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Abstract: A commonly observed ambiguity of a class is simply a reflection of multiple methods’
implementation within an individual class. The process of Extract Class refactoring is, therefore,
used to separate the different responsibilities of a class into different classes. A major limitation in
existing approaches of the Extract Class refactoring is based on factors that are internal to the class,
i.e., structural and semantic relationships between methods, in order to identify and separate the
responsibilities of the class which are inadequate in many cases. Thus, we propose a novel approach
that exploits the clients of the class to support the Extract Class refactoring. The importance of
this approach lies in its usefulness to support existing approaches since it involves factors external
to the class, i.e., the clients. Moreover, an extensive empirical evaluation is presented to support
the proposed method through the utilization of real classes selected from two open source systems.
The result shows the potential of our proposed approach and usefulness that leads to an improvement
in the quality of the considered classes.

Keywords: software maintenance; extract class refactoring; client-based similarity; class cohesion

1. Introduction

One of the most common design issues in object-oriented systems is having a class with
many responsibilities. During the maintenance and evolution activities of a system, new responsibilities
may need to be added to the system. Due to time limits, software developers usually feel it is not
necessary to create a separate class for a new responsibility and that responsibility can be added to
one of the existing classes [1]. After several cycles of maintenance and evolution, some classes in
the system will end up having many responsibilities which will increase the maintenance cost of the
system because a class with many responsibilities requires more effort and time to understand and
maintain. In addition, a class with many responsibilities has many reasons to change because each
responsibility the class has is an axis of change [2]. Such a class needs to be refactored in order to
improve its understandability and maintainability. The refactoring technique that is usually applied to
overcome this issue is called Extract Class refactoring. It refers to the process of splitting a class that
has many responsibilities into a set of smaller classes, each of which has one responsibility and one
reason to change [1].

Manually performing the process of the Extract Class refactoring costs much time and effort.
Thus, several approaches (see, e.g., in [3–5]) have been introduced in the literature to automate and
support the Extract Class refactoring. These approaches conduct the Extract Class refactoring based
on factors internal to the class to be refactored such as structural and semantic dependency between
the methods of the class. However, this internal view of the class is inadequate in many cases to
automatically determine the responsibilities of the class and to highlight potential reasons that can
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cause changes to the class. For instance, consider the class Circle shown in Figure 1 that has four
attributes and nine methods. The class has two client classes: GeometryApp and GraphicsApp. We refer
to these two classes as clients of the class Circle because they use methods in the class (see Section 3).
The class GeometryApp performs some computational geometry. Thus, it uses the methods that provide
geometric computations (e.g., area()) in the class Circle, but never uses the methods that provide
drawing services (e.g., draw()). The other client class (i.e., GraphicsApp) uses the methods that provide
drawing features in the class Circle because it draws shapes on screen including circles.

Figure 1. The class Circle and its clients.

It is obvious that the class Circle has two responsibilities: one responsibility is to perform
computational geometry and the other responsibility is to perform drawings on the screen. This may
lead to increasing the cost and effort of future changes of the class. Assume that the client class
Graphics exerts a change on the method setColor(Color) in the class Circle. This change may affect
the client class Geometry because it depends on the class Circle. Therefore, Geometry may need to be
recompiled and retested even though it never uses the method setColor(Color). In order to address
this issue, we need to perform the Extract Class refactoring by splitting these two responsibilities
into two separate classes as shown in Figure 2. Existing approaches of the Extract Class refactoring
may fail to suggest the refactoring solution shown in Figure 2 because they perform the Extract
Class refactoring based on structural and semantic relationships between the methods of the class.
The structural relationships between methods in these approaches are measured based on the shared
attributes between the methods while the semantic relationships are measured based on the common
vocabularies in the documents, e.g., identifiers and comments of the methods. Thus, most of the
methods of the class Circle are—to some degree—structurally and semantically related to each other
because they likely share attributes and vocabularies, e.g., radius.

To overcome the above issue, this study proposes a novel approach that performs the Extract Class
refactoring based on the similarities in terms of clients between the methods of the class in question.
The proposed approach can be more beneficial than the traditional refactoring techniques that consider
the internal view of the class when performing the extract class refactoring. It identifies the different
responsibilities of a class based on the usage of its clients. The intuition behind this is that if there
are different sets of methods in the class that are used by different sets of clients than the class has
different responsibilities from the perspective of its clients [6–8]. In addition, the proposed approach
supports the adherence to the Interface Segregation Principle (ISP), which is an important object-oriented
design principle that states “no client should be forced to depend on methods it does not use” [2].
Our proposed approach is not meant to replace the existing approaches of the Extract Class refactoring
but to complement them because considering the structural and semantic relationships between the
methods of class can be useful in many cases of the Extract Class refactoring.
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Figure 2. The Class Circle in Figure 1 is split into two classes: Circle and GeometricCircle.

The paper extends a previous short paper [9] that only presented an initial overview of the
proposed approach without an empirical evaluation. In this paper, however, we present and extensively
discuss the proposed approach for the Extract Class refactoring. In addition, we conduct an extensive
empirical experimentation to evaluate the proposed approach based on real classes selected from
two open source systems. The rest of the paper is organized as follows. In Section 2, we present and
discuss related work. Section 3 presents the proposed approach. In Section 4, we present the empirical
evaluation of the proposed approach. Section 5 gives the conclusion and future work.

2. Related Work

Martin Fowler [1] who introduced the Extract Class refactoring suggested to perform the Extract
Class refactoring on a given class by first identifying each subset of data and methods that contribute
to a single responsibility and next extracting them into a separate class. However, identifying the
different responsibilities and identifying the data and methods of each responsibility depends on the
experience of the software engineer who is performing the refactoring and it can not be done in an
objective way. Therefore, many approaches have been introduced in the literature to try to support
and automate the Extract Class refactoring, see, e.g., in [3–5,10–22]. In the following, we discuss and
summarize the approaches that are mostly relevant to our approach.

Simon et al. [11] developed a visualization tool that supports four types of refactoring techniques
including the Extract Class refactoring. The tool uses structural metrics to identify refactoring
opportunities in the system in question. Marinescu [12] proposed an approach called detection
strategy to support software engineers in the identification of software modules, e.g., classes, that have
a particular design flaw, e.g., a class that has many responsibilities. The approach suggests to formulate
metrics-based rules that can directly capture software modules that are affected by a design flaw.
The process of formulating metrics-based rules for detecting a design flaw consists of four steps.
First, the symptoms of the design flaw are determined, e.g., the symptoms of the design flaw God Class
include high class complexity, low class cohesion, and the access of foreign data. Second, an appropriate
metric is chosen to measure each symptom, e.g, LCOM2 [23] to measure cohesion. Third, a filtering
mechanism, e.g., less than filter, is used with each metric to detect the symptom, e.g., a value of LCOM2
that is more than 10 is considered low class cohesion. The final step is to correlate the symptoms
using AND/OR operators to detect the design flaw. Once a design flaw is detected, a refactoring
opportunity exists. Similar to the work in [12], a recent work [24] proposed a metric-based detection
technique for a set of bad smells (also known as design flaws or defects) including “Large Class” bad
smell. The authors used size and cohesion metrics to detect large classes. They suggested four types of
refactoring operations including the Extract Class refactoring to solve the bad smell Large Class.
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Fokaefs et al. [3] proposed an approach for the Extract Class refactoring which employs an
agglomerative clustering algorithm based on the Jaccard distance between the methods of the class to
be refactored. Structural similarity between two methods of the class is used to calculate the Jaccard
distance between the two methods. The higher the Jaccard distance between the two methods is,
the more probably the two methods will be in the same cluster. The resulting clusters represent the
Extract Class opportunities that can be identified in the class to be refactored. Similar to the work in [3],
Fokaefs et al. [10] introduced a tool that can identify Extract Class refactoring opportunities in God
Classes. A software engineer can select one of the suggested refactoring opportunities and the tool
will automatically apply it. The tool is as an extension of the JDeodorant Eclipse plugin and it employs
structural metrics for extracting a class with higher cohesion from the class to be refactored.

Bavota et al. [4] introduced an approach that splits the class to be refactored into two classes
with higher cohesion than the original class based on structural and semantic similarities between the
methods of class. The class is represented as a weighted graph where the nodes of the graph represent
the methods of the class and the weighted edges of the graph represent the degree of structural and
semantic similarities between the methods of the class. The approach uses the Max Flow-Min Cut
algorithm [25] to split the weighed graph representing the original class into two weighted subgraphs
representing the two classes that can be extracted from the original class. Moreover, Bavota et al. [5]
introduced another approach that can automatically decompose the class to be refactored into two
or more classes. The class is represented as a weighted graph in similar manner of their previous
approach. Instead of using the Max Flow-Min Cut algorithm, they used a two-step clustering algorithm
that removes the edges of the graph that have light weights to split the graph into a set of subgraphs
representing the classes that can be extracted from the original class. Similarly, the authors of [26]
introduced an automated refactoring approach based on complex network theory. The approach
automatically identifies three types of refactoring opportunities: Move Method, Move Field, and Extract
Class, to remove the bad smells caused by the low cohesion and high coupling in a given system.

On a further note, the authors of [27] conducted a systemic literature review to investigate the
impact of refactoring on the design quality attributes. The author discussed and summarized results
from 76 studies focusing on the impact of different refactoring scenarios including the Extract Class
refactoring on quality attributes, e.g., cohesion. The presented results concluded that the Extract Class
refactoring potentially improves the cohesion. To this end, it becomes clear that although the rich
literature is a good addition to our view of the Extract Class refactoring, it only considers internal
factors to the class to be refactored. The main limitation observed here is the applicability factor as
they are not sufficient in many cases to identify ideal Extract Class refactoring opportunities within a
class. In this paper, however, we introduce a new and innovative approach that automatically suggests
a set of classes that can be extracted from a given class considering factors external to the class.

3. Extract Class Refactoring Based on Clients

In this section, we present basic definitions that reflect a theoretical model for an object-oriented
system, and we follow with the proposed approach for the Extract Class refactoring.

3.1. A Theoretical Model

The proposed approach can be theoretically modeled based on the following set of definitions.

Definition 1 (Classes). S = {c1, c2, . . . , cn} is the set of classes that composes an object-oriented system,
where n is a finite number of classes within the set {S}.

For example, the set of classes of the system S shown in Figure 3 is S = {A, B, C, D, E}.

Definition 2 (Methods of a class). Let c ∈ S. Then M(c) = {m1, m2, . . . , mk} is the set of methods
implemented in the class c, where k is a finite number of methods within the set {M(c)}.
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The set of methods of the class A shown in Figure 3 is M(A) = {a1, a2, a3, a4, a5, a6}.

Definition 3 (Clients of a method). Let c ∈ S and m ∈ M(c). Then, Client(m) ={c′ ∈ S− {c} | ∃m′ ∈
M(c′) and m′ invokes or may, because of polymorphism, invoke {m} that is the set of clients of m}.

For Example, Client(a1) = {B, C, D} is the set of clients of the methods a1 in the class A shown
in Figure 3. The classes B, C, and D are clients of the method a1 because each of them has a method
that invokes the method a1 (i.e., b1, c1, and d1 for B, C, and D, respectively).

Definition 4 (Degree of client-based similarity between two methods). Let c ∈ S and mi, mj ∈ M(c).
Then, the degree of client-based similarity between the method mi and the method mj is defined by

Simclients(mi, mj) =


|Client(mi) ∩ Client(mj)|
|Client(mi) ∪ Client(mj)|

iff |Client(mi) ∪ Client(mj)| > 0,

0 Otherwise;

The value of Simclients(mi, mj) ranges from [0− 1] where 0 means the methods share no common
clients while 1 refer to the methods that have the same set of clients.

Consider the methods a1 and a2 in the class A shown in Figure 3. The clients of a1 is Client(a1) =
{B, C, D} and the clients of a2 is Client(a2) = {B, C, E}. Using these two sets, we compute the degree
of client-based similarity between the two methods as follows,

Simclients(a1, a2) =
|Client(a1) ∩ Client(a2)|
|Client(a1) ∪ Client(a2)| =

2
4
= 0.5.

Figure 3. A hypothetical system S consisting of 5 classes. The figure shows the methods of the class
A that are used by the other classes (the clients of A). The unnecessary implementation details of the
classes and methods are hidden.
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Definition 5 (Degree of client-based similarity between a method and a set of methods). Let c ∈ S,
m ∈ M(c), SM ⊂ M(c), and m /∈ SM. Then, the degree of client-based similarity between the method m and
the set of methods SM is defined by

SimMethodWithSetclients(m, SM) =


∑

x∈SM
Simclients(m,x)

|SM| iff |SM| > 0,

0 Otherwise;

For example, the degree of client-based similarity between the method m5 in the class A shown in
Figure 3 and the two methods {a1, a2} as follows,

SimMethodWithSetclients(m5, {a1, a2}) = Simclients(a5, a1) + Simclients(a5, a2)
|{a1, a2}|

=
0.333 + 0

2
= 0.167

Definition 6 (Cohesion Based on Client Similarity). Let c ∈ S. Then, the Cohesion Based on Client
Similarity (CBCS) for the class c is the ratio of the summation of the client-based similarity between each pair of
methods in the class c to the total number of pairs of methods in c. It is formally defined as follows, when k is the
number of methods in the class c.

CBCS(c) =
2

k(k− 1)

k−1

∑
i=1

k

∑
j=i+1

Simclients(mi, mj)

In order to better understand the way that the CBCS is computed for a class, we compute it for
the class A shown in the illustrative example presented in Figure 3.

CBCS(A) =
2

6(6− 1)

6−1

∑
i=1

6

∑
j=i+1

Simclients(ai, aj)

=
2(0.5 + 0.167 + 0.167 + 0.167 + 0 + 0.167 + 0.167 + 0 + 0.167 + 0 + 0 + 0 + 0 + 0 + 0)

6(6− 1)

= 0.1

3.2. Our Approach of the Extract Class Refactoring

The main steps of our approach are shown in Figure 4. Given a class to be refactored, we first
extract the methods of the class. Then, we determine the clients of each method using Definition 3.
Once we have the clients of each method in the class, we compute the degree of client-based similarity
between each pair of methods in the class using Definition 4 and store the results in a k× k matrix
where k is the number of methods in the class. The entry [i][j] of the k× k matrix holds the degree of
client-based similarity between the method mi and the method mj.

Next, Algorithm 1 is applied which takes an input the set of methods in the class to be refactored,
the k× k matrix that holds the degree of client-based similarity between each pair of methods, and a
threshold value. The algorithm returns a clutter, i.e., a family, of subsets from the input set of methods
as an output. The algorithm classifies the input set of methods into different subsets of methods based
on the client-based similarities between the methods. The input threshold value is used to determine if
a method to be classified is added to an existing subset of methods or added to a new subset. Therefore,
if the threshold value is high and the client-based similarities between the methods of the class to be
refactored are generally low, each method will probably be added into a different subset, which means
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each extracted class will have only one method. To overcome this issue, the median of the non-zero
client-based similarities of all pairs of methods in the class can be chosen as a threshold value.

Figure 4. An outline of the main steps of our approach.

Finally, Algorithm 2 is applied to avoid the extraction of classes that have a small number of
methods (e.g., one method). The algorithm takes as an input the clutter F resulting from Algorithm 1,
the minimum number of methods that each extracted class can have, and the k× k matrix that holds
the degree of client-based similarity between each pair of methods. The algorithm returns as an output
a clutter of subsets such that each subset has a number of methods that is equal or more than the input
minimum number of methods. Algorithm 2 merges any subset X ∈ F that has less number of methods
than the input minimum number of methods with the subset Y ∈ F− X that has the highest average
of the client-based similarities. Each subset in the output of Algorithm 2 represents a candidate class
that can be extracted from the class to be refactored.

The attributes as well as private and protected methods of the class are not considered in this work.
However, they can be automatically distributed among the extracted classes suggested by our approach
based the use of the attributes as well as private and protected methods by the public methods in the
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extracted classes. Each attribute can be added to the extracted class that has the highest number of
methods that use the attribute; similarly, private and protected methods are distributed in the same
way. Our approach automatically suggests the set of classes that can be extracted from a given class.
A software engineer may evaluate the suggested classes and approve them or make some changes to
them by moving the methods and attributes between suggested classes.

Algorithm 1: ExtractClassRefactoring(M(c), Threshold, k× k matrix)
Input: (1) M(c): the set of methods of the class c to be refactored. (2) Threshold: a threshold

value. (3) k× k matrix: holds Simclients between each pair of methods in the class where
k is the number of methods in the class

Output: a clutter F of subsets of M(c) such that each subset represents a class that can be
extracted from c

begin
F = { };
while |M(c)| > 1 do

find the pair of methods mi, mj ∈ M(c) with highest Simclients(mi, mj) such that i 6= j ;
if Simclients(mi, mj) < Threshold then

break;
else

add mi, mj to a new Subset;
remove mi, mj from M(c);
while |M(c)| > 0 do

find the method mk ∈ M(c) with highest SimMethodWithSetclients(mk, Subset)
if SimMethodWithSetclients(mk, Subset) > Threshold then

add mk to Subset;
remove mk from M(c);

else
break;

end
end
add Subset to F;

end
end
while |M(c)| > 0 do

add each remaining method mr in M(c) to a new Subset;
add Subset to F;
remove mr from M(c);

end
return F

end

3.3. An Application Example

In order to consider an example to show how the proposed approach can be applied, let class X
be the class to be refactored. Let M(X) = {m1, m2, m3, m4, m5, m6, m7}. Let the clients of each method
in X be the following,

Client(m1) = {A, B},
Client(m2) = {A, B, C},
Client(m3) = {B, C},
Client(m4) = {D, E, F},
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Client(m5) = {F, G},
Client(m6) = {F, G, H}, and
Client(m7) = {G, H}.

Algorithm 2: mergeSmallClasses(F, minNumMethods, k× k matrix)
Input: 1) F: the output of Algorithm 1 which may include small subsets of methods. 2)

minNumMethods: the minimum number of methods that each extracted class can have
3) k× k matrix: holds Simclients between each pair of methods in the original class
where k is the number of methods in the class

Output: F after merging small subsets
begin

for X ∈ F do
if |X| < minNumMethods then

find Y ∈ F− X that has the highest average of client-based similarities after the
merger of X and Y;

add the elements of X to Y;
remove X from F;

end
end
return F

end

Given the above sets, we can compute the client-based similarity between each pair of methods of
class X using Definition 4. The matrix shown in Table 1 holds the client-based similarity between each
pair of methods of class X. The entry [i][j] of the matrix holds the value of Simclients(mi, mj) .

Algorithm 1 is applied next to perform the Extract Class refactoring on the class X. The algorithm
takes three inputs: M(X), a Threshold value, and the matrix shown in Table 1. We set the value of
Threshold to 0.5, which is the median of the values in the matrix in Table 1 excluding the zero values
and the main diagonal of the matrix. The output of Algorithm 1 is the following clutter of subsets,

F = {{m1, m2, m3}, {m4}, {m5, m6, m7}}.

Each subset represents a class that can be extracted from X.

Table 1. The client-based similarity between each pair of methods in the class X.

m1 m2 m3 m4 m5 m6 m7

m1 1 0.67 0.33 0 0 0 0
m2 0.67 1 0.67 0 0 0 0
m3 0.33 0.67 1 0 0 0 0
m4 0 0 0 1 0.25 0.20 0
m5 0 0 0 0.25 1 0.67 0.33
m6 0 0 0 0.20 0.67 1 0.67
m7 0 0 0 0 0.33 0.67 1

Algorithm 2 can be applied next to avoid extracting classes with a small number of methods.
The algorithm takes three inputs: the clutter F (i.e., the output of Algorithm 1); minNumMethods,
which is a chosen value for the minimum number of methods that each extracted class can have;
and the matrix shown in Table 1. In this example, minNumMethods = 2. The following is the output
of Algorithm 2,

F = {{m1, m2, m3}, {m4, m5, m6, m7}}.
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The output of Algorithm 2 shows that the subset {m4} is merged with the subset {m5, m6, m7}.
Thus, two classes are suggested to be extracted from the original class X in our example. The first
extracted class has the following set of methods {m1, m2, m3} and the second extracted class has the
following set of methods {m4, m5, m6, m7}.

4. Empirical Evaluations Utilizing Open Source Systems

To evaluate the proposed approach, we considered two real systems in this study: Tomcat [28]
version 6.0.0 and Ant [29] version 1.5.2. Both of the two systems are open source, object-oriented,
and written in Java. Tomcat is a system used to implement Java Servlet, JavaServer Pages,
and JavaWebSocket technologies and Ant is a Java library and command-line tool used mainly to build
Java applications. Ten large classes are selected from each system based on the following two criteria.
(1) The class has at least 8 public methods and (2) the cardinality of the union of the clients of the
methods is at least 2. Tables 2 and 3 report the name of the Blob, the name of the package to which the
class belongs, the number of public methods in the class (#Methods), and the cardinality of the union
of the clients of each method in the class (#Clients).

Table 2. The classes selected from Tomcat 6.0.0.

Class Name Package Name #Methods #Clients

GenericServlet javax.servlet 12 21
ServletResponseWrapper javax.servlet 17 36
ServletRequestWrapper javax.servlet 31 50

HttpServletRequestWrapper javax.servlet.http 25 35
NoBodyResponse javax.servlet.http 32 38

Request org.apache.catalina.connector 123 91
ObjectReader org.apache.catalina.tribes.io 14 3
XByteBuffer org.apache.catalina.tribes.io 40 24
ChannelData org.apache.catalina.tribes.io 24 18
MemberImpl org.apache.catalina.tribes.membership 39 22

Table 3. The classes selected from Ant 1.5.2.

Class Name Package Name #Methods #Clients

Project org.apache.tools.ant 77 157
Task org.apache.tools.ant 16 185
Zip org.apache.tools.ant.taskdefs 19 4
Ant org.apache.tools.ant.taskdefs 14 4

Execute org.apache.tools.ant.taskdefs 15 31
Extension org.apache.tools.ant.taskdefs.optional.extension 15 5

VAJBuildInfo org.apache.tools.ant.taskdefs.optional.ide 19 4
CommandlineJava org.apache.tools.ant.types 25 12

Commandline org.apache.tools.ant.types 22 62
Path org.apache.tools.ant.types 20 67

Our goal in the empirical evaluation is to investigate if the proposed refactoring approach can
suggest to extract classes with cohesive responsibilities from a given class that has many non-cohesive
responsibilities. For this purpose, we formulate the following research question.

RQ: Do the extracted classes suggested by the proposed approach have higher cohesion than the
original classes?

To answer the above research question, we compare the cohesion of the original classes with
the cohesion of the extracted classes. We measure class cohesion using CBCS given in Definition 6.
CBCS is a variation of CCC which was proposed and validated in a previous works [7,8]. The original
metric CCC measures the cohesion of a class based on the ratio of the summation of client-based class
cohesion per each client of the class to the total number of clients of the class, where the client-based
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class cohesion per a client is defined as the number of methods used by the client divided by the
total number of methods in the class. The reason of why we consider CBCS instead of CCC is that
CBCS computes the similarities between each pair of methods in the class in order to measure the
class cohesion while CCC does not, and cohesion metrics that compute the similarities between the
methods are better in identifying the non-cohesive (dissimilar) methods that need to be separated into
different classes [30].

We developed two tools to automate the application of our proposed approach. The first tool is
implemented in Java and it is based on Eclipse JDT [31]. The tool automatically extracts the public
methods of the classes of the considered system and the clients of each method, and calculates the
client-based similarity between each pair of methods using Definition 4. The input of the tool is the
source code of the system and output are the set of public methods of each class and a k× k matrix that
has the client-based similarity between each pair of public methods in the class, where k is the number
of public methods in the class. The second tool we developed is a Python tool that takes the output of
the Java tool and automatically applies Algorithm 1 and Algorithm 2. The output of the Python tool is
the set of classes that are suggested to be extracted from the class in question. In addition, the python
tool calculates the value of CBCS for the original class and for each class suggested to be extracted
from the original class.

The research question of our empirical study investigates whether the cohesion of the extracted
classes identified by our approach is higher than the cohesion of the original classes. We believe that
the extracted classes will have higher cohesion values than the original classes. Thus, we set up the
following null and alternative hypotheses for our research question.

• H0: The difference between the CBCS values of the original classes and the CBCS values of the
extracted classes suggested by our approach is 0.

• H1: The original classes have less CBCS values than CBCS values of the extracted classes suggested
by our approach.

4.1. Results And Discussions

Using our tools, we applied the proposed approach on the two considered systems. Tables 4 and 5
report the results for the ten classes selected from Tomcat system and the ten classes selected from Ant
system, respectively. We set the refactoring threshold (i.e., Threshold used in Algorithm 1) for each
considered class to the median of the values of the client-based similarities between all the pairs of the
methods in the class excluding the zero values and the main diagonal entries. We set the minimum
number of methods each extracted class can have to 2, i.e., minNumMethods used in Algorithm 2.
This is due to unreasonability to extract classes that have only one method. The results in Tables 4
and 5 lead to the following observations.

• The cohesion (i.e., CBCS values) of the extracted classes suggested by our approach are higher
than the original classes for all the selected classes.

• In most of the cases, the CBCS values of the extracted classes increased to more than two times
that of the CBCS value in original class.

• In some cases, the extracted classes have relatively low CBCS values (e.g., classes extracted from
NoBodyResponse class in Tomcat). We investigated these cases and we found the main reason
behind that is the values of the client-based similarities between most of the pairs of methods in
the original class are 0.

• The number of extracted classes varies from cases to cases. Two factors can influence the number
of the extracted classes: the refactoring threshold and the number of methods in the original
class. The higher the value of the refactoring threshold is, the more likely the number of extracted
classes will increase (e.g., the cases of the classes Extension and VAJBuildInfo in Ant system).
Similarly, the higher the number of methods in the original class, the more classes will probably
be extracted (e.g., the case of the class Request in Tomcat system).
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Table 4. Extracted classes suggested by our approach for the considered classes of the Tomcat system.

Class Name Original Class Threshold Extracted Classes

#Methods CBCS #Methods CBCS Avg. CBCS

GenericServlet 12 0.113 0.193 8 0.204 0.2064 0.208

ServletResponseWrapper 17 0.042 0.125
7 0.095

0.1007 0.094
3 0.111

ServletRequestWrapper 31 0.114 0.2
25 0.157

0.2044 0.183
2 0.273

HttpServletRequestWrapper 25 0.143 0.222 18 0.154 0.1777 0.2

NoBodyResponse 32 0.031 0.154

7 0.053

0.05718 0.053
3 0.067
4 0.056

Request 123 0.04 0.157

41 0.109

0.132

47 0.11
18 0.113
3 0.167
6 0.116
6 0.14
2 0.167

ObjectReader 14 0.33 0.5

4 0.5

0.8133 1
3 1
4 0.75

XByteBuffer 40 0.047 0.25

6 0.24

0.250

7 0.214
7 0.214
5 0.267
8 0.262
4 0.278
3 0.278

ChannelData 24 0.063 0.286

10 0.168

0.1855 0.2
4 0.167
5 0.204

MemberImpl 39 0.045 0.333

5 0.15

0.168
12 0.12
15 0.114
5 0.125
2 0.333

We further conducted the paired samples t-test using the R software [32] in order to test our null
H0 and alternative H1 hypotheses (see Table 6). The paired samples t-test is a statistical procedure used
to compare the means between two related sets of samples of the same size. In our case, the two sets
are the CBCS values of the original classes and the averages of CBCS values of the extracted classes
suggested by our approach for each original class (the reader is directed to data presented in Tables 4
and 5). In other words, a pair of samples has the CBCS of an original class and the average of the
CBCS values of the classes extracted from that original class. We considered the averages of CBCS
values of extracted classes instead of CBCS value of each extracted class because the total number of
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the extracted classes are greater the number of the original classes. The results shown in Table 6 are
statistically significant because the p-values are less than 0.05. Based on these results, we can reject the
null hypothesis H0 and accept the alternative H1.

Table 5. Extracted classes suggested by our approach for the considered classes of the Ant system.

Class Name Original Class Threshold Extracted Classes

#Methods CBCS #Methods CBCS Avg. CBCS

Project 77 0.046 0.167

23 0.11

0.123
8 0.118

33 0.109
11 0.111
2 0.169

Task 16 0.093 0.143

9 0.183

0.3152 0.5
2 0.37
3 0.207

Zip 19 0.076 0.333 8 0.107 0.10811 0.109

Ant 14 0.114 0.5
7 0.143

0.1594 0.167
3 0.167

Execute 15 0.127 0.158
7 0.225

0.3436 0.303
2 0.5

Extension 15 0.266 1

5 0.425

0.785
2 1
4 0.5
2 1
2 1

VAJBuildInfo 19 0.227 1

3 0.333

0.658

5 0.45
3 0.667
4 0.5
2 1
2 1

CommandlineJava 25 0.18 0.25 14 0.255 0.27911 0.302

Commandline 22 0.053 0.114
9 0.118

0.1199 0.095
4 0.145

Path 20 0.069 0.105
7 0.147

0.15610 0.154
3 0.167

Table 6. The paired samples t-test for the Tomcat and Ant classes.

t d f p-Value
95% Confidence Interval

Mean of the Differences
Lower Upper

Tomcat −3.1439 9 0.005927 − 8 −0.05520043 −0.1324
Ant −3.3383 9 0.004342 − 8 −0.08088784 −0.1794
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4.2. Threats to Validity

Several issues may affect the validity of the results in our empirical study. The first issue is that
we evaluated our approach by comparing the cohesion of extracted classes to the cohesion of the
original classes and the metric used to measure cohesion (i.e., CBCS) is based on information that is
used in our refactoring approach. CBCS measures the cohesion based on the client-based similarity
between each pair of methods in the class and our approach uses the client-based similarity to identify
pairs of methods that should belong to the same extracted class. Thus, it is most likely the extracted
classes will have higher CBCS values than the original class. However, our main purpose was to show
an empirical evidence based on real classes that extracted classes resulting from our algorithms have
higher CBCS values than the original classes.

Another issue is that we did not evaluate the extracted classes in terms of coupling.
Coupling refers to the degree of relatedness between classes. Cohesion and coupling are two quality
attributes that can have an inverse relationship, meaning the improvement of one quality attribute can
lead to the deterioration of the other quality attribute [13,14]. Thus, we need to keep balance between
cohesion and coupling when performing the extract class refactoring [5,30]. However, the focus of
this paper is to use the client-based cohesion to support the extract class refactoring, as they have not
been exploited in previous approaches. Employing metrics of coupling and other aspects of cohesion,
such as structural and semantic cohesion, together with the metrics of client-based similarity to support
the Extract Class refactoring, is left for future research.

The last issue which may affect the validity of our results is that the extracted classes suggested
by the proposed approach were not evaluated by software engineers. It is important to evaluate the
solutions suggested by newly proposed refactoring approaches by a number of software engineers [5].
If the majority of the evaluators (i.e., Software Engineers) are not satisfied with solutions suggested by a
refactoring approach, the applicability of the approach is questionable. However, solutions that improve
important attributes such as cohesion are expected to satisfy software engineers. Thus, we evaluated
our approach based on cohesion using the metric CBCS. Several well-known papers in the literature
(see, e.g., in [15–18]) have used quality metrics to evaluate newly proposed refactoring techniques.

5. Conclusions and Future Work

Software systems that have a long lifetime (e.g., enterprise systems) usually undergo evolutionary
changes in order to remain useful due to various reasons including changes to business rules,
user requirements, hardware, and platforms. Unfortunately, most of the programmers who are
responsible for making these changes in a system modify the source code of that system rapidly
without considering the resultant effects on the design of the system. As a result, the design quality of
the system deteriorates, and the system becomes very difficult to understand and change. This paper
has introduced a novel approach that performs the Extract Class refactoring. The proposed approach
used the clients of the class to identify classes that can be extracted from that class. An empirical
study on classes selected from two open source systems was conducted to evaluate the proposed
approach. The results of the empirical study highlight the potential usefulness of the proposed
approach. The future work should further conduct much larger empirical studies that quantitatively
analyze the relationships among multiple approaches for the Extract Class refactoring, considering the
approach proposed in this paper, and real cases of Extract Class refactoring for the purpose of
identifying the factors that can be used to better classify and separate different responsibilities of
a class.
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