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Abstract: This paper describes the unique antireflection (AR) layer of vertically arranged ZnO
nanorods (NRs) on crystalline silicon (c-Si) solar cells and studies the charge transport and photovoltaic
properties by simulation. The vertically arranged ZnO NRs were deposited on ZnO-seeded c-Si
wafers by a simple low-temperature solution process. The lengths of the ZnO NRs were optimized
by changing the reaction times. Highly dense and vertically arranged ZnO NRs were obtained
over the c-Si wafer when the reaction time was 5 h. The deposited ZnO NRs on the c-Si wafers
exhibited the lowest reflectance of ~7.5% at 838 nm, having a reasonable average reflectance of ~9.5%
in the whole wavelength range (400–1000 nm). Using PC1D software, the charge transport and
photovoltaic properties of c-Si solar cells were explored by considering the lengths of the ZnO NRs
and the reflectance values. The 1.1 µm length of the ZnO NRs and a minimum average reflectance of
9.5% appeared to be the optimum values for achieving the highest power conversion efficiency of
14.88%. The simulation study for the vertically arranged ZnO NRs AR layers clearly reflects that
the low-temperature deposited ZnO NRs on c-Si solar cells could pose a greater prospect in the
manufacturing of low-cost c-Si solar cells.

Keywords: zinc oxide; thin film; silicon solar cells; antireflection layer; power conversion efficiency;
PC1D simulation

1. Introduction

Recent research in Si solar cell technology is basically focused on reducing the manufacturing
cost by means of using low-cost and effective raw materials [1]. Among all solar materials, a coating
of a thin layer, called the antireflection (AR) layer, on Si surfaces is applied for reducing the incident
reflection and to increase light absorption. In commercial c-Si solar cells, a silicon nitride (SiNx) layer
is generally used as an AR material because it shows good attachment with passivated Si surfaces [2].
The expensive Plasma Enhanced Chemical Vapor Deposition (PECVD) method has been applied to
deposit SiNx AR layers. The PECVD process is usually faced with several disadvantages, such as
controlling and damaging the Si substrate with plasma during the collision of the Si surface and
secondary electrons [3,4]. Research communities are uninterruptedly concentrating their efforts to
explore cost-effective and ecofriendly photovoltaic (PV) technology [5,6]. Various AR materials having
high refractive indexes, such as Si3N4, a-SiNx, SiO, SiO2, TiO2, Ta2O5, MgF2, SiO2–TiO2, and ZnS, have

Appl. Sci. 2020, 10, 6062; doi:10.3390/app10176062 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-7674-7213
https://orcid.org/0000-0001-7698-2619
http://www.mdpi.com/2076-3417/10/17/6062?type=check_update&version=1
http://dx.doi.org/10.3390/app10176062
http://www.mdpi.com/journal/applsci


Appl. Sci. 2020, 10, 6062 2 of 12

been applied in the fabrication of c-Si solar cells [7–12]. Zinc oxide (ZnO) has a variety of favorable
properties, such as high electron mobility, a wide bandgap of 3.37 eV, and strong room temperature
luminescence for many electronic and electrical devices [13,14]. ZnO, as a promising AR material,
is receiving much attention due to its attractive dielectric properties, good transparency, showing
an adjustable refractive index, and excellent capability to grow a textured layering or coating via
anisotropic growth [15–17].

In that context, growth of ZnO nanorods (NRs) on Si wafers for light trapping and minimizing
the reflectivity of the solar spectrum could be an efficient tool for application in Si solar cells [18]. ZnO
NRs show great potential for the optical imprisonment effect, which makes the proper AR materials
for high-performance c-Si solar cells [19]. The growth of nanostructures like nanowires, nanorods,
nanopyramids, and nanopillars over c-Si wafers can efficiently reduce the reflection by c-Si solar
cells [20]. ZnO NR arrays on Si substrates have demonstrated unique optical absorption and excellent
trapping of incident light by the optical antenna effect [21]. The ZnO NRs as AR layers considerably
induce reflection in a broad wavelength region at different incident angles because continuous transition
in the effective refractive index can be regarded across the air-to-wire interface [22–25]. The AR behavior
of the ZnO NRs has owned a lot of attention because of its low dielectric constant and appropriate
refractive index. Without a proper AR layer, c-Si solar cells face significant energy loss and less
absorption of light. Therefore, it has been realized that the deposition of vertically arranged NRs could
be the promising means to achieve low-cost solar cells [26–28]. Including other deposition techniques
for ZnO NRs, the low-temperature solution method can offer a highly suitable method for controlling
NR sizes and densities over Si surfaces at low temperatures.

The absorption of light or multiple reflections can be realized by deploying multiple transparent
layers or zigzag structures on the top surface of c-Si solar cells [29]. In our previous work, Jannat, A.
et al. prepared SiC-SiO2 nanocomposite AR material, coated by spin coating on Si solar cells, and
manifested a reasonable reduction in reflectance to 7.08%. SiC-SiO2 AR-coated Si solar cells presented
a power conversion efficiency (PCE) of 16.99%, similar to SiNx AR-coated Si solar cells [30]. Further,
Jung, J. et al. successfully deposited the double layer TiO2/Al2O3 anti-reflection coating (ARC) on a Si
wafer, which recorded a low reflectance of 4.74% and expressed a higher PCE (~13.95%) than those
of single layer TiO2 and Al2O3 ARs [31]. Recently, Shah, D.K. et al. reported on the deposition of a
double ZnO/Ag-doped ZnO AR layer over P-type Si solar cells, using a low-cost sol–gel technique via
spin coating. It was found that the double ZnO/Ag-ZnO AR layer on c-Si solar cells presented the
lowest average reflectance of ~7.13%, as compared with single ZnO and single Ag-doped ZnO AR
layers on Si wafers. The fabricated Si solar cell with a double ZnO/Ag-doped ZnO AR layer attained
the highest PCE of 9.48%, while the fabricated crystalline Si solar cells with single ZnO and single
Ag-doped ZnO AR layers obtained low efficiencies of 8.59% and 8.78%, respectively [4]. Therefore, the
reflectivity highly decreased with the growing of rod-like nanostructures on the top surface of the Si
substrate, and ZnO NRs can act as an AR layer. It has been proven that there is no need to provide
an additional AR layer, which reduces the production cost of solar cells. In this work, the vertically
arranged ZnO NRs, as AR layers, have been grown on a c-Si wafer by a low-temperature solution
method, and the structural, morphological, optical, and photovoltaic properties were determined.
Vertically arranged ZnO NRs on Si wafers suppressed an average reflection of ~9.5% in the wavelength
range of 400–1000 nm. Using the length and reflectance of a ZnO NRs AR layer, the photovoltaic
parameters were extracted by a simulation study via PC1D software. The fabricated Si nanostructures
on the Si solar cell were thoroughly characterized in terms of morphology, structure, crystalline nature,
and optical and PV properties.
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2. Materials and Methods

2.1. Deposition of Vertically Arranged ZnO NRs AR on c-Si Wafer

A P-type commercial c-Si wafer (40 × 40 mm2) with a thickness of 120 µm and sheet resistance
of 1–3 Ωcm was used as a substrate. The textured Si wafer was thoroughly cleaned by sonication,
using acetone and deionized (DI) water for 15 min each. For seed layer deposition, a solution was
prepared by mixing 0.9174 g (0.1 M) of zinc acetate hydrate in 50 mL of ethanol. The ZnO seed layer
was deposited on the surface of a pre-cleaned Si wafer and a textured Si wafer by spin coating at
2000 rpm for 30 s, and it was annealed in a furnace at 100 ◦C for 1 h. For the growth of ZnO NRs
on the surface of the Si wafer, a solution was prepared by mixing of 0.1 M of zinc nitrate hydrate
(Zn(NO3)2) and 0.1 M hexamethylenetetramine (C6H12N4) with 50 mL of DI water. The ZnO-seeded Si
substrate was dipped vertically in an airtight vessel and kept in an oven at 75 ◦C for 3, 4, and 5 h. After
a specific time, the Si wafer was taken out gently and washed with ethanol and DI water several times.
Finally, it was annealed in a furnace at 250 ◦C for 1 h, as described in Figure 1. For optimization of the
morphology of ZnO NRs on Si substrates, both bare and textured Si wafers were used to grow ZnO
NRs. The morphologies and optical properties of the grown ZnO NRs were investigated, analyzed,
and characterized by a variety of analytical tools like field emission scanning electron microscopy
(FESEM), ultraviolet–diffuse reflectance spectroscopy (UV-DRS) spectroscopy, photoluminescence (PL)
spectroscopy, Raman analysis, and PC1D simulation tools.
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Figure 1. Schematic diagram of growth of ZnO nanorods (NRs) on a textured Si wafer.

2.2. PC1D Modeling Tool

The numerical modeling software PC1D has been used to simulate the PV properties of c-Si
solar cells, and this software was invented by the group at the University of New South Wales [32].
PC1D allows us to simulate the important photovoltaic properties of solar devices fabricated with
semiconducting materials by regarding them as one-dimensional (axial symmetry). The PC1D software
consists of a large number of libraries and files, including the parameters of a variety of PV technologies
like Ge, GIN, GaAs, a-Si, InP, c-Si, and AlGaAs [33,34]. Several key parameters, including active area,
thickness of device, band gap, and reflectance, were used to perform the simulation for the photovoltaic
parameters of Si solar cells. In this work, the PC1D simulation was performed using the NR lengths
and the average reflectance of the ZnO NRs AR layer over the textured c-Si wafer, and the predicted
performance and charge transport properties of the solar cells were based on the vertically arranged
ZnO NRs AR layer. The details of the simulation parameters are summarized in Table 1. The simulation
was performed under AM 1.5 solar radiation and a constant light intensity of 0.1 W/cm2 (one sun) at
300 K. For all PV simulations, the bulk recombination was set to 10 µs, and P-type background doping
of the solar cells was set to 1.153×1016 cm−3 and N-type first front diffusion to 2.87 × 1020 cm−3 peaks.
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Table 1. Primary parameters used in the PC1D simulation.

Parameters Values

Device area 16 cm2

Front surface texture depth 0–5 µm
Front reflectance 2–4%

Thickness of Si solar cell 120 µm
Dielectric constant 11.9
Energy band gap 1.124 eV

Background doping P-type 1.513 × 1016 cm−3

First front diffusion N-type 2.87 × 1020 cm−3

Refractive index 3.58
Excitation mode Transient

Temperature 25 ◦C
Other parameters Internal model of PC1D

Primary light source AM 1.5D spectrum
Bulk recombination 10 µs
Constant intensity 0.1 W/cm2

2.3. Characterizations

The fabricated ZnO NRs were characterized by a variety of analytical, spectroscopic, and PV
measurement techniques. For microstructure and surface morphology, a field emission scanning
electron microscopy (FESEM, Hitachi 4800, Japan) was used. The confirmation of deposition of ZnO
was verified by X-rays diffraction (XRD), photoluminescence (PL) spectroscopy and Raman scattering
spectroscopy. The optical properties, such as reflectance of rod nanostructures, were investigated
by ultraviolet diffused reflectance spectroscopy and recorded by a Shimadzu MPC-3100 scanning
spectrophotometer in the wavelength range of 400–1200 nm. The detailed PV properties were derived
by PC1D simulation by using the length of the ZnO NRs and the average reflectance as input parameters.

3. Results

To check the uniformity of ZnO nanostructures on the surface of bare as well as textured Si wafers,
top and cross-sectional views of the FESEM analysis were observed. The top surface view of ZnO NRs
on bare and textured Si wafers presents uniform and well-distributed nanorods over the Si surface, as
shown in Figure 2a–h. At the deposition time of 5 h, the highly dense hexagonal faces of the ZnO NRs
have grown over the bare Si wafer (Figure 2c). The ZnO NRs were multidirectional on the textured
surface, but all NRs were arranged in a vertical manner, as displayed in Figure 2e–h). The top view of
the ZnO NRs grown at 5 h reveals that the NRs are well grown in many directions, as they are clearly
visible in the cross-sectional view. Figure 3a shows the highly dense NRs over one pyramid of a Si
wafer. The cross-sectional view of ZnO NRs grown at 5 h is a well-distributed and multidirectional
arrangement of NRs, as shown in Figure 3b.
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Figure 2. Field emission scanning electron microscopy (FESEM) image of the top view of ZnO NRs of
treatment times (a) 3 h, (b) 4 h, (c) 5 h, and (d) 6 h on bare Si substrate and (e) 3 h, (f) 4 h, (g) 5 h, and (h)
6 h on textured Si substrate.
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The growth of ZnO NRs on the surface of the textured Si wafer were analyzed to examine the
crystalline phases by XRD measurements. XRD patterns of all ZnO NRs AR layers exhibit all the
characteristics of the diffraction peaks of ZnO, along with a strong Si phase, which are located at 34.38◦

(002) and 69.26◦ (001), respectively, as shown in Figure 4. The observed diffraction peaks confirm
the perfect crystal of ZnO, having the hexagonal wurtzite phases of ZnO materials [35] along with
the monocrystalline crystalline phase of Si. This examination clearly deduces the growth of single
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crystalline ZnO NRs on a Si surface via the low-temperature solution method, followed by annealing
at 250 ◦C for 1 h.
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Photoluminescence (PL) spectroscopy in Figure 5a revealed emission peaks at 393 nm for ZnO
NRs at 3 h, 4 h, and 5 h, respectively. The small emission peak at 469 nm belongs to the Si wafer. The
PL intensity increased as the reaction time increased, due to an increase in length of the ZnO NRs on
the Si substrate. The existence of a prominent PL emission near 400 nm confirms the formation of ZnO
on the Si wafer [36]. Moreover, the structural behavior of grown ZnO NRs is further elucidated by
the Raman spectroscopy (Figure 5b), which exhibits a sharp Raman band at 437 cm−1 with a Si peak.
The Raman band at 437 cm−1 corresponds to the typical E2 mode, which normally originates from
the hexagonal wurtzite phase of ZnO, deducing the creation of ZnO NRs on the Si surface. No other
Raman bands were detected, confirming the high purity ZnO crystal without any surface defects.
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Ultra-violet diffuse reflectance spectroscopy (UV-DRS) has been carried out to evaluate the optical
properties of vertically arranged ZnO NRs on Si wafers with reaction times of 3 h, 4 h, 5 h, and 6 h.
In Figure 6, the bare Si wafer displays an average reflectance of ~38% in the wavelength range of
400–1000 nm, whereas after texturing the Si wafers, the average reflectance has reduced to 14%. The
vertically arranged ZnO NRs on the Si wafer detected an average reflectance of ~12.36% for 3 h, 12.69%
for 4 h, 9.58% for 5 h, and 14.95% for 6 h, covering a large wavelength range from 400–1000 nm. As
seen in Figure 6, the significant reduction in the reflectance to ~9.58% was recorded in the 5 h reaction
time on the Si wafer, which might be due to the generation of multiple reflections of the incident light
by the vertically arranged nanorods. The optimized average reflectance of 9.58% at 5 h of treatment
time (experimental) is well matched with the average reflectance of 9.79% obtained by the simulation,
which is clearly validated in the simulation data as shown in Figure 6.Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 12 
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The other optical properties, such as the refractive index (n) and extinction coefficient (k) of ZnO
NRs on Si wafers, are crucial to develop efficient Si solar cells, as explored in Figure 7, and are extracted
from the reflectance results [37–39]. As compared with other reaction times, the highest refractive
index of 1.92 and lowest extinction coefficient are observed by the vertically arranged ZnO NRs on Si
wafers with an optimized reaction time of 5 h, as shown in Figure 7a,b. Noticeably, the low k value in
the whole visible region represents the weak absorption and large photonic energy of light via the
black colored surface of the Si wafer.

Based on the above structural and optical properties of ZnO NRs AR layers, a simulation has been
carried out using PC1D simulation tools to investigate the PV properties by simulating the current
(I)-voltage (V) and incident photon-to-electron conversion efficiency (IPCE) data. Table 2 summarizes
the extracted PV parameters, which were taken to perform the simulation for ZnO NRs AR-based Si
solar cells. In this work, the PCE and fill factor (FF) of the solar cells were calculated in accordance
with the report’s articles [40]. Figure 8a shows the simulated I-V characteristics and P-V curve of the Si
solar cell based on ZnO NRs AR. As seen in Table 2, the maximum Isc = 0.49 A and Voc = 0.59 V with a
conversion efficiency of 14.88%, observed at a length of 1.1 µm for ZnO NRs and with a minimum
reflectance of 9.58%. Solar cells with ZnO NRs 1.1 µm in length show the highest power of ~0.238 W.
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Table 2. Summary of optical and PV properties of ZnO NRs AR-based Si solar cells (PC1D simulation).

Reaction
Time (h)

ZnO NRs
Length (µm)

Reflectance
(%)

Simulated PV Properties

Isc (A) Voc (V) Imax (A) Vmax (V) Fill
Factor

Efficiency
(%)

3 0.75 12.360 0.4803 0.5889 0.455443 0.505304 81.36 14.38
4 1.00 12.690 0.4796 0.5886 0.454993 0.504741 81.35 14.35
5 1.10 9.580 0.4970 0.5894 0.469686 0.507107 81.31 14.88
6 0.90 14.95 0.4653 0.5870 0.441221 0.503526 81.34 13.88

A similar trend is noticed in the PV parameters, as obtained in reflectance and other optical results.
Interestingly, all the simulated data of solar cells are extracted by putting in the information of the ZnO
NRs AR layer, which means vertically arranged NRs are crucial in this system. Furthermore, the plots
of internal quantum efficiency (IQE) and external quantum efficiency (EQE) versus wavelength for the
ZnO NRs AR-based Si solar cell is shown in Figure 8b. The EQE of a Si solar cell based on ZnO NRs
demonstrated over 80% absorption, covering a 400–1200 nm wavelength range, and the integrated
photocurrent was consistent with the Isc extracted from the I-V curve. The absorption of blue photons
might usually occur at the topmost part of ZnO NRs, where the charge carriers are supposed to move
the entire length of the ZnO NRs to reach the p–n junction. Therefore, the enhancement of the PCE of a
Si solar cell occurs by controlling the AR behavior of ZnO NRs.
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To explain the good PCE and photocurrent of Si solar cells based on ZnO NRs AR, the diffusion
coefficient and diffusion length are the critical factors, as they are associated with charge carrier
transport upon light illumination [41]. It is known that the shorter diffusion length results in a high
recombination rate [41]. Figure 9 depicts the plot of diffusion length and distance from the front of
the AR, obtained by PC1D simulation. In all lengths of ZnO NRs AR, the diffusion lengths gradually
increased up to 100 µm. Afterward, a saturation in diffusion length was obtained with the increase
of distance from the front. This observation clearly deduces that the maximum limit of the diffusion
length is 100 µm for all lengths of ZnO NRs, as illustrated in Figure 9. In this calculation, the thicknesses
of the emitter regions are 15 µm, 24 µm, 24.78 µm, and 30 µm for 0.75 µm, 0.9 µm, 1.0 µm, and 1.1 µm
lengths of ZnO NRs AR, respectively. From Figure 9, the ratios of the diffusion length to the thickness
of the emitter are 6.66, 4.16, 4.03, and 3.33 for 0.75 µm, 0.9 µm, 1.0 µm, and 1.1 µm lengths of ZnO NRs,
respectively. The lowest ratio value is related to a high penetration of dopant in the emitter. Moreover,
the probability of charge collection at the interface of the N and P layers is linked with the diffusion
length and size of the device, especially the emitter size [42]. Suppose the thickness of the emitter is
lower than the diffusion length, which results in a considerably high charge collection probability. As
represented in Figure 9, the high diffusion length obtained by ZnO NRs AR is attributed to a higher
probability of charge collection, resulting in the large collection of light-generated charge carriers
at the p–n junction and high conduction to the cell. Hence, this simulation study reflects that the
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low-temperature solution method is highly feasible for growing vertically arranged ZnO NRs AR to
fabricate the Si wafer-based solar cells.
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4. Conclusions

The vertically arranged ZnO NRs were successfully grown on the bare and textured Si wafers
by the low-temperature solution method and employed to estimate the PV parameters by PC1D
simulation for c-Si solar cell-based ZnO NRs AR. The reaction time has been optimized, in which a 5 h
reaction time presented the best surface and highly uniform ZnO NRs on the Si wafer. The grown
ZnO NRs exhibited a minimum reflectance of ~7.5% at 838 nm, with a ~9.5% average reflectance in the
wavelength range from 400–1000 nm. The length of the ZnO NRs and the average reflectance were
applied as input parameters in the PC1D simulation to instigate the PV properties of the solar cell.
The optimum conversion efficiency of 14.88% has been achieved in ZnO NRs 1.1 µm in length, with
a minimum average reflectance of 9.5%, by using this simulation tool. From this study, it has been
confirmed that the reported method (simple hydrothermal method) is an easy, facile method for the
preparation of zinc nano rod structure-based Si solar cells, which has greater prospects in developing
c-Si solar cells without AR layers at a low cost.
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