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Abstract: A homodyne interferometer is one of the most important tools in nanometre measurements.
However, its nonlinear error seriously affects measurement accuracy at the sub-nanometre level.
As one of the dominant factors that cause nonlinear error in a homodyne interferometer with a
quadrature detector system, the imperfection of polarizing beam splitters (PBSs) is investigated in this
paper. The nonlinear error caused by the imperfection of PBSs in the detection part can be reduced
by adjusting the gains of detectors. Nevertheless, eliminating the nonlinear error caused by the
polarization mixing of the PBS in the interferometer part is difficult. In this paper, the nonlinear error
caused by the polarization mixing of the PBS in the interferometer part is analyzed, and an optical
compensation method is proposed to correct this polarization mixing. Theoretical calculation and
simulation analysis show that this method can reduce the effect of inherent polarization mixing on
nonlinear error significantly. In comparison with using only gain adjustment, the nonlinear error can
be reduced by two orders of magnitude when the proposed method is applied. The nonlinear error
can be decreased from approximately 4.5 nm to approximately 0.045 nm using the presented method
based on the simulation results.
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1. Introduction

The requirements for dimensional measurement accuracy are increasing with the rapid
development of nanotechnology. A homodyne interferometer has become one of the most important
tools for nanometre measurement because of its high measurement accuracy and traceability to
international length standards [1]. However, the measurement accuracy of a homodyne interferometer
with a quadrature detector system is restricted by nonlinear errors [2].

Several compensation methods for reducing the nonlinearity have been suggested. An ellipse-fitting
method was proposed firstly by Heydemann [3], which was later improved by Brich and Wu [4,5].
In this method, two raw signals are fitted into a general elliptical equation using the least-squares
method and then the nonlinear coefficients are calibrated from the calculated parameters of the general
elliptical equation. Therefore, the total nonlinear errors including the interferometer itself and the signal
detection system can be corrected, thereby proving that this approach is a comprehensive method.
However, this method is time-consuming and unsuitable for real-time compensation because the
coefficients of the elliptical equation should be calculated prior to the real measurement, which requires
considerable computational effort. Then, Hu devised a fine correction method involving Heydemann
correction [6]. The proposed method suppresses the nonlinearity in a homodyne interferometer to
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0.18 nm, which would be 1.49 nm with conventional Heydemann correction. However, the step-by-step
fine-ellipse fitting is quite time-consuming and is not suitable for real-time measurement. Köning
further studied the Heydemann correction and proposed a new ellipsefitting method based on
the minimization of the geometric distance between the measured and fitted signal values [7,8].
The statistical uncertainty of the Heydemann correction is analyzed in detail, which has a high
dependency on the signal-to-noise ratio of signals.

Methods using hardware-based correction have been proposed to eliminate the three primary
errors (DC offsets, unequal AC amplitudes and quadrature phase error). A real-time correction
technique based on the use of a microcontroller and computational analogue circuits has been
developed, and the better the quality of the quadrature signals, the more accurate the method
is [9]. Meanwhile, Hu provides a real-time compensation of the variable cyclic errors utilizing a
field-programmable gate array in a homodyne laser interferometer [10].

Others have proposed their solutions to improve the optical configurations. Yan proposed an optical
structure that consists of two homodyne interferometers in which two orthogonal single-frequency beams
share a common reference arm and partial measurement arm [11,12]. A series of experiments demonstrate
that the proposed interferometer is able to realize sub-nanometer accuracy without nonlinearity for
nanometer displacement and nanometer accuracy for millimeter displacement. Cui has proposed an
optical layout based on a non-polarizing beam splitter (NPBS) and balanced interference between two
circularly polarized beams [13]. Besides the replacing polarizing beam splitters (PBSs) of the detection
part with Wollaston prisms (WPs) with a high extinction ratio (1 × 105), the PBS in the interference
part is replaced with an NPBS, the half-wave plate (HWP) and the quarter-wave plate (QWP) in the
detection part are removed. The optical layout is simple, but the cost of the WP is more than the cost of
the PBS. For a homodyne interferometer, existing research indicates that the quadrature phase error
is the main effect that produces nonlinearity error, and the polarization mixing introduced by the
poor performance of the PBSs is the main error source that causes the quadrature phase error [13–16].
The nonlinearity caused by the imperfections of the PBSs has been studied by some researchers,
and several compensation methods have been proposed. Keem has proposed a method of adjusting
the gains of the electrical detection circuit to reduce the nonlinear error caused by the PBSs [17,18].
Although this simple and noteworthy method can remove the offset and different amplitudes induced
by the PBSs in the detection part, it cannot eliminate the polarization mixing caused by the PBS in
the interferometer part. Ahn has proposed a passive compensation method by realigning the axes of
wave plates at specific angles according to the characteristics of the PBSs, instead of the conventional
angles of wave plates [19]. The difficulty of this method lies in the high demand for an accurate test to
determine the performance of the PBSs prior to setting up the interferometer. In addition, gain and
offset correction should be performed on raw interference signals before the angles of the wave plates
are optimized. Hu recently designed an enhanced homodyne interferometer without DC offsets [16].
Two PBSs in the detection part are replaced with WPs with a high extinction ratio, and then, the gain
and phase correction methods are combined to reduce the nonlinear error. However, the compensation
for the polarization mixing of the PBS in the interferometer part remains lacking.

Although several studies have been conducted to reduce the nonlinearity of a homodyne
interferometer, the nonlinear error caused by the imperfection of the PBS in the interferometer part
has not yet been compensated. The primary reason is the difficulty in eliminating the polarization
mixing caused by the PBS in the interferometer part using gain correction or other methods. In the
current study, an optical layout that can compensate for the polarization mixing caused by the PBS in
the interferometer part is proposed. By combining it with the gain-adjustment method, it can reduce
the nonlinear error by two orders of magnitude compared with using only gain correction.

2. Nonlinearity in a Homodyne Interferometer

A typical homodyne interferometer is shown in Figure 1. The interferometer has a quadrature
detector system, and it can be divided into an interferometer part and a detection part. In general,
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one PBS is located in the interferometer part, whereas two PBSs are in the detection part. A rectangular
coordinate system is established, where the propagation direction of the beam is along the Z-axis.
The X- and Y-axes are parallel and perpendicular to the paper surface, respectively. The beam from the
polarizer P has two orthogonally polarized components: the p-polarized and s-polarized components.
This beam is split into two polarized beams by the PBS1 in the interferometer part, which are then
are reflected separately by the reference mirror Mr and the measuring mirror Mm. Consequently,
a phase difference ϕ, which is dependent of the displacement of the measuring mirror, is induced
between the two beams. The two polarized beams are combined at the end of the interferometer part.
The polarization states of the measuring and reference beams are rotated by 45◦ and 135◦, respectively,
and become 45◦ and −45◦ after the combined beam passes through the HWP in the detection part.
Then, the intensity of the combined beam is evenly split into two beams by the NPBS, and the two
beams are split again by the PBS2 and the PBS3 in the detection part into four beams to generate
interference signals I1, I2, I3 and I4, with a 90◦ phase difference between each.
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Figure 1. Homodyne interferometer with a quadrature detector system. P is the polarizer; PBS1, PBS2

and PBS3 are the polarizing beam splitters; Mr and Mm are the mirrors; QWP1, QWP2 and QWP3 are
the quarter-wave plates; HWP is the half-wave plate; NPBS is the non-polarizing beam splitter; and D1,
D2, D3 and D4 are the photoelectric detectors.

The intensity of the four beams is detected by four photoelectric detectors. Two phase-quadrature
signals I0x and I0y can be obtained from the four signals. Ideally, the phase-quadrature signals I0x and
I0y should be two sinusoids with a 90◦ phase difference. Therefore, the relative phase difference ϕ with
respect to the displacement of the measuring mirror can be derived using the following equations:

I0y = A sin(ϕ) I0x = A cos(ϕ)

ϕ = arctan
(

I0y
I0x

) (1)

where A is the amplitude of the ideal phase-quadrature signals.
The homodyne interferometer is a relative displacement measurement system. L0 represents the

relative displacement of the measuring mirror, which is directly proportional to the relative phase
difference ϕ between the reference and measuring beams (assuming that the refractive index of the
atmosphere is 1). This relationship can be ideally expressed as:

L0 =
λ

4π
ϕ (2)

where λ is the wavelength of the laser.
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Nevertheless, ensuring that the phase difference between the two quadrature signals is equal to
90◦ is difficult due to the imperfections of the optical components. The relationship between the real
displacement L and the phase difference ϕ of the interference intensity can be rewritten as follows:

L = λ
4π

[
arctan

(
Iy
Ix

)
+ mπ

]
m = 0, 1, 2, . . .

(3)

where Ix and Iy are the quadrature signals in a real case. Therefore, the nonlinear error ∆L of the
displacement can be expressed as follows:

∆L = λ
4π

{
φ− arc tan

(
Iy
Ix

)
−mπ

}
m = 0, 1, 2, . . .

(4)

There are many optical components in the homodyne interferometer with quadrature detection
system, which have not only manufacturing errors but also setup errors associated with their angular
positioning. All of these form the error sources of nonlinearity errors. For the pair of quadrature
signals in Equation (3), the nonlinear errors are mainly embodied in three forms: DC offsets, unequal
AC amplitudes and quadrature phase error. Some error sources induce DC offsets of the quadrature
signals, others produce unequal amplitudes of the quadrature signals, and some cause quadrature
phase error of the quadrature signals. Most optical components have no effect on quadrature phase
error. For example, the misalignment of the fast axes and phase retardation error of the wave plate
only induce DC offsets and unequal AC amplitudes, which can be easily corrected with hardware
circuits or software correction algorithms, but not quadrature phase error, which is more difficult to
correct. The polarization mixing of the poor performance of the PBSs is the main source that introduces
quadrature phase error. We focus on correction of the polarization mixing of the imperfection of the
PBSs, so all of the optical components are assumed to be ideal here, except for the PBSs.

Here, the Jones matrix and the Jones vector are used to describe an optical element and a polarized
beam, respectively. Suppose that the optical components except for the PBSs are ideal. Then, the angles
of the polarized beams are exact. In an ideal case, the Jones matrices of the wave plates, PBS, NPBS
and incident beam can be expressed as follows:

Q =
√

2
2

[
1 −i
−i 1

]
H =

√
2

2

[
1 1
1 −1

]
T0 =

[
1 0
0 0

]
R0 =

[
0 0
0 −1

]
Tn =

√
2

2

[
1 0
0 1

]
Rn =

√
2

2

[
1 0
0 −1

]
E0 =

[
1
1

]
E0

(5)

where Q and H are the ideal Jones matrices of the QWP and HWP, respectively. T0 and R0 are the
transmittance and the reflectance matrices of PBS, respectively. Tn and Rn are the transmittance and
the reflectance matrices of NPBS, respectively. E0 is the electric field vector of the incident beam,
the polarization axis of which is at 45◦.

In a real case, the PBSs exhibit different optical characteristics with respect to p- and s-polarized
beams. On the one hand, a leakage of an unwanted polarized component exists, which causes the
polarization mixing. Therefore, a small part of the s-polarized component can pass through the
p-polarized beam direction, and vice versa. On the other hand, a slight optical loss is induced by
the absorption of the PBS. That is, the transmissivity-to-reflectivity ratio of the PBS is not equal to 1.
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To describe the imperfect beam-splitting phenomenon of a PBS, the Jones matrix can be modified as
follows:

T =

[
tp 0
0 ts

]
R =

[
rp 0
0 rs

]
(6)

where T and R represent the modified matrices of the transmittance and reflectance of the PBS,
respectively. In addition, tp

2 and ts
2 denote the transmitted intensity of the p- and s-polarized beams,

respectively, whereas rp
2 and rs

2 represent the reflected intensity of the p- and s-polarized beams,
respectively. Under ideal conditions, tp

2 and rs
2 are equal to 1, whereas ts

2 and rp
2 are equal to zero.

For an actual PBS, however, tp
2 and rs

2 are less than 1, whereas ts
2 and rp

2 are not equal to zero.
The electric field vectors of the reference beam Er and the measuring beam Em at the end of the

interferometer part can be written as follows:

Er = R1 ·Q2 ·Q2 · T1 · E0 · eiϕr

Em = T1 ·Q1 ·Q1 ·R1 · E0 · eiϕm
(7)

where ϕm and ϕr are the phases that correspond to the optical paths of the reference and measuring
mirrors, respectively. The vectors of the four interference beams at the end of the detection part can be
written as a group of Jones matrices as follows:

E1 = T2 ·Q3 · Tn ·H · (Er + Em)

E2 = R2 ·Q3 · Tn ·H · (Er + Em)

E3 = T3 ·Rn ·H · (Er + Em)

E4 = R3 ·Rn ·H · (Er + Em)

(8)

The subscript i (i = 1, 2, 3) in Ti, Ri and Qi indicates the number of the PBSs and the QWPs,
respectively. Ej is the electric field vector of the four beams that reach the photoelectric detector, where
the subscript j (j = 1, 2, 3, 4) indicates the number of photoelectric detectors. The intensity signals can
be obtained through a preamplifier with an adjustable gain kj, where j takes values of 1 to 4. Then,
the two phase-quadrature signals Ix and Iy that can be obtained by subtracting the value of one detector
from that of another detector can be expressed as:

I j = k j · E j · E∗j
Iy = I1 − I2

Ix = I3 − I4

(9)

where Ej* is the conjugate transpose matrix of Ej. By calculating the Jones matrix, the parameters of the
two sinusoidal intensity signals can be obtained as follows:

Iy

Ix
=

A + Bcos(ϕ) + C sin(ϕ)
D + E cos(ϕ)

(10)

where ϕ(ϕ = ϕm − ϕr) is the phase difference between the reference beam and the measuring beam.
Equations (5)–(8) are substituted into Equations (9) and (10), and thus, the parameters of Equation (10)
can be written in detail as follows:

A =
[
k2

(
r2

s2 + r2
p2

)
− k1

(
t2
p2 + t2

s2

)]
· t2

p1r2
s1

B = 2
[
k2

(
r2

s2 + r2
p2

)
− k1

(
t2
p2 + t2

s2

)]
· tp1rp1ts1rs1

C =
[
k2

(
r2

s2 − r2
p2

)
+ k1

(
t2
p2 − t2

s2

)]
· t2

p1r2
s1

D =
[
k4

(
r2

s3 + r2
p3

)
− k3

(
t2
p3 + t2

s3

)]
· t2

p1r2
s1 + 2

[
k4

(
r2

s3 − r2
p3

)
+ k3

(
t2
p3 − t2

s3

)]
· tp1rp1ts1rs1

E = 2
[
k4

(
r2

s3 + r2
p3

)
− k3

(
t2
p3 + t2

s3

)]
· tp1rp1ts1rs1 +

[
k4

(
r2

s3 − r2
p3

)
+ k3

(
t2
p3 − t2

s3

)]
· t2

p1r2
s1

(11)
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Here, the values of rp
2 and ts

2 are extremely small, such that multiplying rp
2 by ts

2 can yield zero.
When the gains of the four interference signals are the same (i.e., k1 = k2 = k3 = k4), parameters

A, B and D are not equal to zero in Equation (11), whereas parameter C is not equal to E. Parameters
A and B, the first term of D and the first term of E, which are induced by the PBS2 and the PBS3 in
the detection part, can be adjusted to zero and then removed by adjusting the gains of the detectors.
However, the cross term of tp1rp1ts1rs1 that corresponds to the polarization mixing of the PBS1 of
the interferometer part cannot be eliminated. Therefore, polarization mixing is the primary factor
that causes the nonlinear error for the PBS1 in the interferometer part. For the PBS2 and the PBS3 in
the detection part, the unequal separation of optical intensity is the dominant factor that results in
the nonlinear error. Therefore, the nonlinearity caused by the imperfections of the PBSs at different
positions of the homodyne interferometer should be compensated using different means. For the
imperfections of the PBS1 in the interferometer part, the focus is on removing the unwanted s-polarized
beam in the transmitted beam and the unwanted p-polarized beam in the reflected beam. For the
imperfections of the PBS2 and the PBS3 in the detection part, the key is to make the transmitted
intensity-to-reflected intensity ratio approach 1.

The improvement of the traditional gain-adjustment method can be evaluated by assuming that
A, B and the first terms of D and E are all equal to zero. The following conditions for eliminating
nonlinear error can be obtained:

k2
k1

=
t2
s2+t2

p2

r2
s2+r2

p2

k4
k3

=
t2
s3+t2

p3

r2
s3+r2

p3

(12)

Considering the symmetry of the optical layout of the detection part, we select the PBS2 and the
PBS3 with the same performance parameters, thereby indicating that the reflection and transmission
for all the PBSs are the same. The actual parameters of the PBSs are shown in the Table 1.

Table 1. The parameters of the optical components.

Optical Component tp
2 ts

2 rp
2 rs

2

PBS1 0.95 0.01 0.05 0.99

PBS2 0.95 0.01 0.05 0.99

PBS3 0.95 0.01 0.05 0.99

Therefore, the relationships of the gains of four photodetectors can be obtained as follows:

k1 = k3 k2 = k4
k2
k1

= k4
k3

= 0.932
(13)

By introducing the preceding modified results into Equation (11), Equation (10) can be rewritten
as follows:

Iy

Ix
=

t2
p1r2

s1 sinϕ

2 · tp1rp1ts1rs1 + t2
p1r2

s1 cosϕ
(14)

As shown in Equation (14), gain adjustment can only eliminate the nonlinear errors caused by the
PBS2 and the PBS3 in the detection part. Suppose that the PBS2 and the PBS3 are ideal components
and only the PBS1 is not ideal. Then, the result of the two quadrature signals is the same as that of
Equation (14), which shows that gain correction cannot compensate for the polarization mixing caused
by the PBS1 in the interferometer part.

Here, common commercial PBSs with the properties as mentioned above are chosen, and the
nonlinear errors before and after gain correction are simulated using MATLAB software. The results
without gain adjustment, i.e., Equation (10), and with gain adjustment, i.e., Equation (14), are introduced
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into Equation (4), respectively. Then, the values of the nonlinear errors are simulated, as shown in
Figure 2, where the wavelength of the laser is 632.8 nm. The blue dotted curve shows the nonlinear
error without any correction, and the peak-to-peak value is approximately 10 nm. The red solid curve
shows the nonlinear error when gain correction is applied, and the peak-to-peak value is approximately
4.5 nm. The preceding theoretical analysis and simulation show that reducing the nonlinear error by
adjusting only the gains of the detectors for a general PBS is ineffective.
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3. Compensation for the Polarization Mixing of PBS1

The nonlinear error caused by the PBSs in the detection part can be reduced by adjusting the
gains of the four photo-detectors, but the polarization mixing caused by the PBS in the interferometer
part cannot be eliminated [17]. To solve this problem, an optical compensation method is proposed
to eliminate the polarization mixing of the PBS1 in the interferometer part. Figure 3 shows the
optical layout of the homodyne interferometer with an optical compensation part. The separation
of the reference and measuring beams, which become two separate parallel beams, at the end of
the interferometer part is critical. To achieve this, a right-angle prism is used to replace the planar
mirror as the reference mirror. The unwanted s-polarized component in the p-polarized beam and
the unwanted p-polarized component in the s-polarized beam are isolated through the P2 and the
P3, respectively, with a high extinction ratio of approximately 10,000:1. Then, the pure polarized
measuring and reference beams are combined by the PBS0. The polarization mixing of the PBS1 is
theoretically eliminated by adopting this optical compensation. Thus, the inherent polarization mixing
of the homodyne interferometer caused by the PBS1 can be suppressed.
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Figure 3. Homodyne interferometer with a compensation part. P1, P2 and P3 are the polarizers; PBS0,
PBS1, PBS2 and PBS3 are the polarizing beam splitters; Mr is the mirror; Mm and M0 are the right-angle
prisms; QWP1, QWP2 and QWP3 are the quarter-wave plates; HWP is the half-wave plate; NPBS is the
non-polarizing beam splitter; and D1, D2, D3 and D4 are the photoelectric detectors.

To prevent the generation of the unwanted s- and p-polarized components, the transmission axes
of the P2 and the P3 should coincide with the axes of the reference and measuring beams, respectively,
thereby ensuring that the measuring pure p-polarized beam and the reference pure s-polarized beam
are produced. The ideal Jones matrices of the P2 and the P3 with a high extinction ratio can be expressed
as follows:

P2 =

[
0 0
0 1

]
P3 =

[
1 0
0 0

]
(15)

Assuming that the PBS0 and the M0 are ideal optical components is reasonable because the
incident beams passing through the PBS0 are nearly ideal linear polarized beams that originate from
the P2 and the P3 with a high extinction ratio. Even if the PBS0 has an imperfect property, it will
only induce optical energy loss but will not cause polarization mixing. This nonlinear error can be
compensated for by adjusting the gains of the detectors. The ideal matrix Equation (15) of the P2 and
the P3 is substituted into Equation (8). The two intensity signals of the homodyne interferometer can
be obtained by recalculating Equations (5)–(10) as follows:
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=
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(16)

As shown in Equation (15), the cross term of tp1ts1rp1rs1 caused by the polarization mixing of
the PBS1 has been completely eliminated after using the P2 and the P3 with a high extinction ratio,
the PBS2 and the PBS3 have the same parameters as those listed in Section 2, and gain adjustment is
applied according to Equation (12). From Equation (15), parameters A and D are equal to zero, whereas
parameter C is equal to parameter E. At this point, the signals Ix and Iy have become quadrature signals
in Equation (15). That is, all nonlinear errors have been theoretically eliminated.

In reality, the linear polarizers with a high extinction ratio are not perfect but experience a small
amount of light leakage. Suppose that the position and angle errors of the optical components are
disregarded. The Jones matrix of the P2 and the P3 with an extinction ratio of 10,000:1 can be rewritten
as follows:

P2 =

[
ε 0
0 1

]
P3 =

[
1 0
0 ε

]
(17)
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where ε is the extinction ratio and is equal to 0.01 (i.e., ε2 = 0.0001). The extinction ratio ε of the
polarizer before and after the correction of the Jones matrix is shown in Table 2.

Table 2. The extinction ratio ε before and after correction of Jones matrices.

Polarizer ε before Correction ε after Correction

P1 0 0.01
P2 0 0.01

The real matrix Equation (17) of the P2 and the P3 is substituted into Equation (8). Then, the two
intensity signals can be obtained by adopting the gain coefficients of the four detectors according to
Equation (12) as follows:

Iy

Ix
=

r2
s t2

p sin(ϕ)

2ε · tp · rs · rp · ts + r2
s t2

p cos(ϕ)
(18)

Equations (18) and (14) represent the results with and without the optical compensation method,
respectively. To compare the nonlinear errors in the two cases, the nonlinear errors are simulated and
compared when Equations (14) and (18) are substituted into Equation (4).

The comparison results are illustrated in Figure 4. The blue dotted curve shows the nonlinear
error when only gain adjustment is adopted, and the peak-to-peak value is approximately 4.5 nm.
The red solid curve shows the nonlinear error when high-quality polarizers are combined with gain
adjustment, and the peak-to-peak value is approximately 0.045 nm. The nonlinear error is reduced by
two orders of magnitude after adopting the high-quality polarizer, and polarization mixing caused
by the PBS1 in the interferometer part is also evidently decreased. A residual error of 0.045 nm is
observed, which is attributed to the high-quality polarizer not being completely ideal. If the extinction
ratio is increased further, then this error will be reduced further.
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4. Conclusions

Through the theoretical calculation and analysis of interference signals, the influence of the
PBS in the interferometer part on nonlinearity is determined to be embodied in polarization mixing,
whereas the effect of the PBSs in the detection part on the nonlinearity is the unequal separation of
optical intensity. The DC offsets and unequal AC amplitudes caused by the PBSs in the detection
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part can be easily eliminated by adjusting the gains of the detector. However, this approach does
not work for the polarization mixing caused by the PBS in the interferometer part. In this regard,
the nonlinear error caused by the polarization mixing of the PBS in the interferometer part is analyzed,
and an optical configuration to compensate for the polarization mixing caused by the PBS in the
interferometer part is proposed. By placing two high-quality polarizers at the end of the interferometer
part, the unwanted s- and p-polarized components are isolated by the polarizers, thereby suppressing
the inherent polarization mixing of the homodyne interferometer. The nonlinearity is reduced from
approximately 4.5 nm to 0.045 nm, which is a decrease of two orders of magnitude, by integrating
other compensation methods such as gain correction, compared with using only gain adjustment.
The residual error is mainly due to the imperfection of the polarizer.

Compared with the existing studies, we focus on the compensation of the polarization mixing of
imperfection of the PBS, which is difficult to correct. In our proposed solution, polarization mixing
caused by imperfection of the PBS is isolated by the polarizers with a high extinction ratio in the
optical layout; thereby, the inherent nonlinear error of the homodyne interferometer is reduced. In a
future experiment, all of the optical components in the optical layout should be considered. DC
offsets and unequal AC amplitudes that are induced by the other optical components except the
PBS can be reduced first through fine adjustment and improved components. Then, the nonlinear
errors can be further corrected by our proposed optical layout of compensation and combination with
gain adjustment.
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