
applied
sciences

Article

Energy-Efficient Resource Provisioning Strategy for
Reduced Power Consumption in Edge Computing †

Juan Fang ‡ , Yong Chen ‡ and Shuaibing Lu *,‡

Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China;
fangjuan@bjut.edu.cn (J.F.); csxc@emails.bjut.edu.cn (Y.C.)
* Correspondence: lushuaibing@bjut.edu.cn
† This paper is an extended version of our paper published in IEEE INFOCOM 2020 workshop on ICCN,

7–9 July. This version proposes a resource provisioning strategy to balance the resources of virtual nodes that
reducing the power consumption and guarantees the user’s delay as well. It also includes the problem
formulation, strategy description, and discussion of the simulation.

‡ These authors contributed equally to this work.

Received: 28 July 2020; Accepted: 28 August 2020; Published: 1 September 2020
����������
�������

Abstract: Edge computing is an emerging paradigm that settles some servers on the near-user side
and allows some real-time requests from users to be directly returned to the user after being processed
by these servers settled on the near-user side. In this paper, we focus on saving the energy of the
system to provide an efficient scheduling strategy in edge computing. Our objective is to reduce
the power consumption for the providers of the edge nodes while meeting the resources and delay
constraints. We propose a two-stage scheduling strategy which includes the scheduling and resource
provisioning. In the scheduling stage, we first propose an efficient scheme based on the branch and
bound method. In order to reduce complexity, we propose a heuristic algorithm that guarantees
users’ deadlines. In the resource provisioning stage, we first approach the problem by virtualizing
the edge nodes into master and slave nodes based on the sleep power consumption mode. After that,
we propose a scheduling strategy through balancing the resources of virtual nodes that reduce the
power consumption and guarantees the user’s delay as well. We use iFogSim to simulate our strategy.
The simulation results show that our strategy can effectively reduce the power consumption of the
edge system. In the test of idle tasks, the highest energy consumption was 27.9% lower than the
original algorithm.

Keywords: edge computing; energy-saving; task scheduling; sleep mode

1. Introduction

Traditional cloud computing uses centralized large-capacity cluster devices to process massive
amounts of information [1]. All computing processes are centralized in the cloud to facilitate data
collection and sharing. This has spawned a series of big data applications. While cloud computing
has almost unlimited computing power, to use the cloud computing, it is necessary to bear a lot
of communication costs, which inevitably causes the delay. The centralized processing architecture
determines that the user’s data needs to be uploaded to the cloud for processing, which makes
the delay difficult to reduce. However, with the development of cloud computing, Augmented
Reality (AR), Virtual Reality (VR), live video, autopilot, smart medical [2], and other real-time
applications of blowout [3,4], the drawbacks of cloud computing have become increasingly prominent.
Experiments have shown that edge computing is a good way to handle the application’s latency
requirements [5,6]. The edge computing architecture is proposed to solve the problem of large cloud
computing delay [7–9]. Specifically, edge computing handles tasks that require high latency on the

Appl. Sci. 2020, 10, 6057; doi:10.3390/app10176057 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-4542-8727
https://orcid.org/0000-0001-9850-2196
http://dx.doi.org/10.3390/app10176057
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/17/6057?type=check_update&version=2

Appl. Sci. 2020, 10, 6057 2 of 17

near-user side and puts tasks that could only be processed on the cloud computing platform into the
edge server [10,11]. Since the devices on the edge layer are limited power and computing capacities,
poor resource allocation for the tasks will result in high latency and power consumption. In this paper,
we focus on the reduced power consumption problem in edge computing. This problem is non-trivial
mainly due to the following challenges: (i) Since the Internet of Things (IoT) devices generate data
constantly, and the analysis must be very rapid [12,13]. One important problem is to find a scheduling
strategy of edge devices that can realize the tasks within a lower latency. (ii) Partially battery-powered
devices are introduced in the edge-cloud architecture, such as smartphones, laptops, and so on.
Thus, the other important problem is to consider the resource allocation for the tasks to reduce the
power consumption and realize the endurance of the batteries [14,15].

A preliminary version of this work has been accepted by IEEE INFOCOM 2020 workshop on
ICCN [16]. We have included substantial extension over the preliminary version and a summary of
differences is included here.

• We first extend our problem into multiple users and propose a two stages scheduling strategy
which includes the scheduling and resource provisioning. The published version mainly
introduces the resource provisioning stage. While this paper focuses on the scheduling problem
between users and edge nodes with energy efficiency. In this paper, we re-formulate the problem
and re-define the model. Base on that, we propose two energy-efficient scheduling strategies.

• We propose an efficient scheme based on the branch and bound method for the scheduling
stage and discuss the complexity. In this paper, we first propose a scheduling scheme based on
the branch and bound method in Algorithm 1, which is a fast search tree algorithm based on
a depth-first searching algorithm. Then we discuss the complexity of this algorithm which is
O(3n). Furthermore, we propose a heuristic algorithm that minimizes the power consumption and
guarantees the users’ deadline as well as lower complexity. For Algorithm 1, the time complexity
increases exponentially with the expansion of sub-tasks. Thus, we propose a heuristic algorithm
in Algorithm 2. The main idea of the algorithm is to select the best node in every layer.

• We conduct various simulations for our scheduling strategy by using the platform we designed.
The results are shown from different perspectives to provide conclusions.

In this paper, we focus on saving the power consumption of the system to provide an efficient
scheduling strategy in edge computing. Our objective is to reduce the power consumption for multiple
users while meeting the resources and delay constraints. Our contributions can be summarized
as follows:

• We first implement a normal distribution-based task generation model and add the maximum
tolerated delay characteristic of the tasks. We introduce the sleep mode with the lower power
consumption for the edge node.

• Based on that, we approach the reduced power consumption problem by virtualizing the edge
nodes into master and slave nodes and propose a scheduling strategy through balancing the
resources of virtual nodes that reducing the power consumption and guarantees the user’s delay
as well.

• We conduct various simulations for our scheduling strategy by using iFogSim. The results are
shown from different perspectives to provide conclusions.

The remainder of this paper is organized as follows. Section 2 surveys related works. Section 3
describes the model and then formulates the problem. Section 4 investigates the reduced power
consumption problem for users and introduces a scheduling strategy. Section 5 presents the simulations
and results. Finally, Section 6 concludes the paper.

Appl. Sci. 2020, 10, 6057 3 of 17

Algorithm 1 Scheduling Scheme based on Branch and Bound Method (SSBB)

Input: Topology G, set of users U;

Output: Scheduling scheme X, total power consumption E;

1: for i = 1 to |V| do
2: for i = 1 to |U| do
3: initial L = ∞;

4: for k = 1 to |ui| do
5: initial S = ∅;

6: Calculate Ec(uk
i) and Et(uk

i), respectively;

7: Send Ec(uk
i) and Et(uk

i) to S;

8: Find δ by setting arg minh{Sh};
9: Calculate E(ui) = ∑ul

i∈U′ E(ul
i) + Sδ;

10: if E(ui) ≤ L and Di ≤ Dd
i then

11: if k == |ui| then
12: Update L = E(ui);

13: break;

14: else
15: Continue to calculate next sub-task;

16: end if
17: else
18: Update S = S/Sδ and go to line 7;

19: end if
20: end for
21: Calculate E(Uvj);

22: end for
23: Calculate the total power consumption E;

24: end for
25: return X;

Algorithm 2 Scheduling Scheme based on Backtracking Method (SSBM)

Input: Topology G, set of users U;
Output: Scheduling scheme X, total power consumption E;

1: for i = 1 to |V| do
2: for i = 1 to |U| do
3: for k = 1 to |ui| do
4: Same as Algorithm 1 in lines 5-6;
5: Find δ by setting arg minh{Sh};
6: if Di ≤ Dd

i then
7: Calculate E(ui) = ∑ul

i∈U′ E(ul
i) + Sδ;

8: break;
9: else

10: Update S = S/Sδ and go to line 6;
11: end if
12: end for
13: Calculate E(Uvj);
14: end for
15: Calculate the total power consumption E;
16: end for
17: Return X and E;

Appl. Sci. 2020, 10, 6057 4 of 17

2. Related Work

Edge computing as a new paradigm that used to extend cloud computing to the edge of the
network, thus enabling a new breed of applications and services [10]. Nowadays, there are many
papers that focus on the power consumption problem in edge computing.

Taneja et al. [17] present a basic module mapping algorithm for efficient utilization of resources in
the network infrastructure by efficiently deploying Application Modules in Fog-Cloud Infrastructure
for IoT based applications. Barcelo et al. [18] regard energy consumption as the major driver of
today’s network and cloud operational costs, and characterize the heterogeneous set of IoT-Cloud
network resources according to their associated sensing, computing, transport capacity, and energy
efficiency. They mathematically formulate the service distribution problem in IoT-Cloud networks,
as a minimum cost mixed-cast flow problem. Zhang et al. [19] study the energy-efficient computation
offloading mechanisms in 5G heterogeneous networks for mobile edge computing. They formulate an
optimization problem to minimize the energy consumption of the offloading system, where the energy
cost of both task computing and file transmission are taken into consideration. Guo et al. [20] consider
energy-efficient resource allocation for a multi-user mobile edge computing system which establishes
on two computation-efficient models, and they obtain a suboptimal solution with low-complexity by
connecting it to a three-stage flow-shop scheduling problem and wisely utilizing Johnson’s algorithm.
Huang et al. [21,22] propose a service merging strategy for mapping and co-locating multiple
services on devices. They use integer programming to solve this problem in a multi-hop network,
use heuristic algorithms to deal with the same problem in a single hop network. These works address
the energy-efficient problem using mathematical formulation and propose heuristic algorithms to
minimize the energy consumption.

Trinh et al. [23] study the potential of edge computing to address the energy management
related applications for limited power-restricted IoT devices while providing low-latency processing
of high-resolution visual data. To address the trade-off between processing throughput and energy
efficiency, they proposed a smart-driven edge routing based on a sustainable strategy algorithm that
uses machine learning. Mavromoustakis et al. [24] propose different methods for implementing
edge computing paradigms by using Machine to Machine (M2M) communication in a dense network
system with the aim of providing reliability for the delay-sensitive services. Zhang et al. [25] propose
a dynamic network virtualization technique to integrate the network resources, and further design a
cooperative computation offloading model to achieve high energy-efficiency and reliability in edge
computing. Dinh et al. [26] aim to minimize both total tasks’ execution latency and the MD’s energy
consumption by jointly optimizing the task allocation decision and the MD’s central process unit (CPU)
frequency. They propose an optimization framework of offloading from a single mobile device (MD) to
multiple edge devices. Gupta et al. [27] demonstrates the modeling and resource management policies
of the IoT environment by using the iFogSim simulator. Besides, they verify the scalability of RAM
consumption and execution time simulation tools in different situations. These works address the
energy-efficient problem by considering the joint optimization which includes power consumption,
latency, and reliability.

However, the above works still have some shortcomings. For example, the scheduling strategy
based on machine learning and the addition of new communication links will increase the burden of
the edge computing architecture. What’s more, most of these works have only focused on reducing the
power consumption, however, they ignored the maximum tolerant delay of the task. These studies all
attempt to give an optimal solution on the scheduling algorithm, and the energy-saving function of the
edge device itself is not attempted. This paper proposes a new idea to reduce the power consumption
of the edge devices based on the scheduling algorithm of device sleep mode. Based on this, the overall
power consumption of the system is reduced without increasing the power consumption ratio of the
edge device.

Appl. Sci. 2020, 10, 6057 5 of 17

3. Model and Problem Formulation

3.1. Network Model

The network model consists of the cloud layer, edge layer, and user layer, which is shown in
Figure 1. The communication between the cloud and edge nodes through the gateway and proxy
servers. Wireless or wired connections are used between different layers. All notations in this paper
are shown in Table 1.

Cloud

Gateway

Tablet

PC
PC

Mobile

Laptop

Proxy

Figure 1. Edge computing network composition architecture.

Table 1. Notations.

Mi Workload (MIPS of the target task).

Ti size of the task in bits.

Dd
i the deadline of the task.

dij The distance between user i and edge node j.

pi The transmission power of user i.

Et
k power consumption for executing task k at remote edge node.

Ec
k power consumption for executing task k at local edge device.

rij The transmission speed of wireless.

Ci The computing speed of edge device.

Dt The delay of wireless transmission.

Dc The delay of computation.

3.1.1. Edge Layer

In the edge layer, given a substrate distribution of the edge nodes with set V = {vj}, and vj is the
jth edge node in V. Let Cj denote the computational capability of edge node vj in cycles per second.
For each edge node, we divide one edge node into two virtual nodes, which are the master node and
the slave node. Cm

j and Cs
j denote the computing capacities of the master and slave nodes, respectively.

Appl. Sci. 2020, 10, 6057 6 of 17

3.1.2. User Layer

In the user layer, we use Uvj = {ui} to denote the set of users that connected with edge node j,
and ui denotes the ith user. The task of device ui to be processed was defined by a triplet (Ti, Mi, Dd

i),
where Ti denotes the size of the task in bits, and Mi denotes the Million Instructions Per Second (MIPS)
of the task. Let Dd

i denotes the maximum tolerant delay of task i.
In order to ensure the feasibility of our model in a real network, we assume that a set of tasks that

arrive at the same time are independent and in line with the normal distribution. Each task evaluates
the size of the task by the number of clock cycles it needs to process. Since the scheduling algorithm
described in this paper is independent with the amount of the computation of tasks, so we assume that
the numbers of clock cycles required to process the tasks are the same. In order to ensure the stability
of the experimental results, we use the normal distribution to control the frequency at which tasks
are generated. Figure 2 shows the probability of the task we configured. The four lines are the mean
parameters of the four normal distributions we set. The horizontal axis is the calculated delay of the
next task, and the vertical axis is the possibility of the delay. So, the smaller the mean is, the larger
the number of tasks handled. For example, when the value of the mean is 5, the most likely scenario
is to wait for 5 clock cycles to generate the next task. With the constraint of this normal distribution
probability, both the generation of dynamic tasks and the large deviation of the results will not occur
in the process of executing the benchmark multiple times.

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7 8 9 10 11

Pr
ob

ab
ili

ty

Mean of the Emit Event Interval
5 6 7 8

72
74
76
78
80
82
84
86
88

0-0 0-1 0-2 0-3 0-4 0-5

Po
w

er
Co

ns
um

pt
io

n
x

10
00

0

Name of the Device
Non-Master-Slave Master-Slave

Figure 2. Probability of the emit interval in different configurations.

3.2. Problem Formulations

In this subsection, we consider minimizing the total energy consumption of users under the
latency constraints. Based on this hierarchical structure in Figure 1, users can process the requests
either at local devices or remote edge nodes and return the processing results to the user. For user
ui, we use Ec(ui) to denote the power consumption for executing task i at local device as shown in
Equation (1). fi is a superlinear function denoting the CPU energy consumption of device i. α is a
pre-configured model parameter depending on the chip architecture [28–31].

Ec(ui) = α · f 3
i (1)

We use Et(ui) to denote the energy consumption for executing task i at remote edge node as
shown in Equation (2).

Appl. Sci. 2020, 10, 6057 7 of 17

Et(ui) = pi · Dt =
pi · Ti

rij
(2)

Let pi denote the transmit power of device ui. Let Dt
i denote the transmission delay which decides

by the size of task Ti and the transmission speed rij. The channel power gain from the device to the
edge node can be represented by H(dij) = hg0(d0/dij)

θ , where g0 is the path-loss constant, d0 is the
reference distance, θ is the path-loss exponent, and dij is the distance from device ui to sensor vj that
it connects. Let N0 denote the channel white Guassian noise, and ω denote the channel path loss
exponent. Hence, the speed of offloaded tasks at edge node vj is shown in Equation (3).

rij = B · log2(1 +
H(dij) · pi

N0 ·ω
) (3)

Let E(ui) denote the total energy consumption of device ui, where E(ui) = Et(ui) + Ec(ui).
In this paper, we formulate the resource provision problem for multiple users in edge computing.
Our objective is to find an appropriate scheme for the set of users U that minimizes the total
energy consumption and satisfies the constraints on the resources and the maximum tolerant delays.
For each device, we use Dc

i to denote the computation delay, where Dc
i = Mi/Ci. Let Dt

i denote the
transmission delay, where Dt

i = Ti/rij. The computation delay on edge node for task i is denoted as
De

i , where De
i = dr(ui) + dw(ui). Let dr(ui) and dw(ui) denote the processing time and waiting time of

ui on edge node vj, respectively.

minimize ∑
vj∈V

∑
ui

j∈Uvj

E(ui) (4)

subject to E(ui) = Et(ui) + Ec(ui) (5)

Dc
i + Dt

i + De
i ≤ Dd

i (6)

fi ≤ f max
i , pi ≤ pmax

i (7)

Equations (4) and (5) show the objective of minimizing the total energy consumption for the users.
Equation (6) is the constraint on the deadline of the users, which means the total delay can not over
the deadline Dd

i for user i. Equation (7) is the constraint on the computation capacity and the transmit
power of each user.

4. Energy-Efficient Scheduling Scheme

In this section, we address the scheduling problem between users and edge nodes with energy
efficiency. To solve this problem, we first propose an efficient scheme based on the branch and bound
method. Furthermore, we propose a heuristic algorithm that minimizes the power consumption and
guarantees the users’ deadline as well as lower complexity.

4.1. Scheduling Scheme Based on Branch and Bound (PSBB)

In this subsection, we propose a scheduling scheme based on the branch and bound method
which is a fast search tree algorithm based on a depth-first searching algorithm. According to the
problem formulation, we have that the scheduling problem for multiple users can transform into a
discrete combinatorial optimization problem. The core idea of our scheduling scheme is efficiently
searching candidate solutions on the solution space tree. The candidate solution set is considered to be
a rooted tree that forms a complete set on the root. The algorithm explores the branches of the tree,
which represents a subset of the solution set. Before enumerating the candidate solutions of a branch,
the candidate solution of the branch will be checked according to the feasibility of the current optimal
solution based on the estimated upper and lower bounds of the optimal solution. If it cannot produce

Appl. Sci. 2020, 10, 6057 8 of 17

a better solution than the optimal one currently, the algorithm will discard the solution. The branch
and bound method can be applied to a variety of maximum and minimum problems. The above
problem happens to be the minimum problem that will solve finite candidate solutions, which meets
the requirements of the branch and bound method. For example, if it is assumed that a task needs to
be scheduled, the task has a sub-task set vj ∈ V. Since each sub-task can be offloaded independently,
each sub-task {v1, v2, v3, · · · , vj} need to be determined the computing location through an algorithm.
Therefore, the algorithm in this section needs to build a tree to represent the solution space of the
computing location of the sub-task. The nth layer of the tree represents the possible calculation position
of the sub-task n, and each node has 3 children, which are the n + 1 possible calculation locations for
sub-tasks. It is inferred from this that the output (scheduling scheme) is the path from the root to a
leaf of this tree. In this algorithm, the solution space is represented as a topology G, as one of the
input parameters. The specific steps of applying this algorithm to the above problem are shown in
Algorithm 1.

We take the topology of fog nodes G, and the set of users U as our inputs. The output is the
scheduling scheme X for the set of users U. We use |V| and |U| to denote the numbers of edge nodes
and users, respectively. We first initialize the bound L and temporary set S in lines 3 and 5. In line 6,
we calculate the power consumption of sub-tasks, where Ec(uk

i) is the power consumption of sub-task
uk

i for executing at local device. Et(uk
i) is the power consumption of sub-task uk

i for executing at
remote edge node. We send the results into set S and find the minimum one as the branch as shown in
lines 7 to 8. Then we calculate the total power consumption E(ui) for sub-task ui in line 9. If both E(ui)

and Di satisfy the constraints, we will check whether uk
i is the last sub-task of ui. If k == |ui|, we will

update the bound L = E(ui). Otherwise, we continue to calculate next sub-task in line 15. If either
E(ui) or Di are beyond the constraints, we will cut this branch and do not continue to traverse in line
18. The entire process ends after all edge nodes are traversed or all sub-tasks of users are finished.
We calculate the total power consumption E and return X in lines 23 to 25. The key of this algorithm is
to save the optimal solution boundary L as the basis for pruning. Since the power consumption of
each node in the searching tree is greater than the power consumption of its parent, when a node’s
power consumption exceeds the optimal solution boundary L, it must be concluded that the power
consumption of the node and its children must be greater than the current optimal solution boundary.
Pruning on this basis, skip the traversal process of the child nodes under this node, so as to achieve the
purpose of speeding up the search.

During the running of the algorithm, if all nodes cannot be pruned, the algorithm needs to
traverse all branches, which is the worst running condition of the algorithm. We can conclude that,
according to the change in the number of model nodes, each additional sub-task adds triple solutions,
the complexity of the algorithm is O(3n).

4.2. Scheduling Scheme Based on Backtracking Method (SSBM)

For the Algorithm 1, the time complexity increases exponentially with the expansion of sub-tasks,
which can be reduced by some heuristic. In this subsection, we propose a heuristic algorithm that
minimizes the power consumption and guarantees the users’ deadline as well as lower complexity.

The main idea of the algorithm is to select the best node in every layer. Generally, it seems that
the composition of the global optimal solution is not necessarily optimal in every part of the solution.
May be multiple sub-optimal solutions forming the global optimal solution. However, with the
perspective of reducing complexity, this algorithm significantly reduces the complexity (reducing the
exponential level to the linear level), and it is very suitable for scenarios that require the low complexity
of the algorithm.

As shown in Algorithm 2, the input and output are the same as Algorithm 1. The first two steps
of the algorithm are also completely consistent with Algorithm 1. We perform the same operations
as Algorithm 1 lines 5 and 6, in line 3 and 4.The algorithm sorts the calculation results of tasks
performed by different nodes by power consumption and selects the set of data with the lowest power

Appl. Sci. 2020, 10, 6057 9 of 17

consumption in line 5. It is determined whether the cumulative delay sum is less than the maximum
tolerable delay of the task in line 6. If it is less than the value, then the power consumption value is
recorded as the power consumption set S of the current sub-task in line 7. Otherwise, execute line 10
of the algorithm, that is, delete the solution in the topology tree, and then jump to step 5 to re-select
the smallest value. By analogy, the feasible solution and the node path that can realize the power
consumption value are output after traversing a feasible solution for the first time. The worst time
complexity of SSBM is O(n3).

5. Resource Provisioning Strategy

In this section, we introduce a scheduling strategy based on the master-slave model. As the result
shown in Figure 3, the master-slave model reduces the power consumption obviously, and also brings
more devices able to be scheduled. An inefficient scheduling strategy will lead to the edge nodes
cannot effectively participate in the calculation, and produce a huge increase in the task delay. Thus,
the main idea of our strategy is triggering the sleep mode of the slave devices as much as possible to
reduce the power consumption of the edge nodes, and trying to load balance the resource as much as
possible to ensure low latency.

0
10
20
30
40
50
60
70
80
90

100

0 500 1000 1500 2000

Po
w

er
 C

on
su

m
pt

io
n

MIPS
Non-Master-Slave Master-Slave

Figure 3. Power consumption of the device in different configurations.

5.1. Edge Node Virtualization Model

For each edge node, we suppose that there are two different modes that are active and sleep.
We use P to denote the power of one edge node, which includes two modes, active mode Pa and
sleep mode Ps. Active mode is a high power mode of one edge node. Only the device in the active
state can execute the task, and the task scheduling activity is also a kind of activity, which needs the
support of the active state. The power consumption under the active mode is linear depending on
the CPU usage, i.e., Pa = k · C + b, where b is the power of the edge node under the idle and k is a
coefficient that fits the power curve of the edge node. Sleep mode is a very low power mode of one
edge node. A device under this mode typically only reserves power for memory and related devices
that can be used to wake up. Commonly used wake-up devices are a network card, mouse, keyboard,
power button, and so on. Because sleep power is processor-independent, sleep power is the same on
all three platforms. In general, the power consumption of the sleep state is extremely low. For a normal
PC, this power consumption is about 4.5 W [32]. In this paper, we use this parameter to simulate the
power consumption during sleep.

We used three different edge devices. We regard Config 1 as an original device. In order to reduce
the power consumption of the edge nodes, we split the original device into two devices, Configs 2 and 3.
To ensure fairness, we guarantee that the sum of MIPS of Configs 2 and 3 is equal to Config 1. We refer

Appl. Sci. 2020, 10, 6057 10 of 17

to a device combination with only one Config 1 configuration as a non-master-slave, and each has a
combination of Configs 2 and 3 called master-slave. We set the master device to Config 2 and the slave
device to Config 3. The master device is used to task scheduling and execution, and the slave device
only executes tasks and goes to sleep when idles. The subsequent experimental part will be based on
this configuration. The specific experimental steps and results can refer to Section 6. Figure 3 is the
power consumption value of the edge node under two different strategies, where the horizontal axis is
the occupancy rate of the edge node and the vertical axis is the instantaneous power consumption
of the node. Figure 3 shows that the power consumption of the combination of master-slave is much
lower than the non-master-slave when it is less than 1400 MIPS. This is because the device of Config 2
is running and the device of Config 3 is in the sleep state. In master-slave, devices that do not receive a
task can go to sleep when the task that needs to be calculated is none. A device that is in a sleep state
can be woken up by other devices through a network command. In a non-master-slave, the device
cannot enter the sleep state because there is only one device in the node. The detailed configuration of
the simulator is shown in Table 2.

Table 2. Simulation parameters.

Description Config 1 Config 2 Config 3

Sleep mode power 4.5 W 4.5 W 4.5 W
Idle power 82.44 W 57.708 W 24.732 W
Busy power 87.53 W 61.271 W 26.259 W

MIPS 2000 1400 600
Upload latency in one jump 2 ms 2 ms 2 ms

Download latency in one jump 2 ms 2 ms 2 ms

5.2. Resource Provisioning Strategy

As shown in Algorithm 3, we use Nm, Ns, Cm, Cs, Ct, and T as the inputs. Nm and Ns are the
numbers of running tasks on the master and slave devices, respectively. Cm and Cs are the capacities
of the master and slave devices, respectively. Ct is the MIPS of the target task. T is the maximum
tolerated time of the target task. In addition, the rest main notations throughout Algorithm 3 are
listed in Table 3. The output is the scheduling strategy for the tasks. We first consider the status of
the edge node. If the number of tasks running on the edge node is Nm = 0, it means that there is no
task received at this time. Then, we add this task into the master node and check the feasibility in
lines 3 to 5. We calculate the remaining computation delay for the task and compare this value to
the maximum tolerant time. If it does not exceed, we send the task to the master node. Otherwise,
we calculate whether the maximum tolerated delay of the task is exceeded after adding the task to the
slave node in lines 6 to 9. If neither of the nodes is satisfied, the task will be sent to the cloud in line 10.
If the number of tasks running on the edge node is not 0 when a task arrives, we calculate the relative
idleness γ of the master and slave devices in line 12. We define the value of the relative idleness is
determined by the ratio of the master and slave device’s computing capacity to the number of running

tasks, where γ← Cm · Ns

Cs · Nm
. Then we start to place tasks by considering the relative idleness in lines 13

to 34. If the value is not greater than γ ≤ 1, it indicates that the slave device is relatively idle at this
time. We prioritize place the task on the slave device to calculate the remaining computation delay
and compare this value with the maximum tolerated time in line 13. If it is not exceeded, the task will
send to the slave device in line 16. Otherwise, we calculate the maximum tolerated delay under the
master device in line 18. Similarly, if the remaining computation delay is smaller than the maximum
tolerated delay, we send the task to the master device in line 20. Otherwise, we upload the task to the
cloud in line 22. If the value is greater than γ ≥ 1, we change the order of calculation in lines 24 to 34.
We calculate the remaining computation delay for the master device first in line 24. If it does not exceed
the maximum tolerated delay, we send the task to the master device in line 26. Otherwise, we do the
same calculation on the slave device in line 28. If none of the above are satisfied, we send the task to
the cloud in line 32.

Appl. Sci. 2020, 10, 6057 11 of 17

Algorithm 3 Resource Provisioning Strategy

Input: Nm, Ns, Cm, Cs, T, Ct
Output: Scheduling scheme for tasks

1: if Nm = 0 then
2: result← MASTERMAXTOLERATETIME
3: if result = true then
4: return send task to master device
5: end if
6: result← SLAVEMAXTOLERATETIME
7: if result = true then
8: return send task to slave device
9: end if

10: return send task to cloud
11: else
12: γ← Cm · Ns

Cs · Nm
13: if γ <= 1 then
14: result← SLAVEMAXTOLERATETIME

15: if result = true then
16: return send task to slave device
17: end if
18: result← MASTERMAXTOLERATETIME

19: if result = true then
20: return send task to master device
21: end if
22: return send task to cloud
23: else
24: result← MASTERMAXTOLERATETIME

25: if result = true then
26: return send task to master device
27: end if
28: result← SLAVEMAXTOLERATETIME

29: if result = true then
30: return send task to slave device
31: end if
32: return send task to cloud
33: end if
34: end if
35: function MASTERMAXTOLERATETIME

36: return MAXTOLERATETIME(Cr
m, Tm, Cm, Nm);

37: end function
38: function SLAVEMAXTOLERATETIME

39: return MAXTOLERATETIME(Cr
s , Ts, Cs, Ns)

40: end function
41: function MAXTOLERATETIME(Cr, Tr, C, Nr)
42: add Ct and T into arrays Cr and Tr;
43: i← 0 ;
44: Nr ← Nr + 1;
45: while i < Nr do
46: if Dc[i] > Tr[i] then
47: return f alse
48: end if
49: i← i + 1
50: end while
51: return true
52: end function

Appl. Sci. 2020, 10, 6057 12 of 17

Table 3. Notations.

Nm The number of running tasks in master node.
Ns The number of running tasks in slave node.
Cm The processing capability of master node.
Cs The processing capability of slave node.
Mt MIPS of the target task.
T The maximum tolerated time of the target task.

Tm The array of the task remaining time in master node.
Ts The array of the task remaining time in slave node.
Cr

m The task remaining MIPS in master node.
Cr

s The task remaining MIPS in slave node.

The functions we used in Algorithm 3 are shown in lines 27 to 39. We calculate task delay after
adding the scheduled task to the device in lines 31 to 39. We first add the computing capacity and the
max tolerate delay required form the scheduled task to the device in lines 32 to 33, and increase the
number of the running tasks by 1 in line 34. We update the computation delays Dc[i] for the tasks

on the device, where Dc[i] =
Cr[i] · Nr

C
. Then, we compare whether they exceeded their maximum

tolerated delay Tr[i] in line 36. If any of the tasks exceed its maximum tolerated delay, the function will
return false which indicates that the task cannot be added into the device. Otherwise, the function
returns true. We use two functions to encapsulate the respective calculation parameters of the master
and slave devices in lines 27 to 30.

6. Simulation and Results

6.1. Simulation for the Energy-Efficient Scheduling Schemes

In order to check the effectiveness of the energy-efficient scheduling schemes propose in this
paper, we built a simulator based on the power and delay model described above. In addition, we have
also implemented the following two algorithms as algorithm benchmarks for comparative analysis.
(i) Greedy Algorithm without Backtracking (GAB): This algorithm differs from the task scheduling
algorithm based on the greedy algorithm described above in that it does not judge the maximum
tolerable delay in line 7 and directly enters line 8, so that the first solution is found greedily. While the
solution may exceed the maximum tolerable delay. In order to compare the algorithms more fairly,
in the subsequent simulation experiments, if the solution obtained exceeds the maximum tolerable
delay, the solution will be multiplied by a factor, increasing the power consumption value of the
solution. (ii) Greedy Algorithm with Minimum Delay without Backtracking (GAMDB): the difference
between this algorithm and the previous algorithm is that the selection of the greedy algorithm, it will
be sorted according to the length of the delay, and the solution with the smallest delay is selected
each time, in order to expect to find the solution with the smallest delay, as a comparison group of
experiments. The network architecture in the simulation is that every 5 user devices access an edge
node, there are 5 edge nodes in total, and all edge nodes access one cloud node in common.

In our simulation, the parameters shown in Table 4 which are set for simulation. We pre-configure
the coefficient α of each edge node in Equation (1) to be 10. What’s more, we define a penalty coefficient
which is 630. It denotes the penalty that exceeding the maximum tolerance. The above four algorithms
are implemented separately and compared under the same parameters. We run each of the above
algorithms 5000 times and average these results. When the averages are stable, record them as follows.

Appl. Sci. 2020, 10, 6057 13 of 17

Table 4. Simulation parameters.

Description Value

Coefficient of power consumption α 10
Channel bandwidth 90 MHz
Transmission power 0.2 W

Background noise power 0.6 W
Number of subtasks 5

Maximum tolerable delay 200 ms
Waiting delay 0-20 ms

Coefficient of penalty 630
Frequency of user nodes 0.8–2.8 GHz
Frequency of edge nodes 0.8–3.8 GHz
Total frequency of cloud 8–38 GHz

As shown in Figure 4, we implement four algorithms (SSBB, SSBM, GAB, and GAMDB) on
our simulator. According to the performance of the above algorithm in the simulator, the following
conclusions can be drawn. The optimal solution solved by the SSBB has an absolute advantage
among the four algorithms. The SSBM algorithm with backtracking effectively finds the sub-optimal
solution. When the task transmission size is small, the gap between the optimal solution and the
sub-optimal solution is larger, the maximum gap is 8%. With the increasing size of task transmission,
the gap is gradually narrowing, eventually less than 1.8%. Because in the process of traversing the
solution space, the first feasible solution found using the greedy algorithm may not be the optimal
solution, and the branch and bound method is to subtract the impossible branch under the premise
of traversing the entire solution space and found the global optimal solution. Since the algorithm
GAB uses more edge-cloud nodes and calculates the transmission power consumption. It has a
different slope compared with the first two algorithms. Generally, the power consumption of the local
calculation is far greater than the transmission power consumption. This leads to a much smaller
fluctuation in the results of this algorithm than other algorithms that use local calculations. Generally,
the GAB and GAMDB using the delay to sort are still more power-intensive than other algorithms.
Because a penalty coefficient is designed for solutions that use a delay that exceeds the maximum
tolerance. For scenarios with low quality of service, these two algorithms can be used to reduce the
complexity of the algorithm.

0

50

100

150

800 1600 2400 3200 4000 4800

Po
w

er
 C

om
su

m
pt

io
n

(J
)

x
10

00

Task Size (MBit)

SSBB SSBM GAB GAMDB

Figure 4. Total power consumption of the users.

Figure 5 shows the delay of the four algorithms. Except for the GAB algorithm, they all come
together and make little difference. However, this is not the case. The value of the solution space is
discontinuous under this simulation parameter, and the gap is huge. Because we averaged the obtained
data after 5000 executions of the solution obtained. The delays of the solutions of SSBB and greedy
are at the boundary of the maximum tolerable delay because they use as more local calculations as
possible. The longer the execution time corresponds to the lower the execution power, indicating that
these algorithms make full use of task tolerance delay, which is as expected. The solution of GAB uses

Appl. Sci. 2020, 10, 6057 14 of 17

too much offload computing, resulting in a delay much higher than other algorithms. The delay of the
solution obtained by GAMDB is at a low level, because it uses too many local calculations, resulting in
very high power consumption.

0

100

200

300

400

800 1600 2400 3200 4000 4800

D
el

ay
 (m

s)

Task Size (MBit)

SSBB SSBM GAB GAMDB

Figure 5. Total delay of the users.

6.2. Simulation for the Resource Provisioning Strategy

In this section, we conduct our experiments on the iFogSim simulator platform [27]. iFogSim is
a popular simulator in the area of edge computing which implements many features of the edge
architecture, such as the edge network structure, the placement of task modules, and the task system.
In our simulation, we realize our scheduling strategy and modify the power consumption model to
adapt the sleep power consumption mode based on the iFogSim simulator. We assume that each
sensor is equipped with a set of edge nodes for receiving tasks. In our simulation, 24 edge nodes are
used which divided into 4 groups. The detailed configuration of the simulator is shown in Table 4.
For each group, we set six edge nodes that connect to the upper-level cloud through a gateway and a
proxy server.

We first performed the scheduling strategy under the master-slave mode and non-master-slave
mode. The experimental result is shown in Figure 6. The abscissa is the name of the device under
a gateway in the architecture, and the ordinate is the power consumption of the edge nodes in this
experiment. According to the result, we find that the power consumption has a certain fluctuation
due to the normal distribution, but the mean value is still very stable which means that the power
consumption of each node is similar. Thus, we have that the total number of tasks that the edge nodes
process is similar which is not affected by the dynamic generation.

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7 8 9 10 11

Pr
ob

ab
ili

ty

Mean of the Emit Event Interval
5 6 7 8

72
74
76
78
80
82
84
86
88

0-0 0-1 0-2 0-3 0-4 0-5

Po
w

er
Co

ns
um

pt
io

n
x

10
00

0

Name of the Device
Non-Master-Slave Master-Slave

Figure 6. Power consumption of five edge nodes in a gateway.

As shown in Figure 7, we experiment with different mission generation densities. The horizontal
axis is the value of the mean in the normal distribution for each task, and the vertical axis is the
total power consumption of the edge nodes in this experiment. The experimental results show that
with a mean of 5, the power consumption of the non-master-slave is 3.3% lower than that of the

Appl. Sci. 2020, 10, 6057 15 of 17

master-slave. In the experiment with a mean of 6, the power consumption dropped by 18.5%. In the
experiment with a mean of 7, the power consumption dropped by 26.3%. In the experiment with a
mean of 8, the power consumption dropped by 27.9%. It can be concluded that with the intensive task
generation, the advantages of the strategy under the master-slave mode are getting smaller and smaller.
The algorithm proposed in this paper has obvious optimization of the power consumption when the
task density is small. When the task density is large, the power consumption under both modes is
nearly the same. As shown in Figure 8, we calculate the delay of two scenarios under different task
volumes. The horizontal axis is the value of the mean in a normal distribution for each task, and the
vertical axis is the mean of all task delays in this experiment. The experimental results show that
in the experiment with a mean of 5, the delay of non-master-slave is 0.04% higher than the delay of
master-slave. In the experiment with the means of 6 and 7, the delays increased by 5.25% and 16.69%,
respectively. Similarly, the delay increased by 17.07% with a mean of 8. The algorithm proposed in this
paper has certain side effects on delay, but in different groups of experiments, the power consumption
savings ratio is greater than the delay increase ratio.

0%
5%
10%
15%
20%
25%
30%

0

0.05

0.1

0.15

0.2

0.25

5 6 7 8

Po
w

er
 C

on
su

m
pt

io
n

x
10

00
0

Mean of the Emit Event Interval
Non-Master-Slave Master-Slave

Figure 7. Total power consumption of the edge nodes.

-20%

-15%

-10%

-5%

0%

0
5

10
15
20
25
30
35

5 6 7 8

D
el

ay

Mean of the emit event interval
Non-Master-Slave Master-Slave

Figure 8. Total delay of the tasks.

According to the experimental results above, we make the following conjectures. Assuming that
a task is a minimum migration unit, we cannot place a task on two devices in parallel. Since the
task is indivisible, in the case where the total computing power of the master-slave mode and the
non-master-slave mode is the same. When there is no task to be processed, we can see that the
power consumption under the master-slave mode is much lower than the non-master-slave mode.
When there is only one task to be processed, the slave node must be in a sleep mode under the
master-slave mode. The computing capacity under the non-master-slave mode is significantly stronger
than the master-slave mode. Thus, there will be a certain increase in the delay under this scenario.
When the number of tasks is larger than one, since the capacities of the edge nodes are limited,
the performance gap between these two modes is not obvious.

Appl. Sci. 2020, 10, 6057 16 of 17

7. Conclusions

In this paper, we focus on reducing the power consumption in edge computing by considering
the resources and delay constraints. We propose a two-stage scheduling strategy. In the scheduling
stage, we introduce an algorithm based on branch and bound. Base on that, we propose a heuristic
algorithm that guarantees users’ deadlines to reduce complexity. In the resource provisioning stage,
we approach the problem by virtualizing the edge nodes into master and slave nodes based on the
sleep power consumption mode. Then, we propose a scheduling strategy through balancing the
resources of virtual nodes that reduce the power consumption and guarantee the user’s delay as well.
Extended trace-driven simulations on iFogSim prove the correctness and efficiency of our strategy.

Author Contributions: Conceptualization, J.F. and Y.C.; methodology, Y.C. and S.L.; software, Y.C.; validation,
J.F. and S.L.; investigation, J.F., Y.C. and S.L.; resources, J.F.; data curation, Y.C. and S.L.; writing—original
draft preparation, Y.C.; writing—review and editing, S.L. and J.F.; visualization, Y.C.; supervision, J.F.;
project administration, J.F.; funding acquisition, J.F. All authors have read and agreed to the published version of
the manuscript.

Funding: This research is supported by the National Natural Science Foundation of China (61202076), and supported
by Beijing Natural Science Foundation (4192007), along with other government sponsors.

Acknowledgments: The authors would like to thank the reviewers for their efforts and for providing helpful
suggestions that have led to several important improvements in our work. We would also like to thank all teachers
and students in our laboratory for helpful discussions.

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

1. Li, J.; Huang, L.; Zhou, Y.; He, S.; Ming, Z. Computation partitioning for mobile cloud computing in a big
data environment. IEEE Trans. Ind. Inform. 2017, 13, 2009–2018. [CrossRef]

2. Alnoman, A.; Anpalagan, A. Towards the fulfillment of 5G network requirements: Technologies and challenges.
Telecommun. Syst. 2017, 65, 101–116. [CrossRef]

3. Goethals, T.; De Turck, F.; Volckaert, B. Near real-time optimization of fog service placement for responsive
edge computing. J. Cloud Comput. 2020, 9, 1–17. [CrossRef]

4. Ha, K.; Chen, Z.; Hu, W.; Richter, W.; Pillai, P.; Satyanarayanan, M. Towards wearable cognitive assistance.
In Proceedings of the 12th Annual International Conference on Mobile Systems, Applications, and Services;
ACM: New York, NY, USA, 2014; pp. 68–81.

5. Premsankar, G.; Di Francesco, M.; Taleb, T. Edge computing for the Internet of Things: A case study.
IEEE Internet Things J. 2018, 5, 1275–1284. [CrossRef]

6. Zhang, K.; Cao, J.; Liu, H.; Maharjan, S.; Zhang, Y. Deep reinforcement learning for social-aware edge
computing and caching in urban informatics. IEEE Trans. Ind. Inform. 2019, 16, 5467–5477. [CrossRef]

7. Ren, J.; Guo, H.; Xu, C.; Zhang, Y. Serving at the edge: A scalable IoT architecture based on transparent
computing. IEEE Netw. 2017, 31, 96–105. [CrossRef]

8. Brogi, A.; Forti, S. QoS-aware deployment of IoT applications through the fog. IEEE Internet Things J. 2017,
4, 1185–1192. [CrossRef]

9. Xiao, S.; Liu, C.; Li, K.; Li, K. System delay optimization for Mobile Edge Computing. Future Gener.
Comput. Syst. 2020, 109, 17–28. [CrossRef]

10. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge computing: Vision and challenges. IEEE Internet Things J. 2016,
3, 637–646. [CrossRef]

11. Hussain, B.; Du, Q.; Imran, A.; Imran, M.A. Artificial Intelligence-powered Mobile Edge Computing-based
Anomaly Detection in Cellular Networks. IEEE Trans. Ind. Inform. 2019, 16, 4986–4996. [CrossRef]

12. Zhang, T.; Xu, Y.; Loo, J.; Yang, D.; Xiao, L. Joint computation and communication design for UAV-assisted
mobile edge computing in IoT. IEEE Trans. Ind. Inform. 2019, 16, 5505–5516. [CrossRef]

13. Wang, T.; Wang, P.; Cai, S.; Ma, Y.; Liu, A.; Xie, M. A unified trustworthy environment establishment based
on edge computing in industrial IoT. IEEE Trans. Ind. Inform. 2019, 16, 6083–6091. [CrossRef]

http://dx.doi.org/10.1109/TII.2017.2651880
http://dx.doi.org/10.1007/s11235-016-0216-9
http://dx.doi.org/10.1186/s13677-020-00180-z
http://dx.doi.org/10.1109/JIOT.2018.2805263
http://dx.doi.org/10.1109/TII.2019.2953189
http://dx.doi.org/10.1109/MNET.2017.1700030
http://dx.doi.org/10.1109/JIOT.2017.2701408
http://dx.doi.org/10.1016/j.future.2020.03.028
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1109/TII.2019.2953201
http://dx.doi.org/10.1109/TII.2019.2948406
http://dx.doi.org/10.1109/TII.2019.2955152

Appl. Sci. 2020, 10, 6057 17 of 17

14. Ahn, J.; Lee, J.; Yoon, S.; Choi, J.K. A novel resolution and power control scheme for energy-efficient mobile
augmented reality applications in mobile edge computing. IEEE Wirel. Commun. Lett. 2019, 9, 750–754.
[CrossRef]

15. Gu, X.; Ji, C.; Zhang, G. Energy-Optimal Latency-Constrained Application Offloading in Mobile-Edge
Computing. Sensors 2020, 20, 3064. [CrossRef]

16. Fang, J.; Chen, Y.; Lu, S. A Scheduling Strategy for Reduced Power Consumption in Mobile Edge Computing.
In Proceedings of the IEEE INFOCOM 2020-IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), Toronto, ON, Canada, 6–9 July 2020; pp. 1190–1195.

17. Taneja, M.; Davy, A. Resource aware placement of IoT application modules in Fog-Cloud Computing
Paradigm. In Proceedings of the 2017 IFIP/IEEE Symposium on Integrated Network and Service
Management (IM), Lisbon, Portugal, 8–12 May 2017; pp. 1222–1228.

18. Barcelo, M.; Correa, A.; Llorca, J.; Tulino, A.M.; Vicario, J.L.; Morell, A. IoT-cloud service optimization in
next generation smart environments. IEEE J. Sel. Areas Commun. 2016, 34, 4077–4090. [CrossRef]

19. Zhang, K.; Mao, Y.; Leng, S.; Zhao, Q.; Li, L.; Peng, X.; Pan, L.; Maharjan, S.; Zhang, Y. Energy-Efficient
Offloading for Mobile Edge Computing in 5G Heterogeneous Networks. IEEE Access 2016, 4, 5896–5907.
[CrossRef]

20. Guo, J.; Song, Z.; Cui, Y.; Liu, Z.; Ji, Y. Energy-Efficient Resource Allocation for Multi-User Mobile Edge
Computing. In Proceedings of the GLOBECOM 2017—2017 IEEE Global Communications Conference,
Singapore, 4–8 December 2018.

21. Huang, Z.; Lin, K.J.; Yu, S.Y.; Hsu, J.Y.j. Co-locating services in IoT systems to minimize the communication
energy cost. J. Innov. Digit. Ecosyst. 2014, 1, 47–57. [CrossRef]

22. Huang, Z.; Lin, K.J.; Yu, S.Y.; Hsu, J.Y.j. Building energy efficient internet of things by co-locating services to
minimize communication. In Proceedings of the 6th International Conference on Management of Emergent
Digital EcoSystems, Buraidah Al Qassim, Saudi Arabia, 15–17 September 2014; pp. 101–108.

23. Trinh, H.; Calyam, P.; Chemodanov, D.; Yao, S.; Lei, Q.; Gao, F.; Palaniappan, K. Energy-aware mobile edge
computing and routing for low-latency visual data processing. IEEE Trans. Multimed. 2018, 20, 2562–2577.
[CrossRef]

24. Mavromoustakis, C.X.; Batalla, J.M.; Mastorakis, G.; Markakis, E.; Pallis, E. Socially Oriented Edge
Computing for Energy Awareness in IoT Architectures. IEEE Commun. Mag. 2018, 56, 139–145. [CrossRef]

25. Zhang, Z.; Zhang, W.; Tseng, F.H. Satellite mobile edge computing: Improving QoS of high-speed
satellite-terrestrial networks using edge computing techniques. IEEE Netw. 2019, 33, 70–76. [CrossRef]

26. Dinh, T.Q.; Tang, J.; La, Q.D.; Quek, T.Q. Offloading in mobile edge computing: Task allocation and
computational frequency scaling. IEEE Trans. Commun. 2017, 65, 3571–3584.

27. Gupta, H.; Vahid Dastjerdi, A.; Ghosh, S.K.; Buyya, R. iFogSim: A toolkit for modeling and simulation
of resource management techniques in the Internet of Things, Edge and Fog computing environments.
Softw. Pract. Exp. 2017, 47, 1275–1296. [CrossRef]

28. Chen, X. Decentralized Computation Offloading Game for Mobile Cloud Computing. IEEE Trans. Parallel
Distrib. Syst. 2015, 26, 974–983. [CrossRef]

29. Chen, X.; Jiao, L.; Li, W.; Fu, X. Efficient Multi-User Computation Offloading for Mobile-Edge Cloud
Computing. IEEE/ACM Trans. Netw. 2016, 24, 2795–2808. [CrossRef]

30. Lin, X.; Wang, Y.; Xie, Q.; Pedram, M. Task Scheduling with Dynamic Voltage and Frequency Scaling for
Energy Minimization in the Mobile Cloud Computing Environment. IEEE Trans. Serv. Comput. 2015,
8, 175–186. [CrossRef]

31. Lyu, X.; Tian, H.; Ni, W.; Zhang, Y.; Zhang, P.; Liu, R.P. Energy-Efficient Admission of Delay-Sensitive Tasks
for Mobile Edge Computing. IEEE Trans. Commun. 2018, 66, 2603–2616. [CrossRef]

32. Mao, Y.; Zhang, J.; Song, S.; Letaief, K.B. Power-delay tradeoff in multi-user mobile-edge computing systems.
In Proceedings of the 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA,
4–8 December 2016; pp. 1–6.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/LWC.2019.2950250
http://dx.doi.org/10.3390/s20113064
http://dx.doi.org/10.1109/JSAC.2016.2621398
http://dx.doi.org/10.1109/ACCESS.2016.2597169
http://dx.doi.org/10.1016/j.jides.2015.02.005
http://dx.doi.org/10.1109/TMM.2018.2865661
http://dx.doi.org/10.1109/MCOM.2018.1700600
http://dx.doi.org/10.1109/MNET.2018.1800172
http://dx.doi.org/10.1002/spe.2509
http://dx.doi.org/10.1109/TPDS.2014.2316834
http://dx.doi.org/10.1109/TNET.2015.2487344
http://dx.doi.org/10.1109/TSC.2014.2381227
http://dx.doi.org/10.1109/TCOMM.2018.2799937
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Model and Problem Formulation
	Network Model
	Edge Layer
	User Layer

	Problem Formulations

	Energy-Efficient Scheduling Scheme
	Scheduling Scheme Based on Branch and Bound (PSBB)
	Scheduling Scheme Based on Backtracking Method (SSBM)

	Resource Provisioning Strategy
	Edge Node Virtualization Model
	Resource Provisioning Strategy

	Simulation and Results
	Simulation for the Energy-Efficient Scheduling Schemes
	Simulation for the Resource Provisioning Strategy

	Conclusions
	References

