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Abstract: A mode-matching formulation is presented and used to analyze the dispersion properties
of twist-symmetric transmission lines. The structures are coaxial lines periodically loaded with
infinitely thin screens, which are rotated with respect to each other to possess twist symmetry.
The results obtained using the proposed formulation are in good agreement with those of commercial
simulators. Furthermore, using the presented mode-matching formulation, it is demonstrated that
the propagation characteristics in the twist-symmetric structures are linked to the scattering and
coupling of the higher order modes. The physical insight offered by this analysis is valuable for the
design of various electromagnetic devices, such as filters, antennas, and phase-shifters.
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1. Introduction

Periodic structures have been extensively used to engineer the desired electromagnetic response
in a wide range of devices; for instance, filters [1], frequency selective surfaces [2], antennas [3],
absorbers [4], and lenses [5]. However, the usefulness of periodic structures is often limited by their
inherent frequency dispersion, as well as their relatively low effective refractive index. Recently, it was
demonstrated that the introduction of higher symmetries into a periodic structure can alleviate
these limitations. A periodic structure is said to possess a higher-symmetric if it is invariant after
a translation and an additional geometrical operation [6–9]. Consequently, the translational unit cell
of a higher-symmetric structure can be divided into ξ sub-unit cells, where ξ is the (entire) order of
the symmetry. The translational period of the higher-symmetric structure is then given by p = δξ,
where δ is the size (period) of the sub-unit cell. A generalized Floquet theorem was presented in [9],
stating that the Bloch modes in a higher-symmetric structure are eigenmodes to both the translation
operator of the unit cell, Tp, and the compound operator applied to the sub-unit cell, Cδ. The most
relevant result of this theorem is that it suffices to analyze the sub-unit cell of a higher-symmetric
structure, which can significantly reduce the required computational resources. A direct consequence
of the existence of ξ sub-unit cells within a unit cell is the absence of band gaps between the first
ξ modes of the structure [10]. Mainly, two types of higher symmetries have been investigated for
electromagnetic purposes: glide- and twist-symmetries. The additional geometrical operation in a
glide and twist-symmetric structure is a mirroring in a plane and a rotation around an axis, respectively.
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A glide symmetry is inherently of order ξ = 2, while a twist symmetry can have higher orders, ξ ≥ 2,
as happens for the four-fold twist-symmetric structure illustrated in Figure 1.

2𝜋/𝜉

Figure 1. Illustration of a twist symmetry of order ξ = 4. The angle of the consecutive rotation here
is π/2.

Recent studies of glide-symmetric structures have demonstrated the absence of the stop-band
between the first and second modes [11,12]. Additionally, it has been demonstrated that glide-symmetric
structures are less dispersive [12,13] and can provide a higher effective refractive index [13–16],
effective permeability [17], and level of anisotropy [18], compared to their non-glide counterparts.
These properties have been used to design planar lenses in [13,19–22]. Furthermore, while the stop-band
between the first two modes is suppressed in glide-symmetric structures, a large stop-band exists at
higher frequency [23–25]. This stop-band has been used to design low-cost gap waveguides [26] and
filters [27] and to reduce the leakage between waveguide flanges [28,29]. These attractive properties
have inspired the development of several semi-analytical methods for the analysis of glide-symmetric
structures using circuit models [25,30,31], mode-matching [32–35], or the multimode transfer-matrix
approach [36–38]. These methods provide a fast means of studying glide-symmetric structures and give
insight into the physics of glide symmetry.

Similar properties have been demonstrated in twist-symmetric structures. However, since the order
of the twist symmetry can be changed, an increased control of the electromagnetic response is enabled,
compared to translational and glide-symmetric structures. For instance, the absence of stop-bands
between the first ξ modes (ξ ≥ 2) was demonstrated in [31,39–41]. Additionally, reduced frequency
dispersion and an increased effective refractive index in twist-symmetric structures were demonstrated
in [41]. These properties have been used to design twist-symmetric filters [40], phase-shifters [42],
miniaturized helix antennas [43], lenses [44], and polarization filtering optical fibers [45]. Furthermore,
in [42], a close relation between the twist symmetry and the existence of a broad pass-band was found
in periodically loaded cylindrical waveguides. However, despite the numerous interesting properties
of twist symmetries, to the authors’ knowledge, only one work was aimed at providing physical insight
into twist symmetries [46]. There, the multimode technique was employed to demonstrate that the
coupling of the higher order modes is important to explain the different response in twist-symmetric
structures with respect to non-twist-symmetric structures.

In the present work, a mode-matching formulation is presented for the dispersion analysis of
periodically loaded coaxial transmission lines with twist symmetries. The formulation is validated
using the commercial software CST Microwave Studio [47] and is used to provide new insights into
the physics of twist symmetries. Specifically, we build on the study in [46], and we discuss in detail
how the different higher order coaxial line modes (TMand TE) are linked to the order of the twist
symmetry. Furthermore, it is demonstrated that the importance of the different coaxial line modes
changes across the pass-band.
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2. Problem Formulation

2.1. Description of the Analyzed Structures

The translational unit cells of the structures considered in this work are illustrated in Figure 2.
They consist of a coaxial transmission line periodically loaded with infinitely thin sectorial metallic
screens. The geometrical operation (in cylindrical coordinates) applied to the sub-unit cell describing
the structure is given by:

Sδ =


ρ → ρ

ϕ → ϕ + 2π/ξ

z → z + δ

(1)

where ρ, ϕ, and z are the cylindrical coordinates, and ξ is 2, 3, and 4 in Figure 2a–c, respectively.
The structure in Figure 2d is the conventional periodic case. The radius of the inner and outer
conductor of the coaxial is ri and ro, and the radius and opening angle of the screen are rs and α.
In [39], an alternative definition of the twist operator was used. However, the definition (1) ensures
that the structures differ only by a mutual rotation between adjacent screens and is therefore used in
the present work.

(a) (b) (c) (d)
Figure 2. Analyzed periodically loaded coaxial transmission lines: (a) 2-, (b) 3-, and (c) 4-fold
twist-symmetric structures and (d) conventional periodic structure.

2.2. Enforcement of Symmetry and Periodicity

Due to the higher-symmetric in the structures, the generalized Floquet theorem [9] is used
to analyze them. Therefore, only one sub-unit cell needs to be considered. The longitudinal and
transversal cross-sectional views of the sub-unit cell are shown in Figure 3.

𝑎𝑣
+

𝑎𝑣
−

𝑏𝑣
+

𝑏𝑣
−

𝑧 = 0

𝛿

(a) (b)
Figure 3. Cross-sectional views of the sub-unit cell in the: (a) longitudinal plane and (b) transversal
plane at the position of the screen.

It should be noted that, for the conventional periodic structure, the sub-unit cell is also the unit
cell. The amplitudes of the coaxial line modes at Sides 1 and 2 of the sub-unit cell are referred to as
a±v and b±v , respectively. The subscript v is a combination of the angular and radial mode indices of
a coaxial transmission line (m and n in the modal field expressions in Appendix A), and the superscript
indicates the direction of propagation.
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The Bloch modes supported by the structures are found through an eigenvalue problem that
relates the coaxial line modes at the two sides of the sub-unit cell. The eigenvalue problem is
constructed using the transfer matrix of the sub-unit cell, T, which relates the modes as:[

b+

b−

]
= T

[
a+

a−

]
. (2)

The matrix T can be decomposed into a transfer matrix for the screen, Ts, and two transfer
matrices for the coaxial line between two screens, Pδ/2, as:

T = Pδ/2 Ts Pδ/2 =

[
P+

δ/2 0
0 P−δ/2

]
Ts

[
P+

δ/2 0
0 P−δ/2

]
(3)

where P±δ/2 are diagonal matrices with the entries e∓jkzuδ/2. It is noted here and explicitly shown in
Section 2.3 that Ts is a block partitioned matrix with two row partitions and two column partitions.
By applying the generalized Floquet boundary conditions to (2), we get:

Pδ/2 Ts Pδ/2

[
a+

a−

]
= e−jβδQ

[
a+

a−

]
(4)

where β is the sought phase constant and Q is a block diagonal matrix with entries q
v

given in [46]:

q
v
=


1 for TEMor TM/TE with m = 0[

cos(2πm/ξ) sin(2πm/ξ)

− sin(2πm/ξ) cos(2πm/ξ)

]
for TM/TE with m 6= 0 .

(5)

It should be noted that it is matrix Q that introduces the twist symmetry in the formulation
and that higher order modes with an angular variation are required to observe the effect of twist
symmetry. Furthermore, for the TM and TE modes with m = 0, q

v
is a scalar, and for ξ = 1, Q reduces

to the identity matrix. The characteristic equation of the structure under study is found by solving the
eigenvalue problem (4); namely, by searching for the values of β that satisfy:

det[Pδ/2 Ts Pδ/2 − e−jβδQ] = 0 . (6)

2.3. Obtaining Ts Using the Mode-Matching Technique

The mode-matching technique is used to relate the coaxial line modes at the the two sides of
the screen. The mode coefficients at the position of the screen are denoted ã± and b̃± to distinguish
them from the mode coefficients at the two ends of the sub-unit cell. Assuming and suppressing
a time-dependence ejωt, the transverse electric and magnetic fields at both sides of the screen can be
expressed as:

E1t(r) =
∞

∑
v=1

(ã+v e−jkzvz + ã−v e jkzvz) ev (7)

H1t(r) =
∞

∑
v=1

[(ã+v e−jkzvz − ã−v e jkzvz)
1

Zv
ẑ× ev (8)

E2t(r) =
∞

∑
v=1

(b̃+v e−jkzvz + b̃−v e jkzvz) ev (9)

H2t(r) =
∞

∑
v=1

(b̃+v e−jkzvz − b̃−v e jkzvz)
1

Zv
ẑ× ev (10)
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where the modal impedance, Zv, is:

Zv =


η TEM
ηkzv

k
TM

ηk
kzv

TE .

(11)

Here, η and k are the free-space wave impedance and kzv is the longitudinal wavenumber
of the v-th mode of the guiding structure, with ev being the transverse field of the v-th mode of
the coaxial transmission line as detailed in the Appendix A [48]. It is worth noting here that the
cos-/sin-degeneracy explicitly shown in the Appendix A gives rise to two modes with index v if m 6= 0.
The transverse modal fields are orthonormalized over the cross-section X = A+M of the coaxial line
with the inner product of modes u and v defined as the usual L2 scalar product on the relevant domain:

〈eu, ev〉X =
∫
X

eu · e∗v dS = 〈eu, ev〉M + 〈eu, ev〉A = δuv (12)

whereM andA correspond to the regions of the metallic screen and air aperture (indicated in Figure 3),
δuv is the Kronecker delta, and ∗ denotes the complex conjugate. A consequence of (12) is that the
inner product can be equivalently performed either over the metallic screen or in the air aperture,
which saves computational resources.

To relate the modes at the two sides of the screen, we apply the transverse field continuity
conditions. The metallic screen is placed at z = 0, on which the transverse electric field must vanish
because of its condition of being a perfect electric conductor. Therefore, at the metallic screen (ρ ∈ M),
(7) and (9) become:

∞

∑
v=1

(ã+v + ã−v )ev =
∞

∑
v=1

(b̃+v + b̃−v )ev = 0 , ρ ∈ M . (13)

Furthermore, in the aperture (ρ ∈ A), the continuity of the transverse electric field gives:

∞

∑
v=1

(ã+v + ã−v )ev =
∞

∑
v=1

(b̃+v + b̃−v )ev , ρ ∈ A . (14)

Due to the orthogonality enforced in (12), the relationships (13) and (14) must hold term-wise,
and thus:

ã+v + ã−v = b̃+v + b̃−v . (15)

Similarly, from the continuity of H in the aperture (ρ ∈ A), we obtain:

∞

∑
v=1

(ã+v − ã−v )
1

Zv
ev =

∞

∑
v=1

(b̃+v − b̃−v )
1

Zv
ev , ρ ∈ A (16)

which, when combined with (13) and (15) in different ways, gives the following four relationships:

∞

∑
v=1

ã−v ev(ρ) =−
∞

∑
v=1

ã+v ev(ρ) , ρ ∈ M (17)

∞

∑
v=1

ã−v
1

Zv
ev(ρ) =

∞

∑
v=1

b̃−v
1

Zv
ev(ρ) , ρ ∈ A (18)

∞

∑
v=1

b̃+v ev(ρ) =−
∞

∑
v=1

b̃−v ev(ρ) , ρ ∈ M (19)

∞

∑
v=1

b̃+v
1

Zv
ev(ρ) =

∞

∑
v=1

ã+v
1

Zv
ev(ρ) , ρ ∈ A . (20)
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If the inner products of eu with the relationships (17)–(20) are linearly combined as
Z−1

u 〈eu, (17)〉M + 〈eu, (18)〉A and Z−1
u 〈eu, (19)〉M + 〈eu, (20)〉A, we obtain:

∞

∑
v=1

[
δuv +

(
Zu

Zv
− 1
)
〈eu, ev〉A

]
ã−v =

∞

∑
v=1

[(
〈eu, ev〉A − δuv

)
ã+v +

Zu

Zv
〈eu, ev〉A b̃−v

]
(21)

and:

∞

∑
v=1

[
δuv +

(
Zu

Zv
− 1
)
〈eu, ev〉A

]
b̃+v =

∞

∑
v=1

[(
〈eu, ev〉A − δuv

)
b̃−v +

Zu

Zv
〈eu, ev〉A ã+v

]
(22)

where the inner products over the metallic screen,M, have been substituted with inner products over
the air aperture, A, using (12). Equations (21) and (22) relate the coaxial mode amplitudes at the two
sides of the screen and can be expressed in matrix form as:

Πã− = ∆ã+ + Ωb̃− (23)

Πb̃+ = ∆b̃− + Ωã+ (24)

where the elements of the matrices are:

Πuv =δuv +

(
Zu

Zv
− 1
)
〈eu, ev〉A (25)

∆uv = 〈eu, ev〉A − δuv (26)

Ωuv =

(
Zu

Zv
− 1
)
〈eu, ev〉A . (27)

By rearranging (23) and (24), we get: [
b̃+

b̃−

]
= Ts

[
ã+

ã−

]
(28)

where the transfer matrix of the screen is:

Ts =

[
Π−1Ω−Π−1∆Ω−1∆ Π−1∆Ω−1Π

−Ω−1∆ Ω−1Π

]
. (29)

The Bloch modes of the structure are found by inserting (29) into (6).

3. Results

The mode-matching formulation was implemented in MATLAB [49] and used to study the
dispersion diagrams of the structures in Figure 2. The geometrical dimensions of the structure are
ri = 2 mm, ro = 4.7 mm, rs = 4.7 mm, α = 180◦, and δ = 6 mm. With these dimensions, the screen
connects the inner and outer conductors of the coaxial lines, and as a result, the first mode has a cut-off
frequency. This configuration is chosen so that the mode-matching formulation converges quickly:
good convergence is achieved by only including higher order modes with n = 1. The convergence
of the numerical result is evaluated by comparing the root-mean-squared deviation of the obtained
samples of β for different numbers of coaxial line modes included in the computation. The convergence
is deemed sufficient if the result deviates less than 1% when including an additional coaxial line mode.
In the studied structures, 1 TEM, 17 TM, and 7 TE modes were found to ensure convergence.

The dispersion diagrams of the analyzed twist-symmetric structures are plotted in Figure 4.
The results obtained using the mode-matching formulation agree well with the ones computed using
the Eigenmode Solver of CST. The curves in Figure 4 show that, with the definition of the twist operator
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in (1), the dispersion diagrams converge to that of the conventional periodic structure as the order
of the symmetry increases. This observation is supported by the fact that the conventional periodic
structure is equivalent to an ∞-fold twist-symmetric structure with the present definition of the twist
operator. For alternative definitions of the twist operator (as the one used in [39]), this is not necessarily
the case.
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Figure 4. Comparison of the obtained dispersion curves for the studied structures between the
mode-matching formulation and CST. The dimensions are: ri = 2 mm, ro = 4.7 mm, rs = 4.7 mm,
α = 180◦, and δ = 6 mm. In the mode-matching formulation, 1 TEM, 17 TM, and 7 TEmodes
are included.

A valuable insight that the mode-matching analysis directly provides comes from the analysis of
the magnitudes of the different coaxial cable modes. This analysis gives us useful information about
the field characteristics, as well as its most convenient way of being excited. Thus, the magnitudes of
the coaxial cable mode coefficients for three values of the phase constant (β) are presented in Figure 5.
The mode coefficients are normalized so that |a| = 1.

A first interesting observation in Figure 5 is that the magnitude of the TEM mode does not vary too
much in the three cases shown in the figure. It can also be observed that the degrees of excitation of the
TEM and the TE11 modes are similar and greater than the one of the TM modes. However, the data in
Figure 5a show that there is a significant variation of the magnitudes of the TM modes as the symmetry
order (ξ) of the analyzed structures changes. This latter fact can be explained taking into account that
the neighboring screens form lengthwise capacitors for the z-directed electric fields of these TM modes.
The magnitudes of the TM modes are then expected to depend on the degree of overlap between
consecutive metallic plates; namely, with the value of ξ. A similar trend to that in Figure 4 is observed
here, as the mode magnitudes in the twist-symmetric structures converge to those of the conventional
periodic structure as ξ increases. Figure 5a also shows that the magnitude of the TE11 increases as
the symmetry order decreases. This is consistent with the fact that the cutoff frequency of the TE11

mode is ∼15 GHz, and the dispersion curves in Figure 4 show that, for β = 6 o/mm, the smaller
ξ is, the closer the corresponding frequency appears to that cutoff frequency. In the cases shown
in Figure 5b,c, since the corresponding modal solutions appear at frequencies above the TE11 cutoff
frequency, a significant decrease in the relative importance of the TM modes with respect to the TE11

mode can be observed. This trend is further illustrated in Figure 6, where the mode magnitudes for the
TM11 and TE11 modes are plotted vs. the phase constant (only the degenerate mode with the largest
magnitude is plotted). In these figures, each curve contain 100 samples of the mode coefficients in the
pass-band, and the band edges are omitted due to instabilities in the numerical result. It is observed
that when the TE11 mode begins to propagate, there is an apparent prevalence of this mode with
respect to TM11.



Appl. Sci. 2020, 10, 5990 8 of 12
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(a) β = 6 ◦/mm (b) β = 15 ◦/mm

(c) β = 27 ◦/mm

Figure 5. Magnitudes of the mode coefficients for different phases: (a) β = 6 ◦/mm, (b) β = 15 ◦/mm,
and (c) β = 27 ◦/mm. The dimensions are the same as in Figure 4.
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Figure 6. Magnitudes of the mode coefficients of the TM11 and TE11 modes. The dimensions and
number of modes are the same as in Figure 4.

For β & 14 o/mm, it can be noticed in Figure 4 that the propagation frequencies increase with the
symmetry order, which is opposed to what happens in the range β . 14 o/mm. However, Figure 5b,c
shows that the magnitude of the mode coefficients is similar in all the analyzed structures.
To understand the difference in the response for β & 14 o/mm, a more detailed analysis should
be carried out on the impact of the relevant modes at these frequencies (TEM and TE11). In Figure 7,
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the phase of the mode coefficients vs. β for the TEM and TE11 modes is presented. It is observed
that the phase of the TEM mode coefficient is similar in all the analyzed structures, as illustrated in
Figure 7a. Furthermore, for β & 14 o/mm, it is noted that the phases of the mode coefficient for the
TEM and TE11 are similar in the conventional periodic structure. However, as subsequent screens
are rotated, the phase of the TE11 mode coefficient changes, as illustrated in Figure 7b. In other
words, the impact of the TE11 mode varies with ξ, and the difference is particularly large between the
three twisted structures and the conventional periodic structure. This confirms the difference in the
dispersion curves observed in Figure 4.
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Figure 7. Phases of the mode coefficients of the: (a) TEM and (b) TE11 modes. In this simulation,
the dimensions and number of modes are the same as in Figure 4.

4. Conclusions

Twist symmetry has recently been demonstrated to provide attractive properties for the design
of electromagnetic devices. In this article, we analyze the dispersive properties of twist-symmetric
transmission lines using the mode-matching technique. The analyzed structures consist of coaxial
lines periodically loaded with infinitely thin sectorial metallic screens. The employed mode-matching
formulation is presented, and the results agree well with the results obtained using commercial
software. The formulation is used to provide physical insight into the phenomenon of twist symmetries.
Specifically, the importance of the higher order modes on the dispersion properties of twist-symmetric
structures is demonstrated, and it is shown that that the relevant higher order modes impact the
propagation characteristics differently depending on the symmetry order. This insight is valuable for
the design of filters [40], phase-shifters [42], antennas [43], lenses [44], and optical fibers [45].
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Appendix A

In (7)–(10), the transverse modal field of the coaxial transmission line is given by:

ev = ev(m,n)(ρ) = eρ
mn(ρ) + eϕ

mn(ρ) (A1)

www.cost.eu/
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with:

eρ
mn(ρ) =



1√
2π ln(ro/ri)

1
ρ

ρ̂ TEM

− jkzmn

ktmn
Ezmn [J′m(ktmnρ)Ym(ktmnri)− Jm(ktmnri)Y′m(ktmnρ)]

(
cos(mϕ)

sin(mϕ)

)
ρ̂ TM

− jkη

k2
tmn

Hzmn
m
ρ
[Jm(ktmnρ)Y′m(ktmnri)− J′m(ktmnri)Ym(ktmnρ)]

(
− sin(mϕ)

cos(mϕ)

)
ρ̂ TE

(A2)

and:

eϕ
mn(ρ) =



0 TEM

− jkzmn

k2
tmn

Ezmn
m
ρ
[Jm(ktmnρ)Ym(ktmnri)− Jm(ktmnri)Ym(ktmnρ)]

(
− sin(mϕ)

cos(mϕ)

)
ϕ̂ TM

jkη

ktmn
Hzmn [J′m(ktmnρ)Y′m(ktmnri)− J′m(ktmnri)Y′m(ktmnρ)]

(
cos(mϕ)

sin(mϕ)

)
ϕ̂ TE

(A3)

where Jm(·) and Ym(·) are the Bessel functions of the first and second kind and ktmn = ktv and kzmn = kzv

are the transverse and longitudinal wavenumbers of the guiding structure [48]. The coefficients Ezmn

and Hzmn are found by orthonormalizing the modal fields over the cross-section of the coaxial line.
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