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Abstract: This study explored the regenerated performance of activated carbon (AC) as SO2 adsorbent.
The optimal conditions of SO2 removal were determined by experiment, and then the adsorption
efficiency of AC was studied by a method of thermal regeneration. The characteristics of regenerated
AC were analyzed by Brunauer-Emmett-Teller (BET) and Scanning Electron Microscopy (SEM)
methods. The test results showed that the most suitable adsorption conditions were using 4 g of
activated carbon, 1.65 L/min gas flue rate, and 5% O2. During the ten regenerations, the desulfurization
efficiency and sulfur capacity of AC still maintained a high level. The characterization results showed
that the increase of material surface area and pore volume were 101 m2 g−1, and 0.13 cm3 g−1,
respectively, after the cycles.
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1. Introduction

SO2 is the major air contaminant released in industrial activities. This gas is mainly generated
from the combustion of fossil fuels (coal, oil, and gas), which is for power generation and the smelting
of mineral ores, like copper, aluminum, zinc, lead, and iron [1]. SO2 produced by industry can
cause acid rain, which contributes to air pollution, soil acidification, water pollution, and destruction
of building structures [2]. These environmental problems affect human health, social security, and
ecological harmony [3]. Thus, several efficient technologies have been employed for the removal of
SO2 in industrial production by most countries [4].

Porous solid sorbents, such as activated carbon (AC), zeolites, alumina, and zirconia, attract much
attention owing to their characteristics of cheap, low energy consumption, and easy regeneration [5,6].
In the area of air pollution control, porous solids have been widely adopted for desulfurization, because
of their ultra-low sulfur contents and having high selectivity for sulfur compounds [7]. Specifically,
AC is one of the main SO2 adsorbents, which have abundant oxygen- containing groups, highly porous
structure, and good thermal stability [8–10]. The characteristics of abundant oxygen-containing groups
and the highly porous structure of AC can enhance the performance for SO2 physisorption and provide
more active sites for SO2 removal [11,12].

AC adsorbs SO2 until it reaches its saturation limit. On most occasions, the saturated AC fails to
be reused, and is landfilled or incinerated [13]. The regeneration of saturated AC has become a desired
feature from academic, industrial, and economic perspectives, as it complies with both the regulations
of the discharge of solid pollutants and is good for constructing a sustainable society with a clean and
tidy environment [13,14]. The methods of regenerating saturated materials mainly include thermal
treatment, oxidation, microwave irradiation, and electrochemical methods [15]. Thermal treatment is
the best compromised method in the regeneration of spent adsorbents in the consideration of the cost,
the adsorption efficiency, and the number of regeneration cycles. The method is simple and versatile,
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and it can obtain better environmental and industrial benefits [14]. A versatile reaction mechanism is
shown in Equations (1)–(3) in the process of SO2 adsorption and desorption by AC:

SO2 + O2 + H2O→H2SO4 (1)

AC + 2H2SO4→CO2 + 2SO2 + 2H2O (2)

AC + H2SO4→CO + SO2 + H2O (3)

Wang et al. [16] reported an increase in the SO2 removal efficiency of AC fibers after 1173 K
thermal treatment. Saleh et al. [17] showed that the bimetallic nanoparticles which are loaded on the
modified AC, can simultaneous remove SO2. Jiang et al. [18] revealed that activated carbon obtained
from corncob waste showed an effective performance of removal of toluene from flue gas. Li et al. [19]
demonstrated that the thermal regeneration of activated coke may cause carbon consumption, which
is mostly influenced by the regeneration temperature. However, the performance of AC in the process
of multiple recycle regeneration, has been rarely reported.

Thus, this study investigated the influence of various experimental conditions on SO2 adsorption,
and focused both on the investigation of the influence of thermal regeneration on the characteristics of
AC, and the adsorption efficiency and mechanism of AC after thermal regeneration [1,2].

2. Materials and Methods

2.1. Materials

AC was supplied by Xinhua Chemical Ltd., China. SO2 was provided by Shanghai Chunyu
Special Gas Co., Ltd. Before the experiment, AC was ground and sieved to 20–40 mesh. Then, AC was
dried at 120 ◦C for 24 h, labeled as AC and stored in a desiccator.

2.2. SO2 Adsorption Experiment

The experimental device is shown in Figure 1. A single factor experiment was used to investigate
the effects of activated carbon dosage, oxygen content, and flue gas flow rate on activated carbon
adsorption, as shown in Table 1. A certain amount of adsorbents were placed in a 15 × 150 mm
U- shaped tube and heated in a water bath at 60 ◦C, under a mixed gas flow (the consistent mixed
gas contained 2000 ppm SO2, a certain amount of O2, and was balanced by N2. The amount of
SO2 in the exhaust gas was analyzed by a portable flue gas analyzer (KANE9506, England KANE).
The desulfurization efficiency of the adsorbent AC calculated, which determined the suitable adsorption
conditions. The desulfurization efficiency can be evaluated by:

η =
Ci −Co × 100%

Ci
(4)

where η is the desulfurization efficiency, Ci represents the SO2 inlet concentration, and Co the SO2

outlet concentration (ppm).
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Figure 1. Schematic of the experimental apparatus. 

Table 1. Experimental conditions of SO2 adsorption. 

AC Dosage/g Flue gas Rate/L·min−1 Oxygen Content/% 
2 1.65 5 
4 1.65 5 
6 1.65 5 
8 1.65 5 

10 1.65 5 
4 1 5 
4 2 5 
4 3 5 
4 4 5 
4 1.65 0 
4 1.65 2.5 
4 1.65 5 
4 1.65 7.5 

2.3. Recycle of AC 

Saturated AC was placed in a quartz boat and heated in a tube furnace at 420 °C for 1.5 h, 
under a gas flow rate of 1.65 L/min. The AC was weighed after cooling to room temperature. After 
that, the regenerated adsorbent was treated to remove SO2 cyclically under the suitable 
experimental conditions, while the cycles were carried out ten times. The regenerated samples were 
marked as Reg-ACn, where n represents the number of cycles. After each regeneration, the weights 
of the adsorbent were recorded, and the regeneration loss and sulfur capacity calculated. The 
samples were characterized by several methods, and the desulfurization efficiency and adsorption 
capacity obtained. The adsorption capacity can be calculated as follows: 
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the time of removal of SO2 (min). 
  

Figure 1. Schematic of the experimental apparatus.

Table 1. Experimental conditions of SO2 adsorption.

AC Dosage/g Flue Gas Rate/L·min−1 Oxygen Content/%

2 1.65 5
4 1.65 5
6 1.65 5
8 1.65 5
10 1.65 5
4 1 5
4 2 5
4 3 5
4 4 5
4 1.65 0
4 1.65 2.5
4 1.65 5
4 1.65 7.5

2.3. Recycle of AC

Saturated AC was placed in a quartz boat and heated in a tube furnace at 420 ◦C for 1.5 h, under a
gas flow rate of 1.65 L/min. The AC was weighed after cooling to room temperature. After that, the
regenerated adsorbent was treated to remove SO2 cyclically under the suitable experimental conditions,
while the cycles were carried out ten times. The regenerated samples were marked as Reg-ACn,
where n represents the number of cycles. After each regeneration, the weights of the adsorbent were
recorded, and the regeneration loss and sulfur capacity calculated. The samples were characterized by
several methods, and the desulfurization efficiency and adsorption capacity obtained. The adsorption
capacity can be calculated as follows:

qm = F/m

Cit−

t∫
0

Codt

 (5)

where qm is the adsorption capacity of SO2 (mg/g); F is the flue gas rate (L/min); Ci represents the SO2

inlet concentration, and Co the SO2 outlet concentration (ppm); m is the weight of AC (g); t is the time
of removal of SO2 (min).
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2.4. Characterization of AC

The SEM images of AC were obtained using a scanning electron microscope (SEM, JSM–6460,
Japan JEOL). The textural characteristics of the AC samples were analyzed by adsorption–desorption
of nitrogen at 77 K on a Micromeritics ASAP 2020 auto-adsorption system (Norcross, GA, USA).

3. Results and Discussion

3.1. Characterization of AC

3.1.1. SEM Analysis

The SEM images of the six AC samples after five times regeneration are shown in Figure 2a–f.
From the aspects of pore structure, the surface of the samples appeared to have a structure with more
micropores and mesoporous (Figure 2b) after thermal regeneration. Additionally, some micropore
structures were observed within the macropores as in Figure 2e,f. After the 8th cycle, the pores were
irregularly arranged and partly collapsed. Comparing the surface morphology of the AC before and
after desulfurization, some white particles with irregular shape were deposited on the surface of the
samples after regeneration, which could have been sulfate. Some of the micropores became clogged
with these particles. The results indicated that new micropores are generated after regeneration,
which is conducive to the adsorption of SO2 by AC, while the deposition of sulfate lead to a decline in
desulfurization activity with continued cycles of regeneration.
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Figure 2. SEM image of the prepared activated carbon (AC) treated with regeneration after 0 (a), 2 (b),
4 (c), 6 (d), 8 (e), 10 (f) number of cycles.

3.1.2. BET Analysis

As shown in Table 2, the micropore area accounts for approximately 3/4 of the total area, which
suggests that the samples mainly contained micropores. The micropore area, surface area, and pore
volumes were slightly increased after thermal regeneration, owing to the continual etching of the
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formed micropores [20]. This case favored the improvement of the storage capacity for H2SO4 and the
desulfurization efficiency of AC.

Table 2. Surface area and pore volume analysis.

Cycles Micropore Area(m2/g) BET Surface(m2/g)
Total Pore

Volume(cm3/g) Average Pore Size(nm)

0 356.449 463.601 0.246 2.594
2 387.726 498.530 0.273 3.074
4 395.423 518.272 0.291 3.299
6 435.656 563.622 0.321 3.229
8 463.761 589.350 0.319 5.027

10 443.978 664.601 0.373 2.793

N2 adsorption–desorption isotherms and pore size distribution of all samples are depicted in
Figure 3. In Figure 3a, the presence of micropores was proved owing to the dramatic increase of the
adsorbed volume, when the adsorbents are at low relative pressure (P/P0 < 0.2) [21,22]. According to
IUPAC classification [23], the adsorption–desorption isotherms of all samples comply with typical I-
type isotherms of microporous solids. A narrow and long hysteresis ring appeared in the curve at
relative high pressure, and which ended at P/P0 = 1. This indicates that the samples contained both
micropores and mesopores. In Figure 3b, the broadening of pore size distribution of AC after thermal
regeneration was shown from the distribution of the pore size obtained by the Barrett-Joyner-Halenda
(BJH) methods [20,24], which provides evidence for a slight increase of the surface area and pore
volumes. Many studies suggested that the adsorption capacity is mainly affected by the micropore
structure. Diez et al. reported that the main thrust in the promotion of SO2 oxidation is that micropores
and mesopores exist simultaneously in the solid adsorbent [25].
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stands for fresh AC, Reg-ACn stands for the nth regenerated AC).

3.2. SO2 Adsorption

3.2.1. Effect of AC Dosage on SO2 Adsorption

As seen in Figure 4, at amounts of 2 g, 4 g, 6 g, 8 g, and 10 g, the average SO2 adsorption rates of AC
in ten minutes were 42.3%, 55.8%, 62.3%, 68.5%, and 79.7%, respectively. The desulfurization efficiency
is improved by the increase of the AC amount. This indicates that the SO2 saturation adsorption
capacity of the samples is highly influenced by the amount of AC. On increase of dosage, more active
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surface areas and sites are provided from the AC, which develops the removal capacity of SO2 [26].
The best option combines both the cost and desulfurization efficiency, so we fixed the AC dosage for
the rest of the experiment at an amount of 4 g.Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 10 
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Figure 4. Effect of change of carbon dosage on SO2 adsorption behavior (operated at 60 ◦C, for 2, 4, 6, 8,
10 g samples, 2000 ppm SO2, 5% O2, N2 to balance and 1.65 L/min total flow rate).

3.2.2. Effect of Flue Gas Flow Rate on SO2 Adsorption

The influence of gas flow rate on adsorption performance was studied by analysis of the
desulfurization efficiency at flow rates of 1, 2, 3, and 4 L/min. As seen in Figure 5, the average SO2

adsorption rates of AC at the gas flow rate of 1 L/min, 2 L/min, 3 L/min and 4 L/min were 86.2%, 75.9%,
62.3%, and 57.4% in ten minutes, respectively. The slower the gas flow rate, the higher is the adsorption
efficiency. It is evident that the faster the gas flow rate, the lower the retention time of the SO2 in the
AC of the U-shaped tube, thus the adsorption efficiency decreases. In addition, as the gas flow rate
decreases, the adsorption efficiency gradually becomes improved. The reason for this phenomenon is
that the lower the flue gas rate, the bigger is the resistance [27]. So for the other experiments, the flue
gas flow rate is selected at a slow flow rate of 1.65 L/min as a fixed condition.
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3.2.3. Effect of Oxygen Content on SO2 Adsorption

To investigate the influence of O2 contents on the SO2 adsorption efficiency, experiments were
carried out under conditions of different O2 content (0, 2.5, 5, and 7.5% O2). Below 5%, it was observed
from Figure 6 that with the increase in O2 content, the desulfurization efficiency increases. It indicated
that the present of O2 could improve the desulfurization efficiency. This can be explained as follows:
if oxygen and water vapor exist in the process of SO2 adsorption, SO2 will be oxidized to sulfuric acid
and introduced into the pores of the AC, which improves the desulfurization efficiency of AC [28].
When the pore widths in the range of microporous to mesoporous increase, the capacity for storing gas
and liquid may be improved [20]. The desulfurization efficiency above 5% was less. It could be shown
that a large number of oxides were produced due to the combination of too much O2 with the active
components on the AC surface, thereby the AC fails to combine with more active sites, thereby its
desulfurization efficiency decreases [29]. Therefore, we selected a fixed condition of oxygen content of
5% for the rest of the experiments.
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3.3. AC Regeneration

The SO2 breakthrough curves after ten adsorption desorption cycles are illustrated in Figure 7.
Under suitable adsorption conditions (4 g AC, 1.65 L/min flow gas, and 5% O2), the average
desulfurization rate of fresh AC over the first ten minutes is about 96%, and the highest desulfurization
rate of all the samples achieves more than 90%. The desulfurization efficiency decreased gradually
after multiple regenerations. First, one of the reasons maybe that the micropores became disrupted
after thermal treatment. This problem can be minimized in mesoporous carbon materials, such as
porous carbon nanofibers, owing to their thermal and mechanical stability [30]. Second, the surface of
AC produced some sulfates or oxygen groups in the regeneration [31,32], a part of the micropores of
AC was blocked after this situation. In addition, a certain amount of carbon loss may occur during the
process of thermal treatment. Despite this, the highest desulfurization efficiency of 95.4% was still
achieved at the tenth cycle.
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As shown in Figure 8, the sulfur capacity of fresh AC is 38.88 mg/g. After the first heating
regeneration at 400 ◦C, the decrease in sulfur capacity is most obvious. Though the SO2 capacity
of AC decreases continuously with multiple cycles, the regenerated AC after 10 cycles showed a
sulfur capacity of 23.44 mg/g for SO2 adsorption, which only decreased by 15.44 mg/g compared to
that of fresh AC, while after the seventh time, the rate of sulfur capacity decrease became slower.
Zhang et al. [15] showed that the adsorption capacity of CuFe2O4/AC magnetic adsorbent is high,
but the adsorption capacity of CuFe2O4/AC decreases significantly after regeneration. According to
Xu et al. [33] biochar made from cow manure, sewage sludge, and rice husks showed an SO2

adsorption capacity of up to 64 mg g−1, but its specific surface area was too low (the maximum was
42 m2 g−1). In comparison, the adsorption capacity of commercial AC in the regeneration process did
not significantly decrease. The reason is that in the process of sulfuric acid etching, the pore widths in
the range of microporous to mesoporous increased, which improved the capacity for storing sulfuric
acid, and new micropores were produced in the process of sulfuric acid etching. Those conditions
are good for the recovery of the porous volume and adsorption capacity of AC after the cycles
of regeneration.
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4. Conclusions

The effect of SO2 adsorption efficiency was experimentally studied with different carbon dosages,
flue gas flow rates, and oxygen contents. Then, the characterization and desulfurization efficiency
of AC was observed under the current optimum adsorption conditions for a number of 10 heated
regeneration cycles. During the thermal regenerations, micropores became disrupted, and some of
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them became blocked by sulfate particles on the AC surface. However, owing to sulfuric acid etching,
the pore widths in the range of microporous to mesoporous increased and some new micropores
were produced. Therefore, the specific surface area and pore volume of AC were slightly increased.
The highest desulfurization efficiency of fresh AC was 98.7%. The highest desulfurization efficiency
was 95.4% after ten cycles. The results show that AC has a high SO2 adsorption efficiency and the
performance of desulfurization is only slightly decreased after ten thermal regeneration cycles, so it
can be concluded that AC is a suitable material for multiple adsorption–desulfurization cycles.
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