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Abstract: Cold atmospheric or low pressure plasma has activation effects on seed germination,
plant growth and development, and plant sustainability, and prior experimental studies showing
these effects are summarized in this review. The accumulated data indicate that the reactive species
generated by cold plasma at atmospheric or low pressure may be involved in changing and activating
the physical and chemical properties, physiology, and biochemical and molecular processes in plants,
which enhances germination, growth, and sustainability. Although laboratory and field experiments
are still required, plasma may represent a tool for efficient adaptation to changes in the climate and
agricultural environments.

Keywords: plasma; seed germination; plant growth; plant sustainability; stress tolerance;
reactive species

1. Introduction

Agriculture faces many problems due to continuous global population growth, environmental
pollution, lack of agricultural land, and climate change. Climate change, in particular, has caused
significant reductions in crop yield, threatening global food security [1]. According to the Food and
Agriculture Organization (FAO), 20–45%, 5–50%, and 20–30% yield reductions are expected for maize,
wheat, and rice, respectively, by 2100 under the current rates of climate change [1]. The distribution of
plant pathogens and pests has shifted, the virulence of pathogens has been altered, and new diseases
have emerged as a consequence of climatic changes [2,3]. Climate change has also altered the optimal
locations of crop culture and reduced the quality and quantity of crop products [4].

Various strategies and technologies have been developed to adapt to changing agricultural
environments. Efficient land use and management, altered food demand patterns, and reduced food
waste and loss are often suggested as adaptation strategies [5]. Technological crop improvements also
provide reliable solutions to overcome environment-associated challenges. Genetic engineering and
breeding-based technologies are frequently used to produce crop plants with higher yield and stress
tolerance [5]. However, the genetic regulations for crop production and tolerance are complicated
processes involving many genes, which complicates crop improvement via genetic manipulation.
Safety issues are another barrier that limits the broad application of genetic approaches.

The multi-disciplinary approach has received great attention, and cold atmospheric or low
pressure plasma developed by physicists has been actively explored for its agricultural applications [6].
Plasma is an ionized gas produced at room temperature under atmospheric pressure. It generates
reactive species, so the activation of plant vitality and the inactivation of microorganisms are frequently
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observed in agricultural applications [6]. Cold atmospheric or low pressure plasma is a potential tool
to increase crop plant vitality and production, and several studies have investigated plasma-induced
improvements to seed germination, plant growth and reproduction, and plant sustainability. In this
review, we summarize the agriculture-based studies of cold atmospheric or low pressure plasma.
Due to space limitations, we are unable to review all the published work in this rapidly expanding field.

2. Effect of Plasma on Seed Germination

Seeds are the reproductive products of plants which have totipotency, i.e., the capacity to develop
into whole plants. Seeds are necessary for plant survival, dispersal, and the maintenance of progeny.
At the time of dispersal, seeds undergo a period of dormancy to avoid unfavorable environmental
conditions. Many dormant seeds fail to germinate, even if favorable conditions exist. Therefore,
it is necessary to break the dormancy stage to increase germination. Other than the environmental
factors, the dormant phase and seed germination are influenced by the hard seed coat, the presence of
inhibitors, the seed maturation period, the immature embryo, seed coat impermeability to oxygen
and water, and hormone imbalances. The phytohormone abscisic acid (ABA) is responsible for
maintaining dormancy, whereas gibberellic acid (GA) is responsible for breaking the dormancy phase.
These phytohormones are synthesized in the seeds in response to physical factors, and they activate the
signaling cascades and enzymes that promote the degradation of seed reserves and initiate germination.
Germination occurs in different phases and involves various physiological, biochemical, and molecular
events (Figure 1).
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Figure 1. Plausible events of seed germination initiated by plasma seed priming. Plasma treatment
causes mechanical damage and facilitates a redox environment for the seed. This redox environment
induces different pathways of seed germination. EMW: Electromagnetic wave, GA: Gibberellic acid,
MAPK: Mitogen activated protein kinase, OxPPP: Oxidative pentose phosphate pathway, PCB: Protein
carbonylation, TRX: Thioredoxin.

Various seed treatment procedures have been applied to overcome dormancy. Popular seed
treatment or priming methods, such as scarification, stratification, and chemical treatments, are used to
induce germination in dormant seeds [7]. Cold (non-thermal) atmospheric or low pressure plasma is a
new technology to enhance seed germination (Tables 1 and 2), and seed treatment involves (1) direct
exposure to plasma (Table 1) or (2) indirect exposure via plasma-treated water and solutions (Table 2).
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Table 1. Effects of direct plasma on plant germination, growth, and physiology.

Plant Species Plasma Source Feeder Gas Treated
Stage

Enhanced
Effects Reference

Avena sativa
Hordeum vulgare

Glow discharge air
plasma Air Seed Germination [8]

Hordeum vulgare
Raphanus sativus

Pisum sativum
Glycine max L. Merr.

Zea mays L.
Phaseolus vulgaris L.

Low-pressure RF
(radio frequency)
rotating plasma

carbon tetrafluoride
(CF4)/octadecafluorodeca

-lin (ODFD)
Seed Germination [9]

Lycopersicon esculentum L.
Mill. cv. Zhongshu No. 6 Magnetized plasma Seedling Growth and

productivity [10]

Chenopodium album agg. Low-pressure
microwave plasma

Mixture of Argon (Ar),
Nitrogen (N2), and

Oxygen (O2)
Seed Germination [11,12]

Avena sativa
Triticum aestivum

Plasma plant Plasonic
AR-550-M Air Seed

Germination
and early
growth

[13]

Lupinus angustifolius Galega
virginiana Melilotus albus RF air Plasma Air Seed

Germination
and

productivity
[14]

Solanum lycopersicum DBD (dielectric barrier
discharge) air plasma Air Seed Growth and

yield [15]

Lens culinaris
Phaseolus vulgaris

Triticum

Cold radiofrequency
Air plasma Air Seed Germination [16]

Fagopyrum aeseulentum

GlidArc plasma
Surface DBD plasma

Downstream
microwave plasma

Planar rotating
electrode plasma

Air and mixture of air
with water vapors Seed

Germination
(depending
on plasma
sources)

[17]

Glycine max L. Merr. cv.
Zhongdou 40

Low-pressure RF
helium plasma Vacuum Seed and

seedling
Germination
and growth [18]

Raphanus sativum var.
Icicle

Surface discharge
plasma Air Seed Early growth [19]

Andrographis paniculata DBD air plasma Air Seed Germination
and growth [20]

Pisum sativum Surface DBD plasma Air Seed, sprout,
and seedling

Germination
and flavonol

glycoside
[21]

Triticum aestivum Surface discharge
plasma Air

Seed and
vegetative

stage

Germination
and growth [22]

Raphanus sativus var.
longipinnatus DBD plasma Pure Oxygen (O2)

Seed and
vegetative

stage

Germination
and growth [23]

Coriander sativum

DBD N2 (nitrogen)
plasma

Microwave plasma
generated gas

Nitrogen (N2) Seed Germination [24]

Brassicaceae Low-pressure RF O2
(oxygen) plasma Oxygen (O2) Seed Antioxidant

activity [25]

Arabidopsis thaliana Gliding arc air plasma Air
Seed and

reproductive
stage

Germination
and growth [26]

Pisum sativum L. var.
Prophet

Diffuse coplanar
surface DBD plasma Air Seed and

seedling
Germination
and growth [27]
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Table 1. Cont.

Plant Species Plasma Source Feeder Gas Treated
Stage

Enhanced
Effects Reference

Spinacia oleracea L.

High voltage
nanosecond pulsed

plasma
Micro DBD plasma

Air and nitrogen (N2)
gas Seed Germination

and growth [28]

Erythrina velutina DBD He plasma Helium (He) gas Seed Germination [29]

Hordeum vulgare Surface DBD plasma Nitrogen (N2) with
bubble air Seed

Germination,
growth, and

GABA
content

[30]

Raphanus sativus L. DBD plasma with
various feeding gases

Air, oxygen (O2),
nitrogen (N2),

helium(He), argon (Ar),
and NO(10%)+nitrogen

Seed

Growth
(depending
on feeding

gas and
moisture)

[31]

Mung bean
DBD plasma generated
in water using various

gas

Air, oxygen (O2),
nitrogen (N2), and

helium (He)
Seed Germination

and growth [32]

Brassica juncea L. Nanosecond
microspark plasma Air Seed Germination [33]

Chenopodium quinoa
DBD RF air plasma
under atmospheric
and low pressure

Air Seed Germination [34]

Wheat DBD plasma with
various feeding gases

Air, oxygen (O2),
nitrogen (N2), and argon

(Ar)
Seed Germination

and growth [35]

Lavatera thuringiaca L. Gliding arc discharge
N2 plasma Nitrogen (N2) Seed Germination [36]

Capsicum annuum DBD Ar (argon)
plasma Argon (Ar) Seed Growth [37]

Cannabis sativa L. Gliding arc plasma
Microwave plasma

Oxygen (O2) and argon
(Ar)

Seed and
vegetative

stage

Germination
and growth [38]

Mimosa caesalpiniafolia DBD plasma Air Seed Germination [39]

Glycine max L. Merrill DBD Ar plasma Argon (Ar) Seed Germination
and growth [40]

Sunflower Ar/O2 plasma Oxygen (O2) and argon
(Ar) Seed Growth [41]

Lavatera thuringiaca L. DBD plasma jet with
N2/He gas

Nitrogen (N2), and
helium (He) Seed Germination [42]

Wheat
Low-pressure DBD
plasma with Ar/O2

and Ar/air gases

Air, oxygen (O2) and
argon (Ar) Seed Germination

and growth [43]

Corn

Microwave plasma jet
DBD He plasma

Low-pressure RF N2
plasma

Nitrogen (N2), and
helium (He) Seed Growth and

yield (field) [44]

Trigonella foenum-graecum Ar plasma jet Argon (Ar) Seed Germination
and growth [45]

Allium sativum
Ptujski spomladanski

Low-pressure RF O2
plasma Oxygen (O2) Seed and

seedling
Germination
and growth [46]

Triticum spp.

Ar plasma
Q-switched Nd:YAG

(Quantel Brilliant)
pulsed laser

Argon (Ar) Seed
Germination

and
sterilization

[47]

Zoysia willd. Low-vaccum He
plasma Helium (He) and air Seedling Growth [48]
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Table 1. Cont.

Plant Species Plasma Source Feeder Gas Treated
Stage

Enhanced
Effects Reference

Glycine max L. Merrill DBD plasma Oxygen (O2) and
nitrogen (N2)

Seed and
seedling

Germination
and growth [49]

Cucurbita pepo L. cv.
Cinderella

Cucurbita maxima L. cv.
Jarrahdale

Cucurbita maxima L. cv.
Warty Goblin

Cold atmospheric
pressure plasma

Helium (He) and argon
(Ar) Seed Germination [50]

Cichorium intybus DBD plasma (Model
PS200) Argon (Ar) Seed and

seedling

Germination,
growth, and

flowering
[51]

Ocimum basilicum Volume barrier
discharge plasma Humid Air (40% RH) Seed Germination [52]

Catharanthus roseus DBD plasma Argon (Ar) Seed Growth and
physiology [53]

Vitis vinifera DBD Ar plasma Argon (Ar) Seed and
seedling

Germination
and growth [54]

Table 2. Effects of plasma treated water/solution on plant germination, growth, and physiology.

Plant Species Plasma Source Feeder Gas Treated
Stage

Enhanced
Effects Reference

Citrullus lanatus
Zinnia peruviana
Medicago sativa

Phaseolus cocconeus

Plasma-treated water Air Vegetative
stage Growth [55]

Janie marigold
Better Boy tomato

Early Scarlet radish
Plasma-treated water Air Seed and

seedling Growth [56]

Raphanus sativus
Solanum lycopersicum

Capsicum annum

DBD air plasma and
Plasma activated water Air

Seed and
vegetative

stage

Germination
and growth [57]

Arabidopsis thaliana
DBD air and He
(helium) plasma

Plasma-treated water
Air and Helium (He) Seed and

seedling
Germination
and growth [58]

Coral lentils (Lens culinaris) Plasma-treated tap
water Air Seed Growth [59]

Glycine max L. Merrill Plasma-treated water Air Seed Growth and
quality [60]

Solanum lycopersicum Plasma-treated water Air Seedling Growth [61]

Pisum sativum L.
DBD plasma

Plasma-treated tap
water

Air Seed and
seedling

Germination,
growth, and

flowering
[62]

Radish sprout Plasma-treated organic
solutions

Argon (Ar) and oxygen
(O2) mixture Seedling Growth [63]

Spinacia oleracea L. Plasma-treated water Mixture of oxygen (O2)
and nitrogen (N2) Seed Growth [64]

Tomato
Lettuce

Mung bean
Sticky bean

Radish
Dianthus
Mustard
Wheat

DBD plasma
Plasma-treated water

Air, oxygen (O2) and
nitrogen (N2) Seed Germination

and growth [65]

Mung bean Plasma-treated water
Air, oxygen (O2),

nitrogen (N2), and
helium (He)

Seed
Germination
and disease

tolerance
[66]
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The first reported case of plasma application to seeds was in a US patent by Krapivina et al. [67],
where cold atmospheric pressure plasma generated from a mixture of inorganic gases (atmospheric air,
oxygen, and nitrogen) was applied to soybean seeds for 5 to 300 s and the germination and growth
were enhanced [67]. In the past 20 years, various plasma sources (dielectric barrier discharge (DBD) jet
plasma, microwave discharge, radio-frequency (RF) discharge, gliding discharge) have been developed
and used for treating vegetables (tomato, radish, coriander, green peas, and sunflower) and crops
(rapeseed, cotton, maize, oat, wheat, mustard, soybean, legumes, and honey clover) (Table 1). Plasma
treatment (direct or indirect) has enhanced seed germination in most studies, although no changes in
the germination percentage were observed in several studies [15,19,41,44,56,59,64]. Plasma promoted
the germination speed, overall germination percentage, or both.

Studies have also demonstrated variable effects on seed germination depending on the plasma
sources, plant species, treatment time, feeding gases, and moisture content. Šerá et al. [17] compared
different plasma sources for buckwheat seed germination and found that a GlidArc plasma source
with an air feeder gas induced improved germination compared to downstream microwave plasma,
planar rotating electrode plasma, and surface dielectric barrier discharge plasma. Other studies have
reported variations in seed germination efficiency among plant species when treated with the same
plasma source (Tables 1 and 2) [9,13,14,16,46,50,56,57,65]. Most studies identified an optimal treatment
time for the best germination efficiency for each plant species and plasma source. Effects of the feeding
gases on the plasma-mediated seed germination have also been reported. Zhou et al. [32] found that
mung bean seed germination was most efficient with microplasma generated in an aqueous solution
using oxygen as the feeding gas, as opposed to helium, nitrogen, and air. Meng et al. [35] reported
germination increases of 24, 28, and 35.5% for DBD plasma-treated wheat seeds with air, nitrogen, and
argon feeding gases, respectively. Most studies have been under laboratory conditions, but field-based
investigations have also been reported [14,44]. Filatova et al. [14] observed a 10–20% increase in the
field germination capacity of soy, honey clover, and catgut seeds with microwave plasma treatment,
whereas Ahn et al. [44] did not observe any changes in the germination percentage.

The mechanisms of enhanced seed germination by plasma have been thoroughly investigated.
The most frequently reported factors are changes in the physical and chemical properties of the seed coat
or surface. Physical and chemical changes to the seed surface can result in elevated hydrophilicity and
water permeability that enhances water imbibition, which is required for seed germination. Increased
hydrophilicity and water permeability of the seed surface after plasma treatment has been frequently
observed [16,68,69]. Chemical changes and leaching of the seed surface membrane have also been
analyzed in many studies [14,18,34,42,68]. Cold atmospheric pressure plasma decreases the water
contact angle from 115◦ to 0◦ and modulates the hydrophilicity of the seed surface, which increases the
uptake of water and initiates subsequent biochemical processes [16]. Similarly, Ling et al. [18] reported
that cold plasma treatment decreases the contact angle of soybean seeds from 70.14◦ to 20.94◦. There is
abundant data to support the plasma-induced changes in the physicochemical properties of the seed
surface and the increases in water absorption. However, enhanced seed germination was also observed
without increased hydrophilicity of the seed surface [34]. The surface of quinoa seeds treated with RF
plasma was chemically modified, but the hydrophilicity of the seed surface did not change. Nitrogen
oxide (NOx

−) and potassium (K+) ions accumulated on the seed surface via chemical alterations from
the plasma treatment and penetrated the seeds after water addition, providing nutrients for seed
germination. Another possible mechanism for plasma-induced enhanced seed germination is that
the biochemical and molecular processes inside the seed are activated by plasma generated reactive
oxygen and nitrogen species (RONS). Plasma generates a diverse range of RONS, depending on
the feeder gas. These RONS can act as signaling molecules and initiate a germination cascade [70].
Reactive oxygen species (ROS) facilitate the oxidation of the aleurone layer and the mobilization food
reserves during seed germination. Mildažienė et al. [71] showed that RF cold plasma (at low pressure)
treatment (7 min) increased the GA (gibberellic acid) content of sunflower seeds and increased the
germination rate by 10–24%. Increased GA promotes the activity of α-amylase, which degrades
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complex starches to metabolize sugar to initiate the germination process [71]. Accumulation of the
GA3 germination hormone and amylolytic mRNA in spinach seeds treated with DBD plasma has also
been reported [28]. Rahman et al. [43] detected high concentrations of hydrogen peroxide (H2O2) in
cold plasma (Ar/Air, at low pressure) treated seeds and concluded that H2O2 is a signaling molecule
that stimulates seed germination. Hydrogen peroxide serves to maintain a low ABA/GA ratio, which
promotes the activation of amylase, the mobilization of food reserves, and the low production of
antioxidant enzymes. Nitric oxide (NO) is another reactive species that plays a regulatory role in seed
germination. NO regulates the production of ABA, a vital phytohormone that initiates germination
and breaks dormancy. In plants, NO is produced from the reduction of nitrate (NO3

−) to nitrite (NO2
−)

by nitrate reductase. Hence, NO3
− in plasma-activated water is primarily responsible for enhanced

seed germination [57]. A model of the plasma effects on seed germination and the possible molecular
and biochemical events is presented in Figure 1.

3. Effects of Plasma on Plant Vegetative Growth and Reproduction

The life cycle of plants is divided into three distinct phases: vegetative, reproductive, and seed
formation, followed by senescence. Vegetative growth is an important phase in which plants perform
photosynthesis, increase their biomass, synthesize the reserve food, and prepare for reproduction.
It is also a very sensitive stage because growth is influenced by environmental factors (i.e., heat,
drought, pathogen, alkalinity, UV rays) and biological stimuli. Overall crop productivity depends on
the vegetative growth phase, and, therefore, the regulation of vegetative growth is critical for plant
development and survival [72].

Plasma can regulate the vegetative growth phase of plants, and plasma seed treatment has
long-term effects on the early vegetative growth, as reported in several studies (Table 1). Plasma
treatment promotes seed germination and subsequent seedling growth, increasing the length and
biomass of seedlings (Table 1). As mentioned earlier, enhanced seedling growth without changes to the
germination efficiency has been also observed after plasma treatment [15,19,41,44,56,59,64]. Plasma
treatment at the seedling stage has also reported, which promoted seedling growth [10,48,55,61,63].
As for seed germination, the effects of plasma on seedling growth varies with the plasma dose, treatment
time, feeding gases, and moisture. Extended plasma exposure or high power or atmospheric pressure
reduced seedling growth; wheat seeds treated for 3 min had higher sprout biomass than seeds treated
for 10, 20, or 40 min [13]. Milder plasma treatments (2.7 W) accelerates early growth and increases
the root to shoot ratio [22]. Sarinont et al. [31] investigated the effects of feeding gases and moisture
on plasma-mediated seedling growth and found that DBD plasma-treated radish seeds had better
seedling growth when air, oxygen (O2), nitric oxide (NO) (10%), and nitrogen (N2) were used as the
feeding gases (rather than N2, helium (He), and argon (Ar)). Additional moisture during plasma
treatment also accelerated the growth enhancement effects.

Compared to vegetative growth, the effects of plasma on flowering and fruit production have
rarely been reported. Studies have shown that plasma seed treatment has positive effects on the
reproductive stage and harvesting product of tomatoes, soybeans, and peanuts [10,49]. A field study of
okra (Abelmoschus esculentus) in India, found that cold low pressure plasma seed treatment improved
different agronomic attributes, including the harvesting time, 50% flowering time, flower number, fruit
number and weight, and okra yield [73]. Recently, Li et al. [74] reported increase in pod numbers
(13.8%) and grain weight (8.2%) after priming oilseed rape plants with cold low pressure plasma at the
reproduction stage. In another report, cold atmospheric pressure plasma seed priming increased the
flower number (41.5%) and fresh weight (24%) in Cichorium intybus [51]. Cold atmospheric pressure
plasma treatment alone or as a co-treatment with multi-walled carbon nanotubes increased the flower
number and diameter of melons, which resulted in more melon fruits [75].

When investigating the mechanism of plasma action on seedling growth, many reports have
focused on the increased nitrogen nutrient levels, changes in the amount growth hormones and other
physiological processes, and the activation of growth-related gene expression. These mechanisms are
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likely related to the plasma-generated reactive species. Plasma-generated reactive species can produce
nitrogen species, such as NO2

− and NO3
−, after interacting with water. Plasma-treated water acts as a

nitrogen fertilizer and is responsible for growth induction in seedlings [57]. Other reactive species, such
as H2O2 and NO, can act as growth stimulators. These reactive species may disturb redox homeostasis
and trigger mild oxidative stress in plants at the vegetative and reproductive stages. Elevated in
situ H2O2 and NOx concentrations in tomato seedlings in response to plasma-activated water (PAW)
was detected by Adhikari et al. [61]. Similar observations the accumulation of RONS in response to
plasma treatment in plants have also been reported in other studies [43,54]. The impact of RONS on
plant development is well known [76,77], so plasma-generated RONS may similarly influence plant
growth and development. Redox reactions play an important role in the cell cycle and cytokinesis.
Many small antioxidants (i.e., ascorbate and glutathione) are essential for the cell cycle and act as
redox buffers [78,79]. A study of wheat (Triticum sp.) and Arabidopsis roots suggests that the chemical
impediment of ROS disturbs microtubule assembly and promotes microtubule formation in the root tip
cells. This disturbance to tubulin organization leads to a distorted cytokinesis process [80]. ROS, such
as H2O2, hydroxyl radical (OH•), and superoxide (O2

−
•, affect cell expansion via their control of the

cell wall rigidity. Peroxidase in the apoplasts maintains the H2O2 level, regulates the crosslinking of
phenolics and extensins, and maintains the cell wall rigidity. In contrast, OH• oxidizes polysaccharides
(e.g., xyloglucans and pectins) and facilitates cell wall loosening [76]. Another study showed that the
O2
−
• gradient in the meristem of the roots can play a role in cell division—high O2

−
• levels are present

in root tips, the highest cell division zone, and the peripheral elongation zone has high H2O2 levels [81].
In Arabidopsis, the ROS content varies during floral bud formation and maturation, indicating the crucial
role of ROS during flower development. In rice, the MADS3 gene, which is responsible for stamen
formation during early floral bud development, regulates the O2

−
• concentration. Abnormal MADS3

expression causes pollen sterility by accumulating O2
−
• [82]. ROS can crosstalk with phytohormones

and influence plant growth and development. In the roots, meristem cell growth is influenced by
the interplay of H2O2 and brassinosteroids (BRs); intracellular H2O2 induces the binding of BR to
its receptor kinase BRI. H2O2 can oxidize BZR1 (Brassinazole-Resistant 1) and BES1 (Brassinosteroid
insensitive 1-Emssuppressor 1), the key transcription factors of BR signaling, and modify their activities.
BZR1 interacts with PIF4 (Phytochrome Interacting Factor 4) and ARF6 (Auxin Response Factor 6),
which are responsible for promoting meristem growth and development [83]. The redox reaction
and ROS also regulate the post-translational modification of histones, transcription factors, and the
chemical modifications of the nitrogenous DNA bases. Therefore, ROS epigenetically regulates plant
growth. Under oxidative stress, ROS downregulates the histone demethylase gene, interacts with
DME1 (DNA methylase), and epigenetically modifies the stress response of plants [77].

Seed reserve food utilization and the contents of soluble sugar and protein in seedlings are elevated
after plasma treatments [84]. Cold atmospheric pressure plasma treatment of seeds affects the growth
hormone concentration in the vegetative stage. Stolárik et al. [27] observed that the concentration of
auxin (IAA) was upregulated in 14- and 21-day-old seedlings exposed to LTP (low-thermal plasma) for
120 s and 600 s at the seed stage. Interestingly, the cytokinin content was also significantly increased
in 14 days old seedlings exposed to LTP for 120 s (compared to non-exposed seedlings) [27]. Other
reports suggest that the redox homeostasis of plants is modified by cold atmospheric or low pressure
plasma treatment. The modulation of superoxide dismutase (SOD), ascorbate peroxidase (APX), and
chloramphenicol acetyltransferase (CAT) enzyme activities was observed in wheat plants after low
pressure DBD plasma exposure [43]. Likewise, changes in the antioxidant (proline, ascorbic, guaiacol
peroxidase, phenylalanine ammonia-lyase, phenolic, and flavonoid) status were also observed in plants
at the vegetative stage after cold atmospheric pressure plasma treatment [40,61,85,86]. The expression
patterns of different growth-regulating genes in response to cold atmospheric pressure plasma treatment
have been investigated—argon plasma downregulates the expression of the methylation-related genes
in soybeans and epigenetically regulates the expression of the metabolism-related genes [40].
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The underlying mechanisms of RONS in plant growth and development are well known, and
enormous amounts of information are available. As indicated by several studies, cold plasma and
plasma-activated solutions can act as oxidative stimulants and disturb redox equilibrium. Redox
non-equilibrium promotes the interaction of RONS with biomolecules, leading to oxidative modification
or damage. Elevated RONS can also crosstalk with other metabolic reactions, phytohormones, and
growth and development signaling cascades that change the plant across different physiological,
biochemical, and molecular levels (Figure 2).
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Figure 2. Effects of plasma-generated reactive oxygen and nitrogen species (RONS) in different plant
organs at different growth stages. Direct and indirect exposure to plasma induces RONS in various
plant organs (shoots, roots, leaves, and flowers) and activates different signaling cascades that crosstalk
with other small signaling molecules and hormones to affect growth, development, and immunity. BR:
Brassinosteroid, ABA: Abscisic acid, SA: Salicylic acid, JA: Jasmonic acid, MAPK: Mitogen activated
protein kinase, WUS: WUSCHEL.

4. Plasma Technology for Crop Sustainability and Food Processing

Sustainable crop production and food security are important issues for modern society. Therefore,
the development of technologies to address these issues is urgently needed. Sustainable agriculture
technologies can not only increase crop production and tolerance but also help to preserve natural
resources and ecosystems. Cold atmospheric or low pressure plasma is a modern-age technique that
may alleviate the risks associated with agriculture and food processing systems. Cold atmospheric or
low pressure plasma is an eco-friendly approach that positively affects crop production under adverse
conditions. Various biotic and abiotic factors affect crop production, and several old agrochemical
and biotechnological approaches have been used to address these issues. However, they often have
negative impacts on the ecosystem. Plasma represents a risk-free approach because it requires low
energy, is waste-free, and has no negative effects on the environment.

The effects of cold atmospheric or low pressure plasma treatment on seed germination and
seedling growth under drought, salt, and chemical toxicity have been currently more studied (Table 3).
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Table 3. Effects of plasma on pre- and post-harvest plant sustainability.

Plant Species Plasma Source Feeder Gas Treated
Stage Improved Effects Reference

Pre-harvest tolerance to biotic stresses

Solanum lycopersicum RF helium plasma Helium (He) Seed Bacterial wilt
resistance [85]

Glycine max DBD O2 and N2
plasma

Oxygen (O2) and
nitrogen (N2) Seed Diaporthe/Phomopsis

fungal resistance [87]

Solanum lycopersicum
cv. Moneymaker and

VF010

Plasma-activated
water Ambient air Seedling Bacterial leaf spot

resistance [88]

Pre-harvest tolerance to abiotic stresses

Brassica napus He plasma discharge Helium (He) Seed Drought stress
tolerance [84]

Pisum sativum L. Coplanar DBD plasma Ambient Air Seed
Tolerance to

zeocinLess DNA
damage

[89]

Arabidopsis thaliana DBD air plasma Air and helium (He) Seed Salt stress tolerance [90]

Triticum aestivum
Low-pressure DBD
plasma with Ar/O2

and Ar/air gases

Argon (Ar)/oxygen (O2)
and argon (Ar)/air

mixture
Seed Tolerance to

cadmium (Cd) [91]

Hordeum vulgare Plasma-activated
water Nitrogen (N2) Seed

Tolerance to low
temperature and

hypoxia
[92]

Solanum lycopersicum Air Plasma Jet Air Seed

Tolerance to PEG
(polyethlene

glycol)-mediated
drought stress

[93]

Post-harvest sanitation

Lactuca sativaBrassica
oleracea sp. Capitata

Cold oxygen plasma
lamp (Photoplasma,
Model: Induct ID60)

Oxygen (O2)
Lettuce and

cabbage
vegetables

L. monocytogenes
biofilm removal [94]

Blueberries AC plasma jet Air Blueberry
fruits

Removed microbial
contamination [95]

Strawberries Plasma-activated
water

Argon (Ar)/oxygen (O2)
mixture

Strawberry
fruits

Removed microbial
contamination [96]

Cucumis melo L. var.
Reticolatus cv.

Raptor
DBD plasma Air Melon fruits Removed microbial

contamination [97]

Red chicory DBD plasma Air Chicory
vegetables

Reduced microbial
contamination [98]

Lycopersicum
esculentum Mill.

Intermittent corona
discharge plasma jet Air Cherry

tomato fruits

Reduced microbial
contamination and
increased shelf life

[99]

Apple cv. Granny
Smith

Low-pressure plasma
(expanded plasma

cleaner PDC-001/002)

Argon (Ar), nitrogen
(N2), oxygen (O2), and
Argon–oxygen (Ar-O2)

Apple fruits Removed microbial
contamination [100]

Post-harvest quality

Actinidia deliciosa cv.
Hayward DBD plasma Air Kiwi fruits

Improved visual
quality and extended

storage life
[101]

Agaricus bisporus
Plasma

jetPlasma-activated
water

Argon–oxygen (Ar-O2) Button
mushrooms

Reduced microbial
contamination and
delayed softening

[102]

Radish sprouts Microwave N2 plasma Nitrogen (N2) Radish sprout
vegetables

Reduced moisture
content during
storage without

changing antioxidant
activity or ascorbic
acid concentration.

[103]
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Table 3. Cont.

Plant Species Plasma Source Feeder Gas Treated
Stage Improved Effects Reference

Mandarins Microwave N2, He, N2
+ O2 plasma

Nitrogen (N2), helium
(He) and nitrogen
(N2)/oxygen (O2)

mixture

Mandarin
fruits

Increased
antioxidant activity

and phenolic content
[104]

Mung bean sprouts Plasma-activated
water Air

Mung bean
sprout

vegetables

Reduced microbial
contamination

without changing
polyphenolic and

flavonoid contents.

[105]

Several studies have shown improved tolerance to abiotic stress after plasma treatment. Ling et
al. [84] treated the seeds of two Brassica napus cultivars (Zhongshuang 7, a drought-sensitive cultivar,
and Zhongshuang 11, a drought-resistant cultivar) with helium plasma and found that plasma
treatment enhanced seed germination under 15% (w/v) PEG 6000-mediated drought conditions.
Similarly, the seeds of two Arabidopsis mutants, gl2 and gpat5, were exposed to DBD air plasma,
and he seed germination efficiency was assessed under salt stress. Plasma causes structural changes
to the mantle layers of the seed coat, which reduces permeability and diminishes the effects of salt
stress on seed germination [90]. Upregulation of the drought stress-regulating transcription factor
(WRKY) and secondary metabolites in plasma-treated seedlings was reported by Iranbakhsh et al. [106].
More recently, Adhikari et al. [93] demonstrated that cold atmospheric pressure plasma seed priming
induces drought stress tolerance in seedlings—improved growth and biochemical alterations were
observed in the cold plasma-primed tomato seedlings under 30% PEG-mediated drought stress.
Other reports have shown that the plasma-activated water irrigation of barley improves hypoxia and
low-temperature stress tolerance [92]. Pollutant soil contamination is a major concern in agriculture;
the Air/Ar cold low pressure plasma treatment of wheat seeds reduced the accumulation of Cd during
germination. This is because plasma treatment modifies the seed coat and reduces the pH of wheat
seeds, resulting in Cd detoxification [91].

Plasma can promote plant tolerance to biotic stressors, such as pathogens and pests. Pathogenic
diseases severely damage crop yield and are a major threat to food security. Cold low pressure plasma
treatment of tomato seeds reduced bacterial wilt disease (causal agent: Ralstonia solanacearum) at the
early vegetative stage [85]. Seed-borne pathogens, such as Fusarium fujikuroi (Bakanae disease) and
Burkholderia plantarii (bacterial blight), can also be controlled by cold atmospheric pressure plasma
irradiation on rice [107]. Many researchers have reported the inactivation of phytogenic bacteria on
seeds and the upregulation of pathogen resistance genes in plants after cold atmospheric pressure
plasma exposure [49,87]. Plasma-activated water irrigation induced the tomato plant defense system
against Xanthomonas vesicatoria (Xv), although antimicrobial effects of the PAW against X. vesicatoria
were not observed [88]. The induced expression of the PAL transcript upon PAW irrigation may be
associated with the induced tomato defense system [88].

Harvesting, storage, and processing are crucial steps in the agricultural system. Food processing
involves the transportation, cleaning, sorting, blending, and milling of crops to convert them to
food. Technological innovations for the post-harvest storage and food processing stages are required
to increase the food security index of the current agricultural system. Cold atmospheric or low
pressure plasma is a promising technology to decontaminate and improve the shelf life of fresh and
processed food products [108]. Several studies have reported plasma effects on post-harvest storage
and food processing (Table 3). Microbial contamination during processing, packaging, and storing
is a major problem that decreases shelf life, deteriorates taste, and causes food poisoning. Plasma
treatment efficiently reduces the microbial contaminants on fruit, vegetables, and other edible products
in a time- or dose-dependent manner, as summarized in a recent review [109]. The antimicrobial
potential of plasma is well demonstrated by various cold atmospheric or low pressure plasma sources
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(gliding arc discharge, cold plasma argon jet, helium jet, microwave-generated plasma, and dielectric
barrier discharge (DBD) plasma), microbes (Erwinia carotovora, Salmonella anatum, Salmonella enterica
serovar Stanley, Salmonella enteritidis, Escherichia coli, Erwinia amylovor, Listeria monocytogenes, Clavibacter
michiganensis subsp. Sepedonicus, Dickeya solani, X. campestris pv. Campestris, P. atrosepticum, Pectobacterium
carotovorum subsp. Carotovorum, Pseudomonas fluorescens, Pseudomonas marginalis, and P. carotovorum),
and fresh products (lettuce, tomatoes, carrots, cherries, figs, black peppers, strawberries, onions,
radishes, cress, alfalfa seeds, grapes, bananas, and almonds). Studies have also shown that plasma
cannot completely eradicate the microbial load but does prevent the microbes from multiplying [109].
An industrial-based DBD prototype efficiently removed the microflora load of fresh cherry tomatoes
and prolonged the shelf life during storage [110]. Plasma-processed air can also reduce the microbial
loads of fresh fruits/vegetables and packaged foods [111].

In the food processing industry, conventional techniques such as pasteurization, drying,
and freezing, and newer physical strategies, such as ultraviolet (UV) irradiation, X-ray irradiation,
ozone washing, and high-pressure processing, have been used to maintain food quality. However,
these processing techniques have some drawbacks [112]. In plasma-mediated food processing, cold
atmospheric or low pressure plasma can sterilize the food without compromising its flavor, odor,
color, and prolonged shelf life. These plasma attributes have attracted the attention of food industry
researchers. A comparison of different beverage processing techniques found that the plasma method
retained the contents of ascorbic, chlorogenic, sinapic, and gallic acids in a tomato beverage, whereas
pasteurization and other non-thermal methods resulted in reduced levels of these same acids [113].
Gas-phase plasma maintained the levels of phenolic compounds and hydroxycinnamic acids and
reduced the anthocyanin content (23%), suggesting that anthocyanin is susceptible to the reactive
oxygen species produced by cold atmospheric pressure plasma in juice [114]. The color and texture of
food are very important to consumers, and studies have shown that plasma treatment has only minor
(or no) effects on the color and texture of fruits. Misra et al. [115] used a DBD cold plasma source
to process packaged strawberries and observed no changes in the firmness or color, but there was a
significant reduction in the microbial load. Similarly, the qualitative attributes of fresh-cut fruit (apple
and melon) were not affected by plasma treatment under storage conditions [97,116]. Other food
qualities, such as pH, acidity, antioxidants, and the contents of soluble sugar and vitamins, have also
been investigated after plasma treatment. About pH, the pH changed due to the reactive oxygen
species generated on food after plasma treatment. On the other hand, the pH did not change after
plasma treatment because of the buffering capacity of the liquid in living tissue and the physiological
activity of removing the acid from the surface [117]. The soluble sugar content is important for the taste
of fruit and their juices cold atmospheric pressure plasma reduced the fructose and glucose contents
and increased the sucrose content in fruit juices [118,119]. This is because the reactive species generated
by plasma promotes ozonolysis reactions, which breaks the glycosidic bond of oligosaccharides and
reduces the sugars via oxidation [119,120]. The vitamin contents of fruit and their juices are stable
under plasma treatment [116], while the antioxidant activities of fresh food are variably influenced
by cold atmospheric pressure plasma treatments, depending on the food products, plasma sources,
treatment conditions, and doses [117].

5. Future Prospects and Conclusions

The effects of cold atmospheric or low pressure plasma on plant growth, development, and
sustainability have been verified by abundant experimental data. The accumulated data suggest
that cold atmospheric or low pressure plasma may provide a reliable method to reduce the risks
associated with global climate change and changing agricultural environments. Changes to the
traditional agriculture system and practices are inevitable “modern agriculture” has been used to
designate this transition. Indoor agriculture, hydroponic culturing, and smart farming associated
with ICT (Information and Communication Technology) are frequently used in modern agriculture.
Cold atmospheric or low pressure plasma may also contribute to the technological innovations of
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modern agriculture. For example, plasma applications in indoor and greenhouse cultivation systems are
practically possible. Cold atmospheric or low pressure plasma is environmentally and biologically safe
and requires little energy compared to other radiation-based technologies. The search for application
ways and area to maximize plasma’s advantages should be continued. Recently, plasma-mediated
improvements to plant tolerance against abiotic and biotic stresses has drawn great interest because of
the influence of climate changes on agriculture. Conventional gene editing strategies are limited by
safety concerns and the complexity of gene regulation networks, thus presenting an opportunity for
cold atmospheric or low pressure plasma applications.

The efficient application of cold atmospheric or low pressure plasma requires experimental
evidence and mechanistic studies. Although enhanced plant vitality and development due to plasma
treatments have been well documented, evidence for the applied usage of plasma in agricultural fields
and facilities is still lacking. Moreover, available experimental data are biased toward laboratory
conditions. Thus, field and facility application studies are required. The underlying mechanisms
of the plasma effects are also relatively unexplored compared to phenotypic effects discussed here.
More information about the modes of plasma action on plant production and sustainability is necessary
to optimize and upgrade the plasma systems and applications.
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pressure plasma jet operating with DBD on Lavatera thuringiaca L. seeds’ germination. PLoS ONE 2018, 13,
e0194349. [CrossRef]

43. Rahman, M.M.; Sajib, S.A.; Rahi, M.S.; Tahura, S.; Roy, N.C.; Parvez, S.; Reza, M.A.; Talukder, M.R.; Kabir, A.H.
Mechanisms and signaling associated with LPDBD plasma mediated growth improvement in wheat. Sci.
Rep. 2018, 8, 10498. [CrossRef]

44. Ahn, C.; Gill, J.; Ruzic, D.N. Growth of plasma-treated corn seeds under realistic conditions. Sci. Rep. 2019,
9, 4355. [CrossRef] [PubMed]

45. Fadhlalmawla, S.A.; Mohamed, A.-A.H.; Almarashi, J.Q.; Boutraa, T. The impact of cold atmospheric pressure
plasma jet on seed germination and seedlings growth of fenugreek (Trigonella foenum-graecum). Plasma Sci.
Technol. 2019, 21, 105503. [CrossRef]
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