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Abstract: In order to accurately identify the pipeline leak fault of a mine air compressor, a novel
intelligent diagnosis method is presented based on the integration of an adaptive wavelet threshold
denoising (WTD) algorithm, improved firefly algorithm (IFA), Otsu-Grabcut image segmentation
algorithm, histogram of oriented gradient (HOG), gray-level co-occurrence matrix (GLCM) and
support vector machine (SVM). In the proposed method, the adaptive step strategy and local optimal
firefly self-search strategy for the basic firefly algorithm (FA) are used to improve the optimization
effect. The infrared thermal image is denoised by using wavelet threshold algorithm which is
optimized by IFA (WTD-IFA). The Otsu-Grabcut algorithm is used to segment the image and extract
the target. The HOG and GLCM are calculated to reveal the intrinsic characteristics of the infrared
thermal image to extract feature vectors. Then the IFA is utilized to optimize the parameters of
SVM so as to construct an optimal classifier for fault diagnosis. Finally, the proposed fault diagnosis
method is fully evaluated by experimentation and the results verify its feasibility and superiority.
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1. Introduction

Mine air compressors are important equipment for guaranteeing safety. Compressed air is
transported underground through seamless steel pipes. On one hand, compressed air provides power
for wind hammers, air pumps and other mine pneumatic equipment [1]. On the other hand, it can
ensure that there is enough oxygen underground to protect the lives of coal miners [2]. Due to the
high-pressure characteristics of compressed air, compressed air often leaks from the gas delivery
pipeline during operation. According to statistics, there is a serious loss of compressed air during
production and utilization, which accounts for about 25% to 30% of the total demand for compressed
air [3]. In some specific systems, the loss rate even reaches 30% to 60% [4]. Leakage is the most obvious
and important reason for the loss of compressed air, which can reach 20% to 40% of the total gas
usage [5]. If the compressed air leaks in a very short time, it will not only cause huge economic losses,
but also cause equipment damage and endanger personal safety. At present, the detection of such
faults mainly depends on worker’s hearing and observation to determine whether the pipeline is
leaking. Obviously, the detection efficiency is very low and the leak fault cannot be found in time.
In addition, the air temperature and noise in the compressor room is very hostile. It is extremely
critical to discover and eliminate the compressed air leak faults early when the faults occur. Therefore,
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the research of compressed air leak fault diagnosis technology for mine pipes is of great significance
and practical value.

In recent decades, many experts and researchers have proposed two general leak fault monitoring
methods. The first is to detect the substance that escapes from the pipe. A sensor is used to detect the
leaking substance, which should be contacted with this substance and be close to the leak. This requires
a dense concentration of sensors. Thus, for a long pipeline, the method will yield a large number of
remote units and high costs. The second way is to detect certain leak-related properties such as pressure
drops, acoustic emissions, volume balance changes and temperature changes. Temperature monitoring
and volume balance comparison (comparing the amount of material injected into the pipe to the
amount received from the pipe) techniques are useful for the detection of large or catastrophic leaks,
and have been widely used in many fields. However, these systems are not sensitive to small leaks.

At present, the detection methods for pipeline gas leakage are mainly based on acoustic, ultrasonic
and infrared technologies. Madding et al. [6] used an infrared camera to detect the leakage of SF6
gas, improving the detection efficiency. Slobodan Dudić et al. [7] used ultrasound and infrared
thermography technology to detect the leakage of compressed air, and found that thermography can
offer good results for the leakage quantification from orifices greater than 1.0 mm and ultrasound
should be used for leakage detection for all dimensions of orifices. Lingya Meng et al. [8] conducted
an experimental study on the detection and location of natural gas pipeline leaks based on acoustic
methods. The wavelet transform was used to reduce the noise of the acoustic signal collected by
the sensor, which improved the recognition sensitivity of the system. Marcia Golmohamad [9] used
ultrasound to study the pipeline leak detection technology. However, this method cannot perform
real-time inspection on the pipeline at work, and is only suitable for inspection before the pipeline is
used. Yonghong Wang [10] used the basic principle of ultrasonic detection of pressure vessel leakage,
wavelet analysis and BP neural network to identify the gas leakage signal. Jin Hao et al. [11] proposed
a method for detecting and locating natural gas pipeline leaks based on the sonic method. It can be
seen that the traditional gas leak detection methods cannot effectively detect the gas leak on time and
cannot meet the accuracy demand of fault diagnosis.

The infrared images of compressed air leak pipes contain information about temperature changes
caused by compressed air leaks. However, the infrared image cannot directly display the characteristics
of leaked compressed air due to presence of the atmospheric window [12]. Therefore, how to use
appropriate mean to introduce the intelligent algorithms into the compressed air leak detection is
a problem that needs to be studied deeply. In order to ensure the leak recognition effect, the infrared
image technology is integrated with some related methods, such as wavelet threshold denoising (WTD),
firefly algorithm (FA), Otsu’s method, Grabcut, histogram of oriented gradient (HOG), gray-level
co-occurrence matrix (GLCM) and support vector machine (SVM). These methods have their own
advantages and disadvantages in actual applications. For example, wavelet threshold denoising
can decompose the signal into high and low frequencies, and remove part of the high frequencies
to denoise the signal, but it is not suitable to decompose the high frequency, and hard to find the
optimal threshold. The FA is simple and easy to implement and has fast solving speed, but it is
easy to fall into local extreme point. The Otsu’s method is easy to separate the pixels of one picture
into two classes, foreground and background, but it returns a binary image. The Grabcut is an easy
image segmentation method based on graph cuts, but it has to point out the misclasses regions by
user. The HOG can describe the local shape information of the image, but it is quite sensitive to noise.
The GLCM can describe texture features, but small changes in the image can cause large changes
in the energy distribution. The SVM can solve the small-sample, nonlinear and high-dimensional
problems, but when it is used to solve nonlinear problems, the selection of kernel function directly
affects the final classification result. Therefore, in order to effectively recognize the pipeline leak,
the WTD, IFA, Otsu-Grabcut, HOG-GLCM and SVM are fully integrated to propose a novel intelligent
diagnosis method for compressed air leaks. Furthermore, the IFA is used to optimize the parameters
of the WTD (WTD-IFA) for better denoising efforts. Otsu-Grabcut is used to segment the picture to
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remove the irrelevant information. The HOG-GLCM is used to effectively extract the leak fault features,
and the IFA is used to optimize the parameters of SVM to establish an optimal SVM classifier with
high classification accuracy.

2. Materials and Methods

2.1. Firefly Algorithm and Its Improvements

2.1.1. Classic Firefly Algorithm

Firefly Algorithm (FA) is a swarm intelligence optimization algorithm proposed by Xin-She Yang
in 2008 to simulate the group behavior of fireflies [13]. The classic firefly algorithm uses the mutual
attraction of fireflies to affect the movement of firefly groups, and has a stronger local attraction feature
than the global optimal attraction. The firefly algorithm has few parameters, simple principle and easy
operation. When the algorithm is running, the fireflies will automatically be divided into multiple
small groups, which makes FA very suitable for nonlinear optimization problems, such as multi-peak,
feature extraction, clustering, etc. Therefore, FA is increasingly used to solve important optimization
problems in engineering and scientific fields, such as network, image processing, robot trajectory
planning and text selection [14–16]. However, FA also has some defects such as low convergence
accuracy, slow convergence speed at the end of the iteration, and is difficult to be away from local
optimality [17–21]. In order to improve the ability of FA, many research scholars have transformed FA,
and there are two main ideas for improvement. One is to optimize the parameters of FA, and the other
is to combine the excellent ideas of other group optimization algorithms with FA to obtain better search
capabilities. Xin-She Yang [22] proposed the Levy-flight Firefly Algorithm (LFA), which absorbed the
distribution characteristics of the long tail in the Levy flight algorithm, and improved the update step
strategy of the firefly algorithm. Afnizanfaizal [23] combines the idea of differential evolution with FA.
He gathered the poor fireflies together to form new populations, and updated the coordinates of the
fireflies through differential evolution, thereby improving the ability of the algorithm to remove local
optimality, called the hybrid evolution firefly algorithm (HEFA).

The steps of the classic firefly algorithm are as follows:

1. FA parameters initialization. First, we set the size of the solution space to D, then set an appropriate
number of fireflies N according to D. The maximum update number tmax is set appropriately,
and the appropriate absorption coefficient is set according to different media, usually 1; the initial
step size s is usually set to 0.5. The initial attraction β0 represents the attraction at the light source
(distance r = 0), usually set to 1, and the coordinate of the i-th firefly is expressed as Xi= (xi1, xi2,
. . . , xiD).

2. Firefly’s attractiveness calculation. According to the coordinates of each firefly and the
corresponding fitness evaluation function, the fitness of the firefly is calculated as the brightness
of the fireflies. The aim of the firefly algorithm is to find the optimal solution in the objective
function, and the brightness of the firefly’s position is the firefly’s solution in the objective
function. When the function is known, the brightness of the firefly can be obtained by introducing
the position coordinates of the firefly, which can be used to judge the position of the firefly.
Then, based on the brightness, the absorption coefficient and the distance between fireflies the
attraction β between fireflies is calculated, as shown below: β(ri j) = β0 × e−r2

i j

ri j = ‖xi − x j‖
, (1)

where rij is the distance between two fireflies.
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Fireflies’ location update. According to the calculated attraction, each firefly flies to a more
attractive firefly. The update step calculation formula for the t-th generation fireflies is as follows:

s(t) = st
· εt, (2)

where st stands for the t-th step, εt represents the random coefficient of the t-th generation obeying
uniform distribution.

The firefly position update equation is written as follows:

xt+1
i = xt

i + β(ri j)(xt
j − xt

i) + s(t), (3)

3. Location update judgment. The brightness of the firefly at the new position is calculated. If the
brightness of the firefly is brighter, the firefly’s position will be updated, otherwise, it will not
be updated.

4. Algorithm iteration. According to steps (2)–(4), fireflies will be updated through multiple flights
until the maximum number of iterations is reached, and one or more firefly clusters will eventually
be formed. The coordinates of the brightest firefly represent the optimal solution that the algorithm
finds in this space.

After clarifying the problem of the standard firefly algorithm, this paper proposes some improved
measures for the shortcomings of FA.

2.1.2. Improved Firefly Algorithm

In order to solve the problem of early convergence and local extremum, this paper proposes
an improved firefly algorithm (IFA). The main idea of the improved strategy is as follows:

1. Firefly’s update efficiency is improved. When the step size is updated, a fixed distribution step
size is used in the classical algorithm. The updated strategy is consistent at different stages of
the algorithm. Therefore, it was decided to introduce a step size range to limit the uniform
distribution, so that the step size range will decrease as the number of updates increase. In the
early stage, the firefly update step size is larger and rapid iterations are performed. As the
iterations increase, the firefly update step size becomes smaller, which enhances the local search
capability, and finally achieves the purpose of optimizing the algorithm. The updated step
method of IFA is as follows:

s(t) = st
· εt
·

(
cos

(
πt

tmax

)
+ 1

)
, (4)

2. The self-search ability of the local optimal firefly is improved. Because all firefly individuals only
fly to fireflies which are brighter than themselves, the brightest individual in the group does not
move, but there is no guarantee that the individual is in the optimal position. In response to such
problems, the firefly in the optimal position is randomly searched in an adaptive circle centered on
itself and the radius gradually decreases as the number of iterations increases. If the brightness of
the firefly is brighter in the new location, the coordinates of the firefly will be updated, otherwise
it is not updated, Therefore, the self-search ability of fireflies to the surrounding environment has
been improved, and fireflies can jump out from the local optimal position. The optimal firefly
self-search update formula is as follows:

xt+1
i = xt

i +
t
· cos

(
πt

2tmax

)
· εt, (5)

where the t
· cos

(
πt

2tmax

)
represents the self-searching range of the optimal firefly at the t-th iteration.

The optimized firefly algorithm implementation process is shown Figure 1.
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2.1.3. Simulation Analysis

In order to verify the superiority of IFA, this paper selects 8 standard test functions to test standard
FA, LFA and IFA, respectively, as shown in Table 1.

Table 1. Standard test functions.

Function
Name Dimension Independent Variable

Value Range Function Formula Theoretical
Value

f 1 Ackley 2 [−32.768, 32.768]
f (x) = −20 exp

−0.2

√
1
d

d∑
i=1

xi
2


− exp

(
1
d

d∑
i=1

cos(2πxi)

)
+ exp(1)

f min = 0

f 2
Cross in

Tray 2 [−10, 10]
f (x) = −0.0001(t + 1)0.1

t =

∣∣∣∣∣∣∣sin(x1) sin(x2) exp


∣∣∣∣∣∣∣100−

√
x2

1+x2
2

π

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣ f min = −2.06261

f 3
Drop
Wave 2 [−5.12, 5.12] f (x) = −

1+cos
(
12

√
x2

1+x2
2

)
0.5(x2

1+x2
2)+2

f min = −1

f 4 Griewank 2 [−600, 600] f (x) =
d∑

i=1

x2
i

4000 −
d∏

i=1
cos

(
xi√

i

)
+ 1 f min = 0

f 5 Levy 13 2 [−10, 10]
f (x) = sin2(3πx1) + (x1 − 1)2

[
1 + sin2(3πx2)

]
+(x2 − 1)2

[
1 + sin2(2πx2)

] f min = 0

f 6 Rastrigin 2 [−5.12, 5.12] f (x) = 10d +
d∑

i=1

[
x2

i − 10 cos(2πxi)
]

f min = 0

f 7 Booth 2 [−10, 10] f (x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2 f min = 0

f 8

Three
Hump
Camel

2 [−5, 5] f (x) = 2x2
1 − 1.05x4

1 +
x6

1
6 + x1x2 + x2

2
f min = 0
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The unified maximum iteration number is set to 200, absorption coefficient γ = 1, initial step size
s = 0.5, initial attraction β0= 1, and the number of random fireflies is 20. The test experiments are
conducted 30 times for each algorithm, and the best value, the best value variance and the average
running times are recorded. The iteration curves are shown in Figure 2, and the simulation results are
shown in Tables 2 and 3.

Table 2. Comparison of optimal values and variance. FA: firefly algorithm.

Function
Parameter Optimal Value Optimal Value Variance

FA LFA IFA FA LFA IFA
f 1 1.02 × 10−4 0.00452104 5.92 × 10−4 0.97116936 0.13558556 1.83 × 10−5

f 2 −2.06261 −2.06261 −2.06261 6.21 × 10−6 2.18 × 10−7 3.43 × 10−13

f 3 −1.00 −0.999951 −0.999984 0.0280539 8.28 × 10−4 9.32 × 10−4

f 4 7.79× 10−8 2.45× 10−5 7.11 × 10−8 1.37 × 10−5 1.33 × 10−5 1.36 × 10−5

f 5 1.83 × 10−7 3.24 × 10−5 2.80 × 10−8 0.858863 9.74 × 10−4 2.31 × 10−11

f 6 7.60 × 10−5 0.001572 1.94 × 10−7 1.33 0.15732 0.0329
f 7 2.80 × 10−8 3.57 × 10−5 1.73 × 10−7 0.010723 0.006544 2.11 × 10−11

f 8 6.35 × 10−8 8.27 × 10−6 3.36 × 10−7 0.005363 3.27 × 10−6 1.42 × 10−8

Table 3. Comparison of average running time.

Function
Parameter The Average Operation Time (s)

FA LFA IFA
f 1 0.2729 0.2769 0.2608
f 2 0.2659 0.2631 0.240933
f 3 0.24796 0.2591667 0.2313333
f 4 0.258367 0.252167 0.247967
f 5 0.255033 0.2588 0.230233
f 6 0.261667 0.269767 0.233567
f 7 0.2536 0.259767 0.2281
f 8 0.270467 0.258633 0.2308
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Figure 2. Iteration curves for the improved firefly algorithm (IFA), Levy-flight Firefly Algorithm (LFA),
firefly algorithm (FA): (a) Iterative curve of function f 1; (b) Iterative curve of function f 2; (c) Iterative
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As shown in Figure 2, the IFA algorithm proposed in this paper has achieved good results in the
search for the global optimal process in different test functions, and the convergence speed is the fastest.
IFA has a stronger ability to jump out of local optimality than the other two algorithms. As shown in
Table 3, the accuracy of the optimal output value of IFA is higher, which basically belongs to the same
level as the FA algorithm, and the accuracy of LFA optimal value search is lower. From the perspective
of variance values, the variance values of the IFA algorithm are much smaller than those of the FA
algorithm and LFA, indicating that the IFA algorithm is very stable and has a very high robustness.
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As shown in Table 4, the operation time of the IFA algorithm is the shortest. In summary, the IFA
algorithm has achieved the best results in terms of convergence speed, calculation accuracy, robustness,
and calculation speed, and is particularly prominent in terms of robustness and calculation speed.

Table 4. The configuration and parameters of processing platform.

Type Parameter

System Windows10 (64bit)
Central processing unit (CPU) AMD Ryzen 5 3500 u 2.10 GHz

Random access memory (RAM) 16 GB
Read only memory (ROM) SSD (512 GB)

Matlab version 2019b

2.2. Principle of Wavelet Threshold Denoising

The current commonly used image denoising methods include median filtering, bilateral
filtering [24], Block-Matching 3-Dimension (BM3D) [25], wavelet threshold denoising [26], etc. In the
method of wavelet threshold image denoising, the key is to calculate the appropriate wavelet threshold.
If the selected threshold is too large, the removed information will contain noise and valid information,
which will reduce the imaging quality. Conversely if the threshold is too small, the noise in the image
cannot be removed clearly. The noise in the image mainly comes from the electromagnetic wave
interference from the environment and the photoelectric, mechanical, material, circuit and other noise
of the imaging system. Assuming that the noise of the image is independent of the original image,
the noise can usually be divided into additive noise and multiplicative noise:

Yi j = Xi j · δ+ Np, (6)

where Xij is noise-free image; Yij is noisy images; δ is multiplicative noise and Np is additive noise.
For a noisy image, the additive and multiplicative noises in the image need to be filtered to

obtain a noise-free image. Wavelet transform can decompose the image on multiple scales, which is
more conducive to separating noise. Therefore, wavelet transform has great advantages in removing
image noise.

2.2.1. Wavelet Threshold Denoising

The definitions of continuous wavelet transform and inverse transform are as follows:

WT(a, b) =
1
√

a

∫ +∞

−∞

x(t) ·ψ
(

t− b
a

)
dt, (7)

x(t) =
1

Cϕ

∫ +∞

−∞

∫ +∞

−∞

WT(a, b)ψa,b(t)
2

a−2dadb, (8)

where Cϕ =
∫
|ψ(w)|

2

|w| dw < +∞, x(t) stands for the image to be processed, ψ(t) represents the wavelet
function, a is expansion coefficient, b is translation value.

In fact, the continuous wavelet transform theory is mainly used in theoretical research. In practical
application, the scale parameter a and translation parameter b need to be discretized. Normally, a = a j

0,

a = kb0a j
0, and a0 > 1, b0 > 0, j and k are rounded. The definition of discrete wavelet is as follows:
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ϕ j,k =
1√
a j

0

ϕ

 t− kb0a j
0

a j
0

 = a− j/2
0 ϕ

(
a− j

0 t− kb0
)

(9)

The corresponding discrete wavelet transform is as follows:

WT( j, k) = a− j/2
0

∫ +∞

−∞

T(t)ϕ j,k(t)dt = a− j/2
0

∫ +∞

−∞

T(t)ϕ
(
a− j

0 t− kb0
)
dt (10)

In practical application, the commonly used discrete method is to discretize a and b, so a0 = 2,
b0 = 1. The discrete wavelet is as follows:

ϕ j,k(t) = 2− j/2ϕ
(
2− j/2t− k

)
(11)

Since the image is a two-dimensional spatial signal, it is necessary to extend one-dimensional
wavelet transform into two-dimensional wavelet transform.

The wavelet threshold image denoising process is as follows:

(1) Wavelet transform. For noisy images, we select a suitable wavelet function, and use the wavelet
function to perform multi-layer decomposition of noisy images through wavelet transform to
obtain a set of wavelet coefficients.

(2) Non-linear threshold. According to the characteristics of the noise in the noisy image,
an appropriate noise threshold is selected through a threshold function, and the wavelet coefficients
of the noise part in the high-frequency decomposition value are reset to zero. Commonly used
threshold functions are hard threshold function, soft threshold function and semi-soft threshold
function. The hard threshold function is given as follows:

W j,k =

 W j,k ,
∣∣∣W j,k ≥ τ

∣∣∣
0 ,

∣∣∣W j,k < τ
∣∣∣ . (12)

The soft threshold function is as follows:

W j,k =

sgn
(
W j,k

)(∣∣∣W j,k
∣∣∣− τ) ,

∣∣∣W j,k ≥ τ
∣∣∣

0 ,
∣∣∣W j,k < τ

∣∣∣ . (13)

The semi-soft threshold function is as follows:

W j,k =

sgn
(
W j,k

)∣∣∣W j,k
∣∣∣− τ+ 2τ

1+e
2Wj,k/τ ,

∣∣∣W j,k ≥ τ
∣∣∣

0 ,
∣∣∣W j,k < τ

∣∣∣ . (14)

where W j,k is wavelet shrinkage coefficient; W j,k is wavelet coefficient; sgn() stands for the symbolic
function and τ is the wavelet threshold.

(3) Inverse wavelet transform to reconstruct the image. The processed wavelet estimation coefficients
are subjected to inverse wavelet transform to obtain a noise-removed image.
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In this paper, an improved firefly algorithm is used to search the optimal wavelet threshold of the
denoised image in the global range through iterative optimization to improve the denoising effect of
the denoising algorithm. The wavelet coefficients processed by the hard threshold function will have
a discontinuous function near the threshold, the wavelet coefficients processed by the soft threshold
function are prone to deviation, resulting in blurred edges. Therefore, the semi-soft threshold function
is used to process the wavelet threshold searched by the improved firefly algorithm.

2.2.2. WTD-IFA

Combining IFA and wavelet threshold denoising algorithm (WTD), an adaptable wavelet threshold
infrared image denoising algorithm (WTD-IFA) is proposed. For swarm intelligence algorithms, it is
necessary to establish a fitness function to evaluate the quality of the denoising effect. In this paper,
the purpose of denoising the infrared image is to decompose the infrared image containing noise
into a noise signal and a relatively pure image signal. It is generally believed that the smaller the
correlation between the noise signal and the image signal, the better, so the reconstructed correlation
coefficient between the image and the noise signal separated by denoising is used as a fitness function.
The purpose of decomposing the image to remove noise is achieved by reducing the value of the fitness
function. The fitness function is as follows:

frn = corr(R, N), (15)

where the frn stands for the correlation coefficient between the reconstructed image and separated
noise signal; R is the reconstructed image and N is the separated noise signal.

The filter realization process based on WTD-IFA is as follows:

(1) Wavelet decomposition. Wavelet transform is used to decompose the infrared image with noise.
(2) Threshold initialization. Initializing the IFA threshold and initializing the firefly position

(wavelet threshold).
(3) The wavelet coefficients contract. Equation (6) is used to calculate the wavelet contraction

coefficient, and the image is reconstructed based on the wavelet contraction coefficient.
(4) Firefly algorithm iteration. The fitness of the reconstructed image is calculated according to

Equation (12). If the iteration number of the firefly algorithm is greater than 1, it is judged whether
the fitness of the firefly is better than the fitness of the original position. If yes, the firefly position
is updated, otherwise, the firefly position is kept unchanged. If the image fitness result meets the
termination condition, execute step (6), otherwise execute step (5).

(5) Firefly location update. Based on the firefly’s current fitness value and the IFA’s location update
rules, the firefly’s new location is calculated. Then go to step (3).

(6) Image reconstruction. The image is reconstructed using the global optimal wavelet threshold
searched by WTD-IFA.

The flowchart of the WTD-IFA algorithm is shown in Figure 3.
In this paper, the wavelet basis function is sym4, and the noisy image is decomposed by 5-level

2D static discrete wavelet transform.
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2.3. Image Segmentation and Feature Extraction

2.3.1. Otsu-Grabcut Algorithm

At present, the most widely used image segmentation algorithm is the threshold segmentation
algorithm, which includes global threshold segmentation and local threshold segmentation. The Otsu
method, also known as the maximum between-class variance method, was proposed by the Japanese
scholar Otsu [27] in 1979. The original Otsu is an adaptive global threshold segmentation method.
The algorithm calculates the best threshold in the image and improves the image. The distinction
between the background and target pixels is maximized, so as to achieve the purpose of extracting
the target in the image. However, for infrared images, the grayscale distribution of the image
is more complicated, and the traditional Otsu method is not good at segmentation. Therefore,
some scholars have proposed an improved Otsu algorithm based on a two-dimensional histogram.
As the horizontal axis, the average gray value of the neighboring pixels is used as the vertical axis
to form a two-dimensional histogram. When searching for the threshold, the spatial correlation
information of the image is fully used. Therefore, the algorithm has a good segmentation effect for
infrared images.
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The Otsu algorithm based on the two-dimensional histogram uses the neighborhood deviation
m(x, y) to represent the deviation between the gray value of the pixel and the average gray of the
neighborhood. The calculation formula is shown as follow:

m(x, y) =

√∣∣∣ f (x, y) − v(x, y)
∣∣∣

v(x, y)
, (16)

where f (x, y) is the gray value of pixels, v(x, y) is the average gray level of all pixels in the neighborhood
with (x, y) as the center pixel.

However, the segmented image is a binary image, and a lot of information in the original image
is lost. Therefore, a new algorithm combining the two-dimensional Otsu algorithm and Grabcut
extraction algorithm is proposed to process the infrared image.

2.3.2. Grabcut Algorithm

Grabcut is a graph-based segmentation method, which is an improvement to the Graphcut
algorithm [28]. The Grabcut algorithm is based on the Red-Green-Blue (RGB) three-channel mixed
Gaussian model. It only needs to confirm the foreground and background in the image to complete the
segmentation between the foreground and background. The Otsu algorithm can calculate the edge of
the infrared image and determine the foreground in the image, that is, the detection target. Using the
coordinate range of the target in the binary map calculated by the Otsu algorithm as the foreground input
in the Grabcut algorithm, the original image can be segmented. The Grabcut algorithm needs to manually
circle the foreground target, and it can cover a small amount of background information within the range.

The Grabcut algorithm uses a Gaussian mixture model to build a data model for the background and
foreground regions. Assuming that there are N pixels in the figure, the points selected in the frame are first
regarded as the target pixel Pt belongs to the foreground Gaussian mixture model, and the points outside
the frame are regarded as the background pixel Pb belongs to the background Gaussian mixture model,
calculated for each pixel The Gaussian components corresponding to other pixels are stored in the vector k
= (k1, k2, . . . , kN), and each pixel corresponds to a unique Gaussian component. When the pixel belongs to
the front scenic spot, let = 0; when the pixel belongs to the background spot, let = 1, the algorithm continues
to iterate until the energy E reaches the minimum to obtain the current segmentation boundary.

2.3.3. Otsu-Grabcut Image Segmentation Algorithm

In order to get a better automatic image segmentation effect, the Otsu and Grabcut algorithm
are combined to propose the Otsu-Grabcut image segmentation algorithm. First, we use the Otsu
algorithm to identify the edge of the target in the infrared image and record the coordinates of the
target edge pixel. Then the coordinates of the image target are input into the Grabcut algorithm to
complete the segmentation of the infrared image. The segmentation result of Otsu-Grabcut algorithm
is shown in Figure 4. The key part of the infrared image is segmented, and the pipes and valves in the
image are extracted, and the irrelevant background is removed completely.
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2.4. Image Feature Extraction

2.4.1. Histogram of Oriented Gradient (HOG)

In image recognition, the histogram of oriented gradient (HOG) can be used to describe the
characteristics of the image. This method calculates the statistics of the pixel distribution in the target
image, and uses the gradient distribution characteristics and directional density distribution of the
pixel values in the figure to describe the texture and boundary in the image. The calculation method of
HOG features is as follows:

For color images, it is necessary to first perform gray processing and gamma correction on the
gray images, which is helpful to reduce the influence of uneven distribution of light intensity and noise
on texture features in the image.

(1) Calculation of pixel distribution gradient. Common forms of simple convolution are [−1,0,1]
and [−1,0,1]T. Convolution calculation is performed on the preprocessed image to generate
two orthogonal gradient components, and the gradient direction of each pixel can be calculated
according to the component. The calculation formula is shown as follow:

G(x, y) =
√

Gx(x, y)2 + Gy(x, y)2

M(x, y) = tan−1
(
Gy(x, y)/Gx(x, y)

)
Gx(x, y) = H(x + 1, y) −H(x− 1, y)
Gy(x, y) = H(x, y + 1) −H(x, y− 1)

(17)

where G(x, y) is the gradient amplitude of the pixel, M(x, y) is the gradient direction of the pixel,
Gx(x, y) is the horizontal gradient of the pixels, Gy(x, y) is the vertical gradient of the pixels, H (x, y)
is the gray value of the pixel.

(2) Cell unit division and gradient direction histogram calculation. First, we divide the image into
cells of the same size, generally set to 8 × 8 pixels, and limit the gradient direction to [0, π].
The gradient direction is evenly divided into 9 intervals, and the gradient value of each pixel in
the cell unit is weighted and projected in the histogram. The gradient direction histogram of the
cell unit is generated, and each interval corresponds to a one-dimensional feature vector.

(3) HOG feature vector calculation. In the image, the four cells in the cube are combined into a block,
and the block corresponds to a total of 36-dimensional feature vectors. In order to reduce the
influence of the local illumination on the image on the feature vector, all the calculated feature
vectors are normalized and combined to generate the HOG feature vector of the entire image.

2.4.2. Gray-Level Co-Occurrence Matrix (GLCM)

Gray-level Co-occurrence Matrix (GLCM) is a statistical method proposed by R. Haralick et al. [29]
in the 1970s. It assumes that the texture features in the image can be described using the positional
relationship between different pixels. GLCM can count the frequency distribution of two grayscale
values in a specified space, and express the contrast and variance of pixels in the image. Definition
of the gray value of any point (x, y) in the point image is (g1, g2), and different coordinates in the
image have different gray values. Assuming that there are k types of gray value levels, the number
of gray value combinations at any point (x, y) is k2. The number of occurrences of each gray value
in the image is counted, and the probability P(g1, g2) of the corresponding gray value is calculated.
The probability P is arranged in a square matrix, which is the gray level co-occurrence matrix. Suppose
there is another point (x + a, y + b) in the figure, usually let (a, b) be (1, 0), (1, 1), (0, 1), (−1, 1) and
other positive or negative values, then the joint gray level co-occurrence matrix of the two pixels in the
image in four directions can be calculated. Therefore, the GLCM of the image contains the complex
texture information such as the direction, spacing distance, and difference between the pixels, so it can
be used to analyze the local features in the image and their arrangement rules.
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HOG can express edge information such as gradient information and direction density of pixels
in an image, while GLCM can obtain texture information such as the direction, separation distance,
difference amplitude and the difference between image pixels. Therefore, HOG and GLCM are used
for image feature extraction, and the feature vectors are added as the final feature vector of the image.

2.5. Support Vector Machine Based on IFA

2.5.1. Support Vector Machines

Support Vector Machine (SVM) is a supervised learning binary classification model [30].
For nonlinear classification problems, the data are transformed into a high-dimensional space through
nonlinear changes, and the optimal separation hyperplane is calculated in the high-dimensional space,
and the data are classified.

The kernel function k is usually used to project the input data features into the high-dimensional
feature space. The commonly used kernel function is radial basis function, as Equation (15). It has the
ability to map samples to a higher dimensional space, can handle the non-linear relationship between
different labels and features, and has high anti-interference ability. It requires fewer parameters to be
set, which is simple and easy to use. Therefore, in this paper, the Gaussian radial basis kernel function
is selected as the basis function of the support vector machine. The radial basis function needs to select
the two main parameters of the penalty factor C and the radial basis kernel function parameter γ,
which has a greater impact on the training and test errors of the support vector machine. Therefore,
IFA is used to optimize these two parameters.

Gaussian radial basis kernel function:

k
(
→
xi,
→
x j

)
= exp

(
−γ‖

→
xi −

→
x j‖

2)
(18)

φ
(
→
x
)

represents the feature vector in the high-dimensional space map after
→
x is transformed by

the kernel function. In this feature vector, the form of the hyperplane is as follows:

f (x) = ωTφ
(
→
x
)
+ b (19)

The optimal constraint:

min
ω,b

1
2
‖ω‖2s.t.yi(ω ·φ(xi) + b) ≥ 1(i = 1, 2, · · · , N) (20)

Use Lagrange operator to calculate, and finally get the optimal hyperplane formula:

f (x) =
N∑

i=1

αiyiφ
(
x j

)
+ b =

N∑
i=1

αiyik
(
→
xi,
→
x j

)T
φ
(
x j

)
+ b (21)

2.5.2. The Pipeline Leak Recognition Method Based on SVM and IFA

Based on above algorithms, a novel pipeline leak recognition method based on SVM and IFA is
proposed, and the flow is shown as Figure 5.

(1) Data set acquisition. The data set is acquired and labeled, and the data set is divided into a training
data set and a test data set.

(2) Data preprocessing and feature extraction. The acquired data are preprocessed, and appropriate
feature extraction methods are used to extract the features of the data.

(3) Training and establishment of support vector machine model. Support vector machines are
trained according to the extracted data features, and IFA is used to optimize the kernel function
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parameters of the SVM, and the optimal hyperplane of the corresponding data are found by
calculating the training data.

(4) Test data classification and result analysis. The test data are classified and tested by the support
vector machine, and the test results are generated. The model is analyzed as to whether it can
achieve a better classification effect.
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3. Results and Discussion

3.1. Experimental Platform Construction

In order to verify the feasibility and practicability of the air compressor pipeline leak identification
system, an experimental system is built in the air compressor room of Sanmenxia Longwangzhuang
Coal Industry Co., Ltd. The tests are conducted on five working conditions, including normal pipeline,
leaking pipeline, worn pipeline, normal valve and leaking valve. The layout of the test bench is shown
in Figure 6 and the captured infrared images are shown in the Figure 7.
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3.2. Infrared Image Denoising Experiments

The configuration and parameters of the processing platform of the identification system are
shown in Table 4, and the model and main parameters of the infrared camera are shown in Table 5.

Table 5. Parameters of online thermal imaging camera.

Type Parameter

Infrared camera brand
Detector type

Juge Electronics
Uncooled focal plane

Wavelength range 7.5–14 µm
Pixels 384 × 288

Frame rate 50 Hz
Operating temperature −30~60 ◦C

Temperature measurement range 0–300 ◦C
Temperature measurement accuracy 2 ◦C

focal length 10 mm
Angle of view 37.4◦ × 28◦

Angular resolution 1.7 mrad

The WTD-IFA algorithm and the remaining five different denoising algorithms are used to
denoise the infrared image and denoising results are shown in Figure 8, where FOA refers to fruit fly
optimization algorithm. In order to evaluate the denoising effect more objectively, the information
entropy of the image and the energy gradient function of the image are used as evaluation indicators.
The information entropy of the image is a feature statistical form, which reflects the average amount
of information in the image, so the entropy can be used as a focus evaluation standard. In general,
the higher the entropy is, the clearer the image will be. The energy gradient of the image accumulates
all pixel gradient values as definition evaluation values, so the larger the energy gradient value is,
the clearer the image will be. The results of the denoising evaluation are shown in Tables 6 and 7.

It can be seen from Table 6 that the Block-Matching 3-Dimension (BM3D) algorithm obtains
the maximum entropy value of image information, and the WTD-IFA proposed in this paper is
closely followed by it, with suboptimal results. The median filtering algorithm causes the information
entropy of the image to drop, the remaining algorithms increase the information entropy of the image.
The denoising effects of the three adaptive algorithms based on wavelet threshold are similar, and the
improved WTD-IFA algorithm in this paper can achieve better results.
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Another evaluation index selected in this paper is the energy gradient function of the image and
the comparison results are shown in Table 7. The top three algorithms are BM3D, bilateral filtering
and the algorithm proposed in this paper, and the image energy gradient of the three algorithms is
obviously superior to other algorithms. The denoising effect of the bilateral filtering algorithm is
similar to that of the three adaptive algorithms based on the wavelet threshold. The median filtering
with the poor denoising effect cannot meet the system requirements. In contrast, the BM3D algorithm
has the best denoising effect.
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Table 6. Information entropy of denoising images.

Method

Parameter Image Information Entropy
Normal
Pipeline

Leaking
Pipeline

Worn
Pipeline

Normal
Valve

Leaking
Valve

Noisy image 6.70 6.39 6.56 5.99 6.53
Median filtering 6.55 6.25 6.42 5.82 6.39
Bilateral filtering 7.04 6.76 6.98 6.33 6.87

BM3D 7.92 7.69 7.88 7.34 7.77
WTD-FA 7.08 6.82 7.02 6.38 6.92

WTD-FOA 7.08 6.82 7.03 6.38 6.91
WTD-IFA 7.10 6.83 7.04 6.39 6.92

Table 7. Energy gradient of denoising images.

Method

Parameter Image Information Entropy
Normal
Pipeline

Leaking
Pipeline

Worn
Pipeline

Normal
Valve

Leaking
Valve

Noisy image 20.37 21.18 20.02 21.91 21.21
Median filtering 22.96 22.81 22.74 23.86 22.95
Bilateral filtering 25.84 24.91 25.59 25.67 24.67

BM3D 26.34 25.95 26.00 25.84 25.84
WTD-FA 24.04 23.39 23.97 23.96 23.52

WTD-FOA 23.99 23.35 23.90 24.33 23.45
WTD-IFA 25.44 24.26 24.15 24.44 24.20

In order to better prove the superiority of the algorithm, this paper records the processing time
of the algorithm mentioned, as shown in Table 8. Combined with the results of Tables 6 and 7, it is
concluded that BM3D algorithm has obtained the optimal results in terms of information entropy and
energy gradient, but its processing time is longer. The algorithm proposed in this paper has the same
processing time as other algorithms, and has achieved excellent results in the indicators of information
entropy and gradient, which is more competitive than other comparison algorithms in solving image
denoising problems.

Table 8. Denoising time of infrared images.

Method

Parameter Image Information Entropy
Normal
Pipeline

Leaking
Pipeline

Worn
Pipeline

Normal
Valve

Leaking
Valve

Median filtering 1.0989 1.0479 1.0426 1.0575 1.0632
Bilateral filtering 1.8838 2.0553 2.1209 2.0259 2.2391

BM3D 14.7613 17.3301 17.3533 15.0779 17.3111
WTD-FA 1.0848 1.1081 1.2193 1.1766 1.2209

WTD-FOA 1.1856 1.2467 1.2375 1.2531 1.2738
WTD-IFA 1.0839 1.1192 1.1205 1.1784 1.3218

In summary, the WTD-IFA algorithm proposed in this paper has a good denoising effect and a fast
running speed, which can meet the requirements of pipeline compressor air leak identification systems.

3.3. SVM Classification Experiment Results

In order to verify the effectiveness of the proposed method, infrared images in the five working
conditions of the normal pipeline, leaking pipeline, worn pipeline, normal value and leaking valve are
collected, respectively. In each working conditions, 180 frame infrared images were selected to be used
as SVM training samples, and 120 frame infrared images were selected to be used as SVM test samples.
In addition, the genetic algorithm [31,32], particle swarm optimization [33,34] and IFA are used to
optimize the two key SVM parameters of the penalty factor C and radial basis kernel function to verify
the optimization performance of IFA. The classification recognition results are shown in Tables 9–12.



Appl. Sci. 2020, 10, 5991 20 of 22

Table 9. Genetic algorithm optimization classification confusion matrix.

Reality
prediction Normal

Pipeline
Leaking
Pipeline

Worn
Pipeline

Normal
Valve

Leaking
Valve

Normal pipeline 19 0 1 0 0
Leaking pipeline 1 15 4 0 0

Worn pipeline 0 1 19 0 0
Normal valve 0 0 0 20 0
Leaking valve 0 0 0 2 18

Table 10. Particle swarm algorithm optimization classification confusion matrix.

Reality
prediction Normal

Pipeline
Leaking
Pipeline

Worn
Pipeline

Normal
Valve

Leaking
Valve

Normal pipeline 19 0 1 0 0
Leaking pipeline 0 17 3 0 0

Worn pipeline 0 2 18 0 0
Normal valve 0 0 0 20 0
Leaking valve 0 0 0 1 19

Table 11. IFA optimization classification confusion matrix.

Reality
prediction Normal

Pipeline
Leaking
Pipeline

Worn
Pipeline

Normal
Valve

Leaking
Valve

Normal pipeline 20 0 0 0 0
Leaking pipeline 0 18 2 0 0

Worn pipeline 0 1 19 0 0
Normal valve 0 0 0 20 0
Leaking valve 0 0 0 1 19

Table 12. Overall recognition results based on SVM with different algorithms.

Intelligent Algorithm Image Classification
Prediction Accuracy

Single Image Processing
Average Time

Genetic algorithm 91.00% 2.2068
Particle swarm optimization 93.00% 2.5009

IFA 96.00% 2.3518

It can be seen from the Tables 9–12 that the infrared image is easy to be confused under the two
working conditions of leakage pipeline and worn pipeline and the image of the leaking valve is easily
erroneously recognized as a normal valve image. In the comparison of the above three optimization
algorithms, the support vector machine optimized by IFA has the highest classification accuracy of
96.00%, and the average processing classification time of a single image is 2.35 s, which can meet the
recognition requirements of the system.

4. Conclusions

In this paper, a novel intelligent diagnosis method based on the integration of IFA, the adaptive
wavelet threshold denoising algorithm, Otsu-Grabcut image segmentation algorithm, HOG-GLCM
feature extraction algorithm and SVM is proposed to recognize the leak state of a compressor pipeline.
In the proposed method, an improved FA is designed to optimize the parameters of the WTD algorithm
and SVM, respectively. The obtained WTD-IFA is used to denoise the infrared images, the Otsu-Grabcut
algorithm is introduced to segment the images, and the HOG-GLCM is utilized to achieve feature
extraction. Then, an optimal SVM classifier is constructed to produce the intelligent diagnosis of
pipeline leak. In order to evaluate the effectiveness of the proposed method, an experimental system
is built and the images under five different working conditions are collected. Some simulations and
experiments are provided. The results indicate that the WTD algorithm based on IFA has a better
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denoising effect on infrared images. The average recognition accuracy of SVM with IFA can reach up
to 96% and the results verify the feasibility and superiority of the proposed method.
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