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Abstract: This paper presents an interval-based LDA (Linear Discriminant Analysis) algorithm
for individual verification using ECG (Electrocardiogram). In this algorithm, at first, unwanted
noise and power-line interference are removed from the ECG signal. Then, the autocorrelation
profile (ACP) of the ECG signal, which is a mathematical representation of the degree of similarity
between a given time series and a lagged version of itself over successive time intervals, is calculated.
Finally, the interval-based LDA algorithm is applied to extract unique individual feature vectors
that represent distance and angle characteristics on short ACP segments. These feature vectors are
used during the processes of enrollment and verification of individual identification. To validate our
algorithm, we conducted experiments using the MIT-BIH ECG and achieved EERs (Equal Error Rate)
of 0.143%, showing that the proposed algorithm is practically effective and robust in verifying the
individual’s identity.
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1. Introduction

Since the invention of electrocardiogram (ECG) recording in 1903 [1], a considerable number of
studies using the electrocardiogram have been performed in the fields of diagnosing cardiac-related
diseases [2–5], detecting sleep apnea [6], monitoring driver drowsiness [7], and measuring blood
pressure [8], because of its advantage of noninvasive convenience. Recently, researchers started to
use the ECG biometrics to verify individual identity [9]. The ECG is a suitable tool because the signal
itself constantly changes depending on the sympathetic/parasympathetic activities and it is resistant to
attacks and duplication [10–12].

According to the latest US Federal Trade Commission report published in March 2019 [13], identity
theft and cybercrime ranked third among the issues most complained about. Such kinds of identity
fraud and hacking are becoming seriously dangerous. Unfortunately, they are unavoidable as long as
we use password-based identity authentication systems. Therefore, new types of biometrics such as
facial characteristics [14], gait [15], fingerprints and iris scans [16], vein pattern [17], etc., have been
developed. Nevertheless, References [18,19] show that they are still vulnerable to a replay/falsification
attack even though they perform better with very low identification errors. To avoid problems related
to such attacks, the biometrics should be a variable, so that they cannot be stolen, duplicated, or
shared. Thus, many studies are showing a great interest in the ECG signal as a promising alternative
biometric [20–23].

The ECG signal is non-stationary and thus continuously changes over time. The two limbs of
the autonomic nervous system (i.e., sympathetic and parasympathetic nerves) are the most important
factors determining the changes in the heart rate. This type of variability is called intra-subject
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variability [24–26], that is, the changes occur for the same individual over time. There is also
inter-subject variability found in the ECG’s waveform that depends on the position, size, and anatomy
of the heart, age, gender, relative body weight, chest configuration, and various other factors [27,28].
Therefore, the ECG signal varies from person to person, implying that we can use it as a biometric for
the verification of an individual’s identity.

There have been numerous attempts at applying ECG inter-subject variation for individual
verification/identification [20–23,29–32], which can be classified into two categories: the fiducial
dependent approach [20–23] and the fiducial independent approach [29–32]. The fiducial dependent
approach relies on local features, such as time duration and amplitude differences between specific
points of interest in an ECG, so it is less affected by heart rate variations. However, it has the possibility
of missing the overall morphological information that might be useful in identifying individuals. Many
studies have focused on fiducial dependent features such as time intervals, angles, and amplitudes
between specific fiducial points on the QRS complex [20,33–35].

On the contrary, the fiducial independent approach is to find the feature of the ECG signal in the
frequency domain rather than the time domain, or to extract the whole morphological features that
appear to offer excellent discrimination information among individuals. Many algorithms based on
frequency transformation have been proposed for extracting fiducial independent features from ECG
signals, in which they use wavelet transform or DCT (Discrete Cosine Transform) to convert ECG signals
in the time domain to the frequency domain [36–40]. The autocorrelation method also has been gaining
considerable attention because of its excellent performances reported in many studies. It eliminates the
need for fiducial point localization in the ECG signal by using an autocorrelation (AC) of the segmented
ECG signal followed by DCT or LDA [41–43]. More recently, Safie [44] introduced a new feature
extraction method, known as Pulse Active Ratio (PAR), that is implemented on electrocardiogram
signals for biometric authentication. The Pulse Active Ratio uses pulse width modulation (PWM) to
generate new ECG feature vectors and thereby can adapt to changes in heart rate. However, such
fiducial independent approaches require tremendous computational effort because the parameters
should be generated and compared for every person listed in the database during the verification stage.
Furthermore, the database is often updated with intra-subject variability, in which the computational
cost increases exponentially as the size of the database increases. This computational cost problem can
be mitigated significantly by combining the above-mentioned two approaches.

In this paper, we propose an interval-based Linear Discriminant Analysis (LDA) algorithm, a
type of hybrid algorithm that combines the complementary strengths of both fiducial dependent
and fiducial independent features, and thereby is able to achieve higher accuracy of identification.
The main characteristics of the proposed algorithm are as follows: (i) the use of an autocorrelation
profile (ACP) of ECG signal; (ii) the use of short segments of the ACP to extract the interval-based
feature vectors, which can be updated every 5 s, showing higher adaptability to intra-subject variation;
(iii) the enrollment and verification of the individual’s interval-based feature vectors; and (iv) the
update of interval-based feature vectors when the user’s identity claim is accepted.

The remainder of the paper is organized as follows. The proposed LDA algorithm based on
the short ACP segments to determine the feature vectors on an interval basis as enrollment process,
the verification process, and the algorithm to update the feature vectors are described in Section 2.
In Section 3, the experimental results are compared with the existing ECG identification algorithms
based on the same public database. Finally, the conclusion is drawn in Section 4.

2. Materials and Methods

The ECG signal reflects the electrical activity of the heart. A basic ECG signal cycle is shown in
Figure 1 with a single lead ECG sensor. The signal cycle consists of the P wave, followed by the QRS
complex, and the T wave [1,33].
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In the preprocessing stage, the raw ECG signal’s noise is removed or suppressed. For biometric 
authentication, every user can use his/her ECG sensor in one of the two operation modes, that is, 
enrollment or verification mode. 

In the enrollment mode/stage, a distinctive feature set is extracted from the ACP (autocorrelation 
profile) of the ECG on an interval basis to create an association between the user and his/her biometric 
characteristics. Subsequently, the extracted feature set is stored in a template. This process is called 
training in the enrollment mode. The template is updated over time, mainly to handle the intra-
subject variation of cardiac signals. Longer training of the ECG signal leads to lower chances of false 
rejection (FR). In this study, the enrollment is performed for 2 min to provide a stable signature. 

Similarly, during the verification mode/stage, the newly acquired unknown input is compared 
with the template stored in the database to verify a claimed identity. The verification decision is made 
through a matching process based on a feature vector threshold. The obtained matching score is 
finally compared with the threshold to either accept or reject the target user’s identity claim. 

2.1. Preprocessing 

We used the ECG data from the MIT-BIH public database to test the proposed algorithm. The 
MIT-BIH database (MITDB) [34] is the standard ECG database universally used for ECG analyses 
that contains 48 records of heartbeats collected from 47 subjects; each record was sampled at 360 Hz 

Figure 1. Basic ECG signal cycle.

Figure 2 shows a simplified block diagram of the proposed interval-based LDA algorithm. This
algorithm mainly consists of signal preprocessing, enrollment, and verification.
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Figure 2. Simplified block diagram of the proposed interval-based LDA algorithm.

In the preprocessing stage, the raw ECG signal’s noise is removed or suppressed. For biometric
authentication, every user can use his/her ECG sensor in one of the two operation modes, that is,
enrollment or verification mode.

In the enrollment mode/stage, a distinctive feature set is extracted from the ACP (autocorrelation
profile) of the ECG on an interval basis to create an association between the user and his/her biometric
characteristics. Subsequently, the extracted feature set is stored in a template. This process is called
training in the enrollment mode. The template is updated over time, mainly to handle the intra-subject
variation of cardiac signals. Longer training of the ECG signal leads to lower chances of false rejection
(FR). In this study, the enrollment is performed for 2 min to provide a stable signature.

Similarly, during the verification mode/stage, the newly acquired unknown input is compared
with the template stored in the database to verify a claimed identity. The verification decision is made
through a matching process based on a feature vector threshold. The obtained matching score is finally
compared with the threshold to either accept or reject the target user’s identity claim.

2.1. Preprocessing

We used the ECG data from the MIT-BIH public database to test the proposed algorithm.
The MIT-BIH database (MITDB) [34] is the standard ECG database universally used for ECG analyses
that contains 48 records of heartbeats collected from 47 subjects; each record was sampled at 360 Hz
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and is approximately 30 min long. The subjects were 25 men with ages ranging from 32 to 89 years
and 22 women with ages ranging from 23 to 89 years. The data were obtained with a two-channel
ambulatory Holter monitor at the Bath Israel Deaconess Medical Center from 1975 to 1979. In most
database records, the upper signal is a modified limb lead II(MLII) obtained by placing the electrode
on the chest, and the lower signal is usually a V1(occasionally V2 or V5 or V4). Normal QRS complexes
are usually prominent in the upper signal, thus, we only used the single lead data (the upper signal,
MLII) in the experiment.

To minimize the negative effect of random noises, we applied the scheme proposed by Sornmo [35]
in our study, in which noisy ECG signals are passed through the bandpass filters (BPF) spanning from
0.5 to 200 Hz to reject the DC components and high-frequency noise. Subsequently, we implemented a
notch filter and a short-time Fourier transform (STFT) to eliminate the power line interference and its
harmonics. Figure 3 shows the preprocessing procedures.
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Figure 3. ECG signal preprocessing. (a): The simplified block diagram of signal preprocessing, where
the BPF and notch filter are applied to remove the noise and power line interference related harmonics
on ECG signals. (b): An example of an ECG signal before and after the preprocessing.

2.2. Feature Extraction

Let the noise-filtered ECG signals be x(n), with the time index n. The proposed method strongly
relies on the small pieces of x(n), called classes, and calculates the ACP (autocorrelation profile) of
each class. Then, each calculated ACP is sliced into short-time ACP segments; each segment is called
ACPlet. By dividing each ACP into multiple ACPlets, we may easily capture the temporal pattern of
the ACP in detail. The features we used are mainly based on the amplitude and angle patterns of the
ACPlets to identify the similarities between an unknown ACP input and the reference profile.
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2.2.1. Calculating the Reference Profile, Φ(m)

As mentioned in the previous section, during the enrollment mode, 2 min long ECG signals
received from the ECG sensor are considered to be the training set x(n). The training set x(n) is then
divided into several classes with a length of N. Each class of x(n) is labeled xc(n) with the class “c”,
as follows

xc(n) = x(n)·RN(n−N·c) for a given class c = 0, 1, · · · , C− 1 (1a)

where

RN(n) =
{

1 , 0 ≤ n ≤ N − 1
0 , otherwise

(1b)

Subsequently, the ACP Φc(m) of xc(n) can be computed by the following Equation (2a).

Φc(m) =
N−1∑
n=0

xc(n)·xc(n + m) for 0 ≤ m ≤ Q− 1 and a given class c (2a)

where x(n + m) is the time-shifted version of ECG with a time lag m and Q is the length of the QRS
complex. Figure 4 shows how the signals xc(n) and xc(n + m) are defined to obtain the ACP, that is,
Φc(m).
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Figure 4. The two-minute-long training set x(n) and its time-shifted version x(n + m). The training set
x(n) is divided into C classes, each of which is N samples long. For example, x1(n) and x1(n + m) are
the 1st class of x(n) and x(n + m), respectively.

Based on the previous research, the QRS complex is considered to be the most prominent waveform
of ECG for individual verification [41,45,46]. Hence, the time shift parameter m of Φc(m) was chosen
between 0 to Q − 1. In this paper, the length Q, which depends on the individual, was calculated
using the QRS detection method based on the Pan-Tompkins algorithm [47]. Depending on the
individual, the different length of Q helps in achieving a high identification accuracy and robustness of
the proposed algorithm.
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Based on the assumption that the training set x(n) includes C classes, we define a set of ACPs for
C classes as follows:

Φ0(m), Φ1(m), · · · , Φc(m), · · · , ΦC−1(m) (2b)

Subsequently, the reference profile Φ(m) is defined as the average of all ACPs contained in the
training set x(n), given by:

Φ(m) =
1
C

C−1∑
c=0

Φc(m) (3)

where C is the total number of classes in the training set x(n) for 2 min.

2.2.2. Interval-Based Feature Extraction

Figure 5 shows an example of ACPs for two different subjects (subject A and subject B). We
assumed that each subject has C classes and those C classes are displayed together within the same
time period Q.
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Figure 5. An example of a set of ACPs, displayed together within the same time period of Q, for two
different subjects (subject A and subject B) when C = 5. (a–d) illustrate the differences in amplitude and
angle patterns of ACPlet generated when the ACPs are segmented into six ACPlets, even though the
two subjects have a very similar ACP shape.

From Figure 5, the intervals (a) and (c) are when the two subjects are difficult to distinguish by
using only the amplitude patterns of Φc(m), but these two subjects are more easily distinguished using
the angle patterns of Φc(m). It is obvious from the two profiles of (a) and (c) that their angle patterns
are significantly different, in which the angle pattern is defined as the angles between the horizontal
x-axis and the ACPlet. On the other hand, (b) and (d) are the intervals when the two subjects can be
easily distinguished using the amplitude patterns of Φc(m).

These results lead to the idea of an interval-based feature vector. Accordingly, to facilitate the
identification between different subjects, each class needs to be sliced into short-time ACP segments,
i.e., the ACPlets. Therefore, in this work, the two features of amplitude and angle patterns of ACP
produced for every ACPlet are used to distinguish the ECG signals.
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2.2.3. Deciding the Optimal Interval Size for Interval-Based Feature Vector

In Section 2.2.2, we realized that dividing ACPs with a short interval and applying different
feature vectors to each ACPlet yields a better identification; however, the interval size should be
decided appropriately. The optimal interval size is determined based on the maximum interval that
satisfies a mean square error (MSE) criterion between the ACPlets and their linearly fitted lines, such
that each ACPlet provides clear angle information.

Based on the assumption of the optimal interval size L, the reference profile Φ(m) can be equally
divided into Q/L profiles fi(v), defined as follows:

Φ(m) =
{

f1(v), f2(v), · · · , fi(v), · · · , fNI(v)
}

for a given L (4)

where i
(
= Q

L

)
is the number of intervals and 0 ≤ ν ≤ L − 1.

Here, let define Φ̂(m) as the set of gi(v) that is the fi(v) linearly fitted, as follows:

Φ̂(m) =
{

g1(v), g2(v), · · · , gi(v), · · · , gNI(v)
}

(5)

where 0 ≤ ν ≤ L − 1.
Thus, the optimal interval L is the maximum length that satisfies the following MSE (ζ) criterion

between the two profiles Φ(m) and Φ̂(m).

L = max
l

 NI∑
i=1

l−1∑
v=0

( fi(v) − gi(v) )
2
≤ ε

 for 2 ≤ l ≤
Q
2

(6)

where ε is the minimum tolerance of the MSE and NI (=Q/L) is the number of intervals. The symbol
represented in the above process is illustrated in Figure 6.
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Figure 6. Symbol descriptions: (a) N is the update cycle of the verification process; (b) Q is the
time-shifting size of the ACP process; (c) L is the size of an interval and the maximum length that
satisfies the MSE (ζ) criterion.

Figure 7 shows typical examples of the MSE ζ and identification accuracy η as a function of NI
(Number of Interval). In Figure 7, MSE ζ represents the ratio based on the assumption that MSE ζ is
100% when NI is set to 2, where (a) represents the minimum tolerance ε, which is experimentally set to
20%; (b) is the NI value satisfying (a), which corresponds to Q/L; and (c) is the identification accuracy
when the NI value corresponds to (b).

The Figure 7 shows that the MSE ζ decreases as NI increases, where a higher NI is proportional to
identification accuracy η but requires more computations for the verification process. Accordingly,
there is a trade-off between the NI and computational cost. We also observed that the IDA improves
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with increasing NI; however, the improvement is not significant. For instance, as the NI increases from
Q/L to 50, only an improvement of less than 0.2% is obtained. In conclusion, the performance of the
proposed algorithm is not highly sensitive to the NI as long as it is greater than Q/L. Finally, the NI is
set to Q/L when MSE ζ corresponds to ε, since there is no big difference in the final performance as
long as the NI is greater than Q/L.Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 18 
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2.3. Threshold Values for Classification

Our algorithm requires two types of interval-based thresholds for the robust verification of
intra-subject variation. One threshold is for the amplitude feature vector and another is for the angle
feature vector, denoted THφ(i, v) and THθ(i), respectively, where the variable i indicates the interval
index. These thresholds are used to check the similarity between the amplitude and angle feature
vectors of the newly incoming ACPlets to those stored in the template.

2.3.1. Threshold of Amplitude Similarity: THφ(i, v)

Step 1: Consider a subject A for the training set and let define the ACP as φA
c (m) that consists of

the ACPlets φA
c (i, v) for c ∈ {0, . . . , C− 1}:

φA
c (m) =

{
φA

c (1, v),φA
c (2, v), · · · ,φA

c (i, v), · · · ,φA
c (NI, v)

}
(7)

In matrix form,



φA
0 (m)

φA
1 (m)

...
φA

c (m)
...

φA
C−1(m)


=



φA
0 (1, v) φA

0 (2, v) · · · φA
0 (i, v) · · · φA

0 (NI, v)
φA

1 (1, v) φA
1 (2, v) · · · φA

1 (i, v) · · · φA
1 (NI, v)

...
...

...
...

φA
c (1, v) φA

c (2, v)
... φA

c (i, v)
... φA

c (NI, v)
...

... · · ·
... · · ·

...
φA

C−1(1, v) φA
C−1(2, v) · · · φA

C−1(i, v) · · · φA
C−1(NI, v)


(8)
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Step 2: Calculate the average in a vertical way to obtain the reference profile, φ
A
(m) :

φ
A
(m) =

[
φ

A
(1, v) φ

A
(2, v) · · ·φ

A
(i, v) · · ·φ

A
(NI, v)

]
(9)

where

φ
A
(i, v) =

1
C

C−1∑
c=0

φA
c (i, v) for a given i and v (10)

Step 3: Define ∆φA
c (i, v) as the amplitude distance between φ

A
(i, v) and φA

c (i, v) :

∆φA
c (i, v) =

∣∣∣∣φA
(i, v) −φA

c (i, v)
∣∣∣∣ (11)

where the distance ∆φA
c (i, v) is large if the descriptors are further apart in the descriptor space and

small if they are closer together.
We obtain:

THφmax(i, v) = max
{
∆∅A

c (i, v)
∣∣∣ ∀c ∈ {0, 1, · · ·C− 1 }

}
,

and THφ(i, v) = µA
φ
(i, v) + σA

φ
(i, v) for a given i and v

(12)

where
µA
φ
(i, v) = mean

{
∆φA

c (i, v)
∣∣∣ ∀c ∈ {0, 1, · · ·C− 1}

}
σA
φ
(i, v) = std

{
∆φA

c (i, v)
∣∣∣ ∀c ∈ {0, 1, · · ·C− 1 }

} (13)

Note that the amplitude distance ∆φA
c (i, v) is small and thus THφ(i, v) is most likely smaller than

THφmax(i, v), since this parameter reflects the distance between intra-subjects.

2.3.2. Threshold of Angle Similarity: THθ(i)

We calculated the scatter within class representing the degree of dispersion in a class which is
called intra-subject variability, and the scatter between classes representing the degree of dispersion
between different classes, which is called inter-subject variability, to obtain THθ(i) [43].

Step 1: Consider a data set of (x, y) and (x, r) for a given io ∈ i , where

x = {∀v},
y =

{
φA

c (io, v)
∣∣∣ io ∈ i, ∀v

}
for a given class c

r =
{
φ

A
(io, v)

∣∣∣∣ io ∈ i,∀v
} (14)

Step 2: Calculate the scatter within class and scatter between classes of the dataset (x, y) and (x, r).

SW = S(x,y) + S(x,r)

S(x,y) =
∑ (

y− uy
)(

y− uy
)T

S(x,r) =
∑

(r− ur)(r− ur)
T

SB =
(
uy − ur

)(
uy − ur

)T

(15)

where uy and ur indicates the mean of y and r, respectively.
Step 3: Calculate the weight vector matrix in terms of SW and SB. Subsequently, use the eigenvector

with the highest eigenvalue as the most discriminant projection vector.

W = SB
SW

WV = λV
(16)
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where V is the eigenvector when λ corresponds to the highest eigenvalue.
Let’s define θA

c (io) as the angle θ of the x-axis to the most discriminant projection vector V of the
dataset, (x, y) and (x, r).

θA
c (io) = tan−1(V) (17)

Step 4: Define θA
c (io) as the angle distance per interval between dataset (x, y) and (x, r) for a given

c and io.
We obtain:

THθmax(io) = max
{
θA

c (io)
∣∣∣ ∀c ∈ {0, 1, · · ·C− 1 }

}
THθmin(io) = min

{
θA

c (io)
∣∣∣ ∀c ∈ {0, 1, · · ·C− 1 }

} (18)

and
THθ1(io) = µA

θ (io) + σA
θ (io), THθ2(io) = µA

θ (io) − σ
A
θ (io) (19)

where
µA
θ
(io) = mean

{
θA

c (io)
∣∣∣ ∀c ∈ {0, 1, · · ·C− 1 }

}
σA
θ
(io) = std

{
θA

c (io)
∣∣∣ ∀c ∈ {0, 1, · · ·C− 1 }

} (20)

Similar to the amplitude distance ∆φA
c (i, v), the angle distance θA

c (io) is mostly between
THθ1(io) and THθ2(io) and almost always between THθmin(i) and THθmax(i) . Based on this process and
the subsequent updating process, the range of the intra-subject variation can be determined and the
advantage of the constantly changing ECG signal can be reaped, which is beneficial for the verification
using ECG.

2.4. Verification

In addition to the biometric data for subject A, the template database includes information
about the identifier related to the subject A. The term “biometric data” is referred to as the{
φ

A
(i, v)

∣∣∣∣∀i ∈ training set
}

stored along with the THφ(i, v) and THθ(i) in the template database.

During the verification stage, the system validates the identity claimed by an unknown person by
checking the similarity of the person’s biometric data to the enrolled data retrieved by the identifier
input by subject A.

Consider an unknown subject B to be verified. If an unknown person B is detected by the biometric
system during the verification, first, a biometric input is extracted from the person by calculating the
feature vector,

{
φB

c (i, v)
∣∣∣∀i, c ∈ verification mode

}
. Subsequently, the system calculates the difference

between the unknown input and templates, resulting in the amplitude and angle distances in the same
manner as during enrollment.

Next, the system calculates the similarity to determine how close the subjects A and B are.
The computation is carried out by applying a similarity threshold to the distances and normalizing
the resulting value to the range [0,1], where 0 means “no match at all” and 1 means “perfect match”.
In this paper, two similarity measures are considered, and those are the similarities of the amplitude
and angle distances, denoted as Sφ and Sθ , respectively.

Subsequently, we define a matching score S to quantify the match between the unknown and
template subject by concatenating the two similarities into S = 0.5Sφ + 0.5Sθ, where both similarities
are equally weighted. Given a matching score S, the system checks whether the score S is above a
certain threshold STH for the signature classification. A detailed explanation of the verification is
given below.

Step 1: First, consider an unknown subject B to be verified and let its ACP be ΦB
c (m), which

belongs to class c. It can be represented by the set of the ACPlets of

ΦB
c (m) : ΦB

c (m) =
{
φB

c (1, v),φB
c (2, v), · · · ,φB

c (i, v), · · · , φB
c (NI, v)

}
(21)
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Step 2: Compute the amplitude distance ∆∅B
c (i, v) between

φ
A
(i, v) and φB

c (i, v), given by : ∆φB
c (i, v) =

∣∣∣∣φA
(i, v) −φB

c (i, v)
∣∣∣∣ (22)

where this distance shows how close the amplitudes of φ
A
(i, v) and φB

c (i, v) are. Smaller ∆∅B
c (i, v)

leads to a higher possibility that the unknown subject B is to be subject A.
Step 3: Calculate the similarity of the amplitude distance: Sφ
The similarity of the amplitude distance (Sφ) can be obtained by applying the threshold of the

amplitude similarity to ∆∅B
c (i, v) as follows:

f or i = 1 : NI
f or v = 0 : L− 1

Ω(i, v) =
THφ(i,v)

∆∅B
c (i,v)

for a given class

Ω(i, v) = 0 if ∆∅B
c (i, v) > THφmax(i, v)

Ω(i, v) = 1 if ∆∅B
c (i, v) ≤ THφ(i, v)

end
end

S∅ = 1
( NI · L )

NI∑
i=1

L−1∑
v=0

Ω(i, v) for a given class

(23)

Given ∆∅B
c (i, v), if ∆∅B

c (i, v) ≤ THφ(i, v), the corresponding ACP pixel is counted as “accepted”,
i.e., the similarity Ω(i, v) = 1. Else if ∆∅B

c (i, v) > THφmax(i, v), the corresponding ACP pixel is counted
as “declined”, that is, the similarity score Ω(i, v) = 0. If THφ(i, v) < ∆∅B

c (i, v) ≤ THφmax(i, v), the
corresponding ACP pixel is counted as “partially accepted” and the similarity score is given by

Ω(i, v) =
THφ(i,v)
∆∅B

c (i,v)
, which ranges from 0 to 1. Finally, the similarity of the amplitude distance (Sφ) is

determined as the average of the similarity score calculated on a pixel-by-pixel basis.
Step 4: Compute the angle distance θB

c (i)
Define θB

c (io) as the angle θ of the x-axis to the most discriminant projection vector of the datasets,
(x, z) and (x, r) where

x = {∀v},
z =

{
∅B

c (io, v)
∣∣∣io ∈ i,∀v

}
for a given class c

r =
{
∅A

(io, v)
∣∣∣∣io ∈ i,∀v

} (24)

The method of finding the most discriminant projection vector is the same as the method used
to calculate the most discriminant vector in the enrollment mode. Subsequently, define θB

c (io) as the
angle distance per interval between datasets (x, z) and (x, r) for a given c and io.

Step 5: Calculate the similarity of angle distance: Sθ
The similarity of angle distance (Sθ) can be obtained by applying the threshold of the angle

similarity to θB
c (i) as follows:

for i = 1 : NI

i f θB
c (i) ≤ THθ1(i), Λ(i) =

THθ1
(i)

θB
c (i)

i f θB
c (i) ≥ THθ2(i), Λ(i) =

THθ2 (i)

θB
c (i)

Λ(i) = 0 if
(
θB

c (i)< THθmin(i) or θB
c (i) >THθmax(i)

)
Λ(i) = 1 if THθ1(i) ≤ θ

B
c (i) ≤ THθ2(i) for a given class

end

Sθ = 1
NI

NI∑
i=1

Λ(i) for a given class

(25)
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Given θB
c (i), if THθmin(i) ≤ θ

B
c (i) < THθ1(i) or THθ2(i) < θ

B
c (i) ≤ THθmax(i), the corresponding

ACP interval is counted as “partially accepted”, that is, the similarity score is Λ(i) = THθ(i)
θB

c (i)
, which

has the range [0,1], or else if θB
c (i)< THθmin(i) or θB

c (i) >THθmax(i), the corresponding ACP interval is
counted as “declined”, that is, the similarity score Λ(i) = 0, or else if THθ1(i) ≤ θB

c (i) ≤ THθ2(i), the
corresponding ACP interval is counted as “accepted” and the similarity score is given by Λ(i) = 1.
The similarity of the angle (Sθ) is determined as the average of the similarity scores calculated on an
interval-by-interval basis.

Step 6: Calculate the matching score
For every incoming class, we define a matching score S = 0.5Sφ + 0.5Sθ with a range from 0 to 1,

where 1 means a perfect match. Given a matching score S, the system finally determines whether the
score S is above a certain threshold STH, called as the matching threshold, for signature identification.

2.5. Updating Template

As mentioned in Section 1, an individual ECG signal changes over time due to intra-subject
variability. Therefore, if a subject uses a fixed template for a long time, the subject may be falsely
rejected during the verification. To solve this problem, we applied an updating process by continuously
performing the training process for every class. For instance, for a new Cth class incoming shortly
after the training process of class c ∈ {0, 1, . . .C− 1}, if the matching score S is larger than the threshold
STH, the new Cth class is accepted as a new member for the template update. Subsequently, the newly
accepted class is appended to the training set, and thus the latest accepted C classes c ∈ {1, 2, . . .C− 1}
are considered to be the new training set for the update. The template update for subject A is
described below.

2.5.1. Calculating the Amplitude and Angle Distances

The latest accepted C classes are re-indexed using c ∈ {0, 1, . . .C− 1}.
(i) Use the C classes as the new training set for subject A and find the ACP as ΦA

c (m) which
consists of the ACPlets ∅A

c (i, v):

ΦA
c (m) =

{
φA

c (1, v),φA
c (2, v), · · · ,φA

c (i, v), · · · ,φA
c (NI, v)

}
(26)

(ii) Next, find the profile Φ
A
(m):

Φ
A
(m) =

[
φ

A
(1, v) φ

A
(2, v) · · ·φ

A
(i, v) · · ·φ

A
(NI, v)

]
(27)

where

φ
A
(i, v) =

1
C

C−1∑
c=0

φA
c (i, v) for a given i and v (28)

(iii) Finally, compute the amplitude distance ∆∅A
c (i, v) and angle distance θA

c (i):

∆φA
c (i, v) =

∣∣∣∣φA
(i, v) −φA

c (i, v)
∣∣∣∣ and

θA
c (i) = tan−1(V)

(29)

where V is the most discriminant projection vector between φ
A
(i, v) and φA

c (i, v).
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2.5.2. Updating the Threshold of Amplitude Similarity

µφ(i, v) = mean
{

∆∅A
c (i, v)| ∀c ∈ {0, 1, · · ·C− 1 }

}
σφ(i, v) = std

{
∆∅A

c (i, v)| ∀c ∈ {0, 1, · · ·C− 1 }
}

THφmax(i, v) = max
{

∆∅A
c (i, v)| ∀c ∈ {0, 1, · · ·C− 1 }

}
THφ(i, v) = µφ(i, v) + σφ(i, v)

(30)

2.5.3. Updating the Threshold of Angle Similarity

µθ(i) = mean{ θA
c (i)| ∀c ∈ {0, 1, · · ·C− 1 }

}
σθ(i) = std{ θA

c (i)| ∀c ∈ {0, 1, · · ·C− 1 }
}

THθmax(i) = max{ θA
c (i)| ∀c ∈ {0, 1, · · ·C− 1 }

}
THθmin(i) = min{ θA

c (i)| ∀c ∈ {0, 1, · · ·C− 1 }
}

THθ1(i) = µθ(i) + σθ(i) THθ2(i) = µθ(i) − σθ(i)

(31)

By updating the threshold of the amplitude/angle similarity using the above process, the ECG
changes due to intra-subject variation can be continuously reflected in the template. In this study, the
verification/updating template is repeatedly performed for every class and each class is specified to be
5 s long, which is fast enough for real-life applications.

3. Experiment and Results

An experiment was carried out using a public open database, available on the PhysioNet
website [34], to evaluate the proposed algorithm.

The MIT-BIT arrhythmia database (MITDB) contains 48 records of heartbeats collected from
47 subjects (records 201 and 202 are from the same male subject). Each record is approximately 30
min long and was sampled at 360Hz. The subjects are 25 men with ages between 32 and 89 years old
and 22 women with ages between 23 to 89 years old. The data were obtained using a two-channel
ambulatory Holter monitor at the Beth Israel Deaconess Medical Center from 1975 until 1979. This
database is the most referred database related to arrhythmic studies. In this study, this database was
used to evaluate the efficiency of the proposed algorithm. Two 2-min intervals were randomly selected
for each data. The first 2-min interval of each data was used for training and the second data was used
for verification. Only single lead data was used in the experiment.

The error rate can be calculated for each subject, as shown in Figure 8. The FR (False Rejection)
means that the subject was rejected despite being himself. The FA (False Acceptance) means that
the subject was accepted despite being someone else. The distance threshold was chosen to be the
intersection of FR (False Rejection) and FA (False Acceptance), depending on the subject. The threshold
and EER for each subject are calculated based on the intersection of FR and FA. If there is only one
intersection point, the threshold and EER are determined based on the intersection point, whereas if
there are more than two points, the threshold is determined by the average value of the largest and
smallest value, and certainly, EER is calculated as 0, as shown in Figure 8.
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Figure 9a shows an example of obtaining the EER for each individual. A histogram of the EER
(Equal Error Rates) is shown in Figure 9b. The average EER is 0.143%, which indicates the efficiency of
the overall algorithm, as shown in Equation (32). Only a single user was enrolled at any point in time.
In other words, at any point in time, we had one client and 46 imposters.

Total efficiency of verification =
1

No. of subject

No. of subject∑
Sub=1

EERSub (32)

where Sub indicates the subject number.
To demonstrate the efficiency of our proposed algorithm, we compared it with related works

that used the same database (MIT-BIH), as shown in Table 1. Table 1 shows that the EER (Equal
Error Rate) in Reference [48] is higher than the proposed algorithm despite using ECG data from two
leads. Recently, most ECG wearable devices, such as smart watches, only use one lead; thus, the
proposed algorithm is more suitable for real-life applications. In Reference [48], a fixed shifting size
was used for the autocorrelation, while in the proposed algorithm, we used a flexible shifting size
for the autocorrelation as the QRS width for the individual, which requires less computational effort.
Although fused information from two ECG leads was used in Reference [49], their IDA (Identification
Accuracy) is lower than the proposed algorithm; however, the enroll time is 5 min, which is longer
than our algorithm. A fiducial point dependent method was used in References [28,50–52] which is
vulnerable to noise. Only 10–20 s data were used for enrollment and verification in References [52,53].
However, we used two 2-min data for enrollment and verification to verify the stability of the proposed
algorithm. Only a direct contact sensor was used in References [28,48–53] to verify the algorithms.
In contrast, we used a non-contact single lead senor for real-life applications. In this paper, in the case
of a fiducial dependent approach, although it has the advantage of being able to identify a subject in a
relatively short time with less computational effort, it is easily affected by external noise. On the other
hand, a fiducial independent approach has the advantage of being less affected by external noise, but it
takes higher computational effort and longer authentication time. To compensate for the advantages
and disadvantages of the above two methods, the amount of calculation was reduced through the
amplitude feature using ACP and the identification accuracy was improved through the interval-based
angle feature.

However, in this study, the matching score was calculated using the same weight for the two
features, resulting in a disadvantage in terms of the weakness in various environmental variables.
Therefore, we intend to explore the application of variable weights for future research to design a
robust algorithm for environment variables.
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Table 1. Comparison of the proposed algorithm with related research using the same public database.

Ref. NS ST DB Method EER IDA

[48] 56 2-lead Direct Contact type
MITDB
NSRDB

PTB database

Normalized
AC and LDA 3.8 % 96.2 %

[49] 145 2-lead
Direct Contact type

(a) MITDB
(b) NSRDB
(c) LTSTDB

WT and ICA
(a) 0.43 %
(b) 0.67 %
(c) 1.89 %

(a) 99.57 %
(b) 99.33 %
(c) 98.11 %

[28] 50 2-lead Direct Contact type (Only single
lead of data used)

MITDB
NSRDB

Delineation of P and T wave,
Correlation 1.01 % 98.99 %

[50] 73 2-lead Direct Contact type
(Only single lead of data used)

(a) MITDB
(b) IIT(BHU) database

(laboratory experiment)

Delineation of P and T wave,
Eigenbeat feature extraction

(a) 8.58 %
(b) 4.45 %

(a) 91.42 %
(b) 95.55 %

[51] 47 2-lead Direct Contact type
(Only single lead of data used) MITDB Sum of Gaussian, QDA 3 % 97 %

[52] 83
2-lead Direct Contact type (Only single
lead of data used), AliveCor single lead

Contact type [54]

(a) MITDB NSRDB
(b) Laboratory experiment database

FP (Time and amplitude),
Proposed hierarchical algorithm

(a) 9.795 %
(b) 8.18 %

(a) 90.205 %
(b) 91.82 %

[53] 65 2-lead Direct Contact type
(Only single lead of data used)

(a) MITDB
(b) NSRDB DWT (a) 6.9 %

(b) 0.6 %
(a) 93.1 %
(b) 99.4 %

Proposed
method 72 2-lead Direct Contact type

(Only single lead of data used) MITDB Unnormalized AC and Interval
based LDA algorithm 0.143 % 99.857 %

NS number of subject, ST sensor type, DB database, EER equal error rate, IDA identification accuracy, AC autocorrelation, LDA linear discriminant analysis, WT wavelet transform, ICA
independent component analysis, QDA quadratic discriminant analysis, DWT discrete wavelet transform.
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4. Conclusions

In this paper, a novel interval-based LDA algorithm is proposed. The implementation experiments
of the proposed algorithm show higher identification accuracy compared to the existing ECG-based
identification algorithm using the fiducial point dependent method or fiducial independent method.
Based on this algorithm, we can complement each method’s disadvantages by using both a fiducial
point dependent method (amplitude distance by pixel) and fiducial point independent method (angle
distance by feature vector). In addition, our proposed algorithm is able to maintain identification
accuracy by tracking the ECG that changes in real-time using a template updating process.

This algorithm was tested with a public ECG database (MIT-BIH) and we compared its performance
with related studies using the same database. The results show that the proposed algorithm is more
reliable than other algorithms in terms of EER (Equal Error Rate). However, this algorithm has the
disadvantage that it requires 5 s for each identification. Therefore, as future research, we intend to
reduce the identification time and proceed to commercialize this as a product through multimodal
identification combined with other biometrics.
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