. A pre-processing example for the table in Figure 1.

6.2. Mapping Labels to Concepts and Finding Relationships

An ontology has concepts and relationships, and it can explicitly represent meanings of them.
Terms in labels for engineering specification tables should express some concepts related to
engineering specification. Let us assume that a domain ontology was developed and used to
represent product specification as shown in Figure 9.

Figure 9. A partial domain ontology example for product specification.

Rules were developed to find mapping relationships between labels and concepts in the domain
ontology. The rules are applied to POS-tagged labels, and the rules determine whether or not a tagged
label is a sub-concept of “Object”, “Attribute”, or “Unit”. The rules reused existing concepts and their
relationships to introduce a new term as a concept so that they can extend an existing domain
ontology. The rules are shown in the followings:

1. If [NN]* exists in the ontology, then its concept is the existing one. For example, “pump” term is
the concept “pump” which is an object and a sub-concept of “Equipment”.

2. If a label is [NN1] *+ [NN2] *, and [NN1] * includes an object, and [NN2] * is an attribute, then
the object in [NN1] * and [NN2] * attribute are linked with “has_attr.” For example, “central
pump max speed” means “pump” has a “max speed” attribute.

3. If a label is [NN1] *+ [NN2] *, and [NN1] * does not include an object, and [NN2] * is an attribute,
then the [NN1] *+ [NN2] * becomes a sub-concept of [NN2] * attribute. For example, “stroke
length” becomes a sub-concept of “length” attribute.

Figure 9. A partial domain ontology example for product specification.

Rules were developed to find mapping relationships between labels and concepts in the domain
ontology. The rules are applied to POS-tagged labels, and the rules determine whether or not a tagged
label is a sub-concept of “Object”, “Attribute”, or “Unit”. The rules reused existing concepts and their
relationships to introduce a new term as a concept so that they can extend an existing domain ontology.
The rules are shown in the followings:

1. If [NN]* exists in the ontology, then its concept is the existing one. For example, “pump” term is
the concept “pump” which is an object and a sub-concept of “Equipment”.

2. If a label is [NN1] *+ [NN2] *, and [NN1] * includes an object, and [NN2] * is an attribute, then the
object in [NN1] * and [NN2] * attribute are linked with “has_attr.” For example, “central pump
max speed” means “pump” has a “max speed” attribute.

3. If a label is [NN1] *+ [NN2] *, and [NN1] * does not include an object, and [NN2] * is an attribute,
then the [NN1] *+ [NN2] * becomes a sub-concept of [NN2] * attribute. For example, “stroke
length” becomes a sub-concept of “length” attribute.

Appl. Sci. 2020, 10, 6182 11 of 13

4. If the label is [NN1] *+ “of” + [NN2] * and [NN1] * is an attribute, then [NN2] * is an object
and [NN1] * is an attribute of [NN2] *. For example, “total weight of central pump” means that
“central pump” has an attribute “total weight.”

5. If the label is [NN] * + [object] and the object exists in the ontology, then the [NN] * + [object]
becomes a sub-concept of the object. For example, “Single-acting plunger-type pump” becomes a
sub-concept of “pump”.

The rules defined above discover whether classified and tagged labels in a minimal table are an
object, an attribute or a unit, and further the relationships that exist between them. Figure 10 shows the
concepts (object, attribute, and unit) that matched with the labels (pump, stroke length, speed rating,
rpm, m/s, m, and mm), and how they are related to each other. Two new concepts “single-acting
plunger-type pump” and “double-acting piston-type pump” are defined as a sub-concept of “pump”
because of rule 5. By rule 3, “stroke length” becomes a sub-concept of “length.”

Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 13

4. If the label is [NN1] *+ “of” + [NN2] * and [NN1] * is an attribute, then [NN2] * is an object and
[NN1] * is an attribute of [NN2] *. For example, “total weight of central pump” means that
“central pump” has an attribute “total weight.”

5. If the label is [NN] * + [object] and the object exists in the ontology, then the [NN] * + [object]
becomes a sub-concept of the object. For example, “Single-acting plunger-type pump” becomes
a sub-concept of “pump”.

The rules defined above discover whether classified and tagged labels in a minimal table are an
object, an attribute or a unit, and further the relationships that exist between them. Figure 10 shows
the concepts (object, attribute, and unit) that matched with the labels (pump, stroke length, speed
rating, rpm, m/s, m, and mm), and how they are related to each other. Two new concepts “single-
acting plunger-type pump” and “double-acting piston-type pump” are defined as a sub-concept of
“pump” because of rule 5. By rule 3, “stroke length” becomes a sub-concept of “length.”

Figure 10. The extended concepts and relationships of domain ontology for Figure 1.

6.3. Assigning Unmatched Labels to Concepts

The rule-based matching labels to concepts can work only if labels include terms defined in the
pre-defined ontology. If no terms in a label are matched to concepts in the ontology, the label should
be temporally assigned to a concept considering the matching relationship of its nearby labels. Since
the rules are applied to a minimal table, a label could be matched to either object, attribute, or unit. If
a left or right label in the same row or column is matched to an attribute, the unmatched label may
have a high chance of being matched to the same concept. This approach is a rule-of-thumb, so
engineers should check if the temporal matching relationships are correct or not. In the beginning
stage of building and extending domain ontology, it may require efforts and time of engineers.
However, once a domain ontology was built by engineers, the ontology can be reused to build other
domain ontology and it may save a lot of time and efforts for engineers.

For example, a minimal table “B” in Figure 5 showed ten attributes of “Drawing” object. If a
domain ontology had only a few of them such as “Rev.”, “Date”, and “Description,” the other seven
labels could be assigned to attribute concepts of “Drawing” object. If an engineer confirmed that the
other seven labels are attributes of “Drawing” object, they can be reused when other project domain
ontology needs the “Drawing” concept.

7. Conclusions

In practice, searching product specification defined in tables in engineering specification
documents becomes more popular as engineers adapted to sophisticated searching functions. Once
table data are converted to computer readable format, it is efficiently available for use in product
development and knowledge discovery. The proposed framework of table understanding can be
used for the conversion of data/information from table sources to domain knowledge map. The
domain knowledge map can be represented in OWL (web ontology language), and it can be applied
to search specific product data and find product information hidden in tables in engineering
documents. Once many product specification tables were interpreted by computers, various product
specification related data could be stored in a big-data platform, and the knowledge map can be used
as metadata of the large distributed storages [23]. The analysis of the knowledge map could provide
engineers with extra-insight like analyzing a data-cube [24] about specific product specifications.

Figure 10. The extended concepts and relationships of domain ontology for Figure 1.

6.3. Assigning Unmatched Labels to Concepts

The rule-based matching labels to concepts can work only if labels include terms defined in the
pre-defined ontology. If no terms in a label are matched to concepts in the ontology, the label should be
temporally assigned to a concept considering the matching relationship of its nearby labels. Since the
rules are applied to a minimal table, a label could be matched to either object, attribute, or unit. If a left
or right label in the same row or column is matched to an attribute, the unmatched label may have a
high chance of being matched to the same concept. This approach is a rule-of-thumb, so engineers
should check if the temporal matching relationships are correct or not. In the beginning stage of
building and extending domain ontology, it may require efforts and time of engineers. However, once a
domain ontology was built by engineers, the ontology can be reused to build other domain ontology
and it may save a lot of time and efforts for engineers.

For example, a minimal table “B” in Figure 5 showed ten attributes of “Drawing” object. If a
domain ontology had only a few of them such as “Rev.”, “Date”, and “Description,” the other seven
labels could be assigned to attribute concepts of “Drawing” object. If an engineer confirmed that the
other seven labels are attributes of “Drawing” object, they can be reused when other project domain
ontology needs the “Drawing” concept.

7. Conclusions

In practice, searching product specification defined in tables in engineering specification documents
becomes more popular as engineers adapted to sophisticated searching functions. Once table data are
converted to computer readable format, it is efficiently available for use in product development and
knowledge discovery. The proposed framework of table understanding can be used for the conversion
of data/information from table sources to domain knowledge map. The domain knowledge map can
be represented in OWL (web ontology language), and it can be applied to search specific product
data and find product information hidden in tables in engineering documents. Once many product
specification tables were interpreted by computers, various product specification related data could be
stored in a big-data platform, and the knowledge map can be used as metadata of the large distributed
storages [23]. The analysis of the knowledge map could provide engineers with extra-insight like
analyzing a data-cube [24] about specific product specifications.

Appl. Sci. 2020, 10, 6182 12 of 13

The proposed framework has three steps of table understanding: (1) Identification of minimal
table, (2) Classification of cells into labels and data, (3) Extending domain knowledge map. Each step
was explained with engineering table examples. The first step was designed to find sub-tables in
a complex engineering table. It modified the XY-tree algorithm to find sub-tables in matrix form,
which are called minimal tables in the framework. The second step was designed to classify cells
into labels and data in a minimal table. Neural network algorithm was adopted for the classification.
The third step was designed to build a domain knowledge map by mapping between terms in labels
and concepts in an existing knowledge map. Natural language processing was adopted to analysis
terms in labels, and language grammar-based rules were proposed for mapping between terms in
labels and concepts in the domain knowledge map.

The proposed framework contributed to make computers understand tables, especially in
engineering specification documents. The proposed framework could be applied to retrieve table
type product-related data from printed or scanned formats. For example, table type product data in
2D drawing images or scanned files can be retrieved by the proposed framework and can be stored
in a database for future needs. Since many companies exchange pdf-type or image-type documents
including product data, the proposed framework could be useful to extract table formatted product
data from those documents.

Although the proposed framework works well for engineering tables based on the illustration
examples, it still could not work or fit with other different types of tables. Since the text processing
module was implemented with the Standford POS tagger, only engineering tables in English can
be considered as input tables. If a table described in other languages needed to be processed,
its corresponding POS tagging module is required. In addition, rules for knowledge map extension
should be changed because they were affected by the grammar of the language. As future research,
additional rules to automate the knowledge map extension need to be developed. Also, deep learning
algorithms should be tested for tables in engineering specifications. Deep learning algorithms could
not be tested in the paper because of shortage of training tables.

Author Contributions: V.A. participated in the study conception and design, and he wrote the first manuscript
with J.H.L. H.-W.S. provided the necessities of this study for industry use and participated in the design and
evaluation of the proposed framework. He also helped the acquisition of engineering table data from the industry.
H.L. analyzed related researches and participated in the critical revision of the paper. J.H.L. designed the proposed
framework, and he helped V.A. to write the manuscript. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by two projects of the Ministry of Trade, Industry and Energy in South Korea.
The first grant number is 20009324 (project name: “Development of Vertical Integrated Smart Factory Package for
Chemical Plant”) and the second one is 20009185 (project name: “Development of NPD service platform based on
AI analytics and user comments on consumer goods”).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Embley, D.W.; Hurst, M.; Lopresti, D.; Nagy, G. Table-processing paradigms: A research survey.
Int. J. Doc. Anal. Recognit. (IJDAR) 2006, 8, 66–86. [CrossRef]

2. Hurst, M. Layout and language: An efficient algorithm for detecting text blocks based on spatial and
linguistic evidence. Doc. Recognit. Retr. VIII 2000, 4307, 56–67.

3. Khusro, S.; Latif, A.; Ullah, I. On methods and tools of table detection, extraction and annotation in PDF
documents. J. Inf. Sci. 2015, 41, 41–57. [CrossRef]

4. Itonori, K. Table structure recognition based on textblock arrangement and ruled line position. In Proceedings
of the 2nd International Conference on Document Analysis and Recognition (ICDAR’93), Tsukuba Science
City, Japan, 20–22 October 1993; pp. 765–768.

5. Shigarov, A.O. Table understanding using a rule engine. Expert Syst. Appl. 2015, 42, 929–937. [CrossRef]
6. Shigarov, A.O.; Mikhailov, A.A. Rule-based spreadsheet data transformation from arbitrary to relational

tables. Inf. Syst. 2017, 71, 123–136. [CrossRef]

http://dx.doi.org/10.1007/s10032-006-0017-x
http://dx.doi.org/10.1177/0165551514551903
http://dx.doi.org/10.1016/j.eswa.2014.08.045
http://dx.doi.org/10.1016/j.is.2017.08.004

Appl. Sci. 2020, 10, 6182 13 of 13

7. Hu, J.; Kashi, R.S.; Lopresti, D.; Wilfong, G.T. Evaluating the performance of table processing algorithms.
Int. J. Doc. Anal. Recognit. 2002, 4, 140–153. [CrossRef]

8. Schreiber, S.; Agne, S.; Wolf, I.; Dengel, A.; Ahmed, S. Deepdesrt: Deep learning for detection and structure
recognition of tables in document images. In Proceedings of the 2017 14th IAPR International Conference on
Document Analysis and Recognition (ICDAR), Kyoto, Japan, 9–15 November 2017; Volume 1, pp. 1162–1167.

9. Douglas, S.; Hurst, M.; Quinn, D. Using natural language processing for identifying and interpreting tables
in plain text. In Proceedings of the Fourth Annual Symposium on Document Analysis and Information
Retrieval, Las Vegas, NV, USA, 24–26 April 1995; pp. 535–546.

10. Tijerino, Y.A.; Embley, D.W.; Lonsdale, D.W.; Ding, Y.; Nagy, G. Towards ontology generation from tables.
World Wide Web 2005, 8, 261–285. [CrossRef]

11. Hu, J.; Kashi, R.S.; Lopresti, D.P.; Wilfong, G. Medium-independent table detection. In Proceedings of the
Document Recognition and Retrieval VII, San Jose, CA, USA, 22 December 1999; Volume 3967, pp. 291–302.

12. Hu, J.; Kashi, R.S.; Lopresti, D.P.; Wilfong, G. Table structure recognition and its evaluation. In Proceedings of
the Document Recognition and Retrieval VIII, San Jose, CA, USA, 21 December 2000; Volume 4307, pp. 44–55.

13. E Silva, A.C.; Jorge, A.M.; Torgo, L. Design of an end-to-end method to extract information from tables.
Int. J. Doc. Anal. Recognit. (IJDAR) 2006, 8, 144–171. [CrossRef]

14. Kim, Y.S.; Lee, K.H. Extracting logical structures from HTML tables. Comput. Stand. Interfaces 2008, 30,
296–308. [CrossRef]

15. Embley, D.W.; Tao, C.; Liddle, S.W. Automating the extraction of data from HTML tables with unknown
structure. Data Knowl. Eng. 2005, 54, 3–28. [CrossRef]

16. Wang, J.; Wang, H.; Wang, Z.; Zhu, K.Q. Understanding tables on the web. In Proceedings of the International
Conference on Conceptual Modeling, Florence, Italy, 15–18 October 2012; pp. 141–155.

17. Chen, Z.; Cafarella, M. Automatic web spreadsheet data extraction. In Proceedings of the 3rd International
Workshop on Semantic Search over the Web, Riva del Garda, Italy, 30 August 2013; pp. 1–8.

18. Rastan, R.; Paik, H.Y.; Shepherd, J. Texus: A unified framework for extracting and understanding tables in
pdf documents. Inf. Process. Manag. 2019, 56, 895–918. [CrossRef]

19. Nishida, K.; Sadamitsu, K.; Higashinaka, R.; Matsuo, Y. Understanding the semantic structures of tables with
a hybrid deep neural network architecture. In Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, San Francisco, CA, USA, 4–9 February 2017; pp. 168–174.

20. Chen, J.; Jiménez-Ruiz, E.; Horrocks, I.; Sutton, C. Colnet: Embedding the semantics of web tables for column
type prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA,
27 January–1 February 2019; Volume 33, pp. 29–36.

21. Cesarini, F.; Gori, M.; Marinai, S.; Soda, G. Structured document segmentation and representation by
the modified XY tree. In Proceedings of the Fifth International Conference on Document Analysis and
Recognition. ICDAR’99 (Cat. No. PR00318), Bangalore, India, 22 September 1999; pp. 563–566.

22. Toutanova, K.; Klein, D.; Manning, C.D.; Singer, Y. Feature-rich part-of-speech tagging with a cyclic
dependency network. In Proceedings of the 2003 Conference of the North American Chapter of the
Association for Computational Linguistics on Human Language Technology, Edmonton, AB, Canada,
27 May–1 June 2003; Volume 1, pp. 173–180.

23. Won, H.; Nguyen, M.C.; Gil, M.S.; Moon, Y.S.; Whang, K.Y. Moving metadata from ad hoc files to database
tables for robust, highly available, and scalable HDFS. J. Supercomput. 2017, 73, 2657–2681. [CrossRef]

24. Zhang, Y.; Ordonez, C.; García-García, J.; Bellatreche, L.; Carrillo, H. The percentage cube. Inf. Syst. 2019, 79,
20–31. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s100320200074
http://dx.doi.org/10.1007/s11280-005-0360-8
http://dx.doi.org/10.1007/s10032-005-0001-x
http://dx.doi.org/10.1016/j.csi.2007.08.006
http://dx.doi.org/10.1016/j.datak.2004.10.004
http://dx.doi.org/10.1016/j.ipm.2019.01.008
http://dx.doi.org/10.1007/s11227-016-1949-7
http://dx.doi.org/10.1016/j.is.2018.01.005
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Previous Works
	Overview of the Proposed Approach
	Minimal Table Identification
	Cell Classification
	Domain Knowledge Map Extension
	Pre-Processing Terms in Labels
	Mapping Labels to Concepts and Finding Relationships
	Assigning Unmatched Labels to Concepts

	Conclusions
	References

