
applied  
sciences

Article

Deep Instance Segmentation of Laboratory Animals
in Thermal Images

Magdalena Mazur-Milecka * , Tomasz Kocejko * and Jacek Ruminski *

Department of Biomedical Engineering, Faculty of Electronics, Telecommunications and Informatics,
Gdansk University of Technology, 80-233 Gdansk, Poland
* Correspondence: magdalena.milecka@pg.edu.pl (M.M.-M.); tomasz.kocejko@pg.edu.pl (T.K.);

jacek.ruminski@pg.edu.pl (J.R.)

Received: 9 July 2020; Accepted: 25 August 2020; Published: 28 August 2020
����������
�������

Abstract: In this paper we focus on the role of deep instance segmentation of laboratory rodents in
thermal images. Thermal imaging is very suitable to observe the behaviour of laboratory animals,
especially in low light conditions. It is an non-intrusive method allowing to monitor the activity
of animals and potentially observe some physiological changes expressed in dynamic thermal
patterns. The analysis of the recorded sequence of thermal images requires smart algorithms for
automatic processing of millions of thermal frames. Instance image segmentation allows to extract
each animal from a frame and track its activity and thermal patterns. In this work, we adopted two
instance segmentation algorithms, i.e., Mask R-CNN and TensorMask. Both methods in different
configurations were applied to a set of thermal sequences, and both achieved high results. The best
results were obtained for the TensorMask model, initially pre-trained on visible light images and
finally trained on thermal images of rodents. The achieved mean average precision was above
90 percent, which proves that model pre-training on visible images can improve results of thermal
image segmentation.

Keywords: instance segmentation; deep learning; computer vision

1. Introduction

Laboratory animals’ behavior analysis is often used in studies of stress, anxiety, depression or
neurodegenerative diseases [1]. The automation of this analysis has undoubtedly many advantages,
among which objectivity and standardization are one of the most desirable. As far as the position
and motion analysis are easy and commonly used parameters [2], the action or behavior recognition
are quite difficult to automatize. Existing systems for laboratory animals’ behavior analysis are
restricted by, for example, the number or the color of the objects [2]. The spectrum of behavior analysis
performed by the available systems is usually limited to exploration, rest or grooming. All these
behaviors are detected based on simple object parameters representing the position, speed, direction of
the movement or the shape parameters of the observed rodent [3]. Objective detection and analysis of
more complex behaviors would open up new possibilities. An important parameter of animals’ health
and well-being is its social behavior. It ensures survival of the species and is the specific characteristics
of a single individual. Futhermore, deviations and abnormalities of social actions may be related to
stress, fear or illness [1]. Social behaviors are divided into three categories: aggressive, defensive and
neutral [4]. An example of aggressive behavior is an attack, bite or aggressive grooming. However,
gentle grooming can also be a form of defense, it can also be confused with other behavior—climbing.
All these insignificant differences make the classification of complex behaviors an extremely difficult
task, mainly performed by human observers.
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The presence of a man who, after all, is a rodent’s natural enemy, probably adversely affects the
results of behavior research [5]. This can be solved by using camcorders and analyze the behavior from
the recordings. An additional advantage of this solution is the ability to slow down or stop the action,
certainly helpful during fast animal movements, e.g., fights. Nevertheless, the need for a good lighting
for cameras is a very unfavorable and stressful factor for nocturnal animals such as rodents [6,7]. This is
where technology that offers alternative imaging comes to the rescue. Thermal camcorders record
the surface temperature and can work in limited light and even in complete darkness. In addition,
they provide data of the object’s surface temperature distribution, proved to be useful in early disease
diagnosis [8,9]. Changes in the rodent’s surface temperature can be an indicator of his health condition,
behavioral changes, anxiety or stress [10,11]. In paper [12] authors use mouse surface temperature
distribution as an object identifier to recover tracking algorithm identity swap after close contact.

The automatic analysis of rodents from video recordings requires the identification and tracking
of each animal in a scene. The distinction between the object and the background in animal tracking
visual systems is most often based on difference between frames, color threshold or color matching [13].
A clear temperature difference in thermal imaging greatly simplifies foreground-background
segmentation. Usually, the Otsu’s thresholding supported by morphology is enough [2,14]. Figure 1b
demonstrates the result of Otsu’s thresholding on thermal image. In a cluttered environment there is
also a need to segment the object from other parts of the foreground or to distinguish individuals from
each other. For small connections of the animals’ bodies, methods such as marker-controlled watershed
segmentation technique are sufficient [15]. However, the solution to the segmentation problem for the
objects that overlap significantly is not easy and most image analysis methods fail. Figure 1c shows the
results of rodent segmentation using watershed technique with markers build from the low gradient
regions. There are no clear differences between the images of both objects and no border between
them is visible. For these reasons a significant number of systems analyze only one individual at a
time [2,13]. That is why the correct segmentation between objects is necessary for further analysis.

(a) (b) (c) (d)

Figure 1. Results of the most popular algorithms used for segmentation of (a) original
image by: (b) Otsu’s thresholding, (c) watershed with gradient regions markers,
(d) U-Net—semantic segmentation.

Many segmentation techniques have been proposed in literature. However, the methods based
on deep-learning have been recently found to provide the best segmentation results in many computer
vision tasks. Segmentation techniques based on deep learning may be divided into two approaches:
(i) semantic segmentation—pixel classification-based approach and (ii) instance segmentation–object
detection and classification based approach.

Segmentation using (i) does not discriminate between instances. In paper [16] we have used
popular methods of semantic segmentation—U-Net [17] and V-Net [18] to separate two objects.
Algorithms correctly segmented animals in close contact, but they were not able to draw the boundary
between the objects at the time of body overlapping. Figure 1d shows the result of U-Net architecture
trained on 200 images on five epochs, 2000 steps each. The animals are not separated and are recognized
together as one object.

In (ii) each object is detected, represented as a separate segment and labeled with the class name.
Instance segmentation is one of the most challenging computer vision tasks. It was introduced by
Hariharan [19] and then popularized by COCO [20]. Instance segmentation algorithms classify and
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localize each object’s bounding box while also precisely segment each instance. Both those subtasks
can be performed as a single- or two-stage detection process.

1.1. Two-Stage Methods

Treating segmentation as an extension of the object detection is adopted by most of two-stage
methods [21–24]. They are designed according to the dominant paradigm for instance segmentation
which is: detect-then-segment. First, it detects an object with a box and then segments each object
using the box as a guide.

Mask R-CNN [23] is one of a state of the art two-stage method of instance segmentation. It extends
Fast [25] and Faster R-CNN [26] methods by adding a branch for predicting an object mask in parallel
with the existing branch for bounding box recognition [23]. This method detects object bounding
boxes, and then crops and segments them to find the objects.

Many approaches based on Mask R-CNN also have dominated leaderboards of recent
segmentation challenges.

In 2019 Mask Scoring R-CNN algorithm was introduced in [24]. This method focuses on scoring
the predicted instance masks. The model learns an Intersection-over-Union (IoU) score for each
mask and improves segmentation results by rewarding more accurate predictions during COCO AP
evaluation.

The method named PANet presented in [27] improves Mask R-CNN in three steps by:

1. creating bottom-up path augmentation,
2. adaptive feature pooling,
3. augmenting mask prediction with fully connected layers.

The results outperform Mask R-CNN architecture but are re-implemented by the PANet authors.
Another extension of the Mask R-CNN model, this time with a cascade architecture, is the

Hybrid Task Cascade (HTC) [28]. It improves the segmentation accuracy by incorporating cascade and
multi-tasking at each stage and explores more contextual information from the spatial context.

State-of-the-art two-stage methods achieve outstanding results. However, due to the cascade
strategy, these methods are usually time- and memory-consuming. That is why recently, performing
instance detection and segmentation in a single-stage architecture [29–32] has become more and more
popular, even though it does not yet perform as good as the two-stage methods.

1.2. Single-Stage Methods

Though single-stage methods simplify the procedure by removing the re-pooling step, usually
they cannot produce masks that are as accurate as the two-stage methods. Some of those methods
works in a per-pixel prediction way, similar to the semantic segmentation.

The algorithm Fully Convolutional One-Stage detection (FCOS) [33] has fully eliminated
pre-defined anchor boxes, thus avoids complicated computation such as calculating boxes overlapping
during training.

EmbedMask proposed in [32] unifies both segmentation- and proposal-based methods and takes
the advantages of both. It is built on top of the detection models and thus has strong detection
capabilities, just like the proposal-based methods. It applies extra embedding modules to generate
embeddings for pixels and proposals, what enables EmbedMask to generate high-resolution masks
without missing details from repooling, like segmentation-based methods.

TensorMask is an example of a dense sliding-window instance segmentation method [34]. The idea
is to use structured 4D tensors to represent masks over a spatial domain. It performs multiclass
classification in parallel to mask prediction. Authors show that this algorithm yields similar results to
Mask R-CNN.

In this paper, we are mainly interested in the detection of each rodent in reference to each other
and in reference to the background objects. Therefore, we focus on instance segmentation approach and
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more specifically deep instance segmentation architectures represented by two different approaches:
one- and two-stage methods. In particular, we addressed the problem of animals instance segmentation
in close physical contact on thermal images. The aim of this study was also to verify whether thermal
data bit depth reduction or re-scaling has an effect on the results.

The paper is organized as follows: Section 2 presents the general description of methods and
materials. Results are introduced in Section 3 and discussed in Section 4. The last section concludes
the work.

2. Methods

In this section we describe the methods for instance segmentation adopted by us for thermal
image of laboratory animals. For this purpose we use thermal database of rats introduced in [35].
The database consists of 300 min of social behavior tests recordings. Every single test was carried
out on two healthy male rats of the Wistar strain at the age of 12–16 weeks kept in a plexiglass
cage (dimensions: 35 length × 45 width × 46 cm height) for about 17 min in dimly illuminated
room with temperature about 22 Celsius degrees. Animals were not accustomed to the cage earlier,
it was an unfamiliar environment. There were no food, drink nor bedding material in the cage.
The image sequences were recorded by FLIR A320G camera situated 120 cm above the cage with the
spatial resolution of 320 × 240 pixels, 60 fps and 16-bit image representation. The results of semantic
segmentation on the same dataset are presented in paper [16].

The principles for the care and use of laboratory animals in research, as outlined by the Local
Ethical Committee, were strictly followed and all the protocols were reviewed and approved by
the Committee.

2.1. Data Preprocessing

Thermal data were measured and stored with a resolution of 16-bit. The reduction of bit depth
to 256-level standard images caused data loss. However, some data, e.g., background temperature,
were redundant. In order to minimize data loss and investigate the effect of a temperature range
selection, we proposed thermal frames processing to achieve five different images. This procedure is
described in details in paper [16] and presented in Figure 2 in brief. First, the entire range of recorded
raw thermal data (Figure 2a) was scaled to 256-level gray image (Figure 2b) and called orig image, as
these were the original raw thermal data re-scaled to 8 bits. Then the gray-scale image was created
from only three selected thermal ranges: animal body range (Figure 2c) and two thermal ranges
(Figure 2d,e), all marked as ch1, ch2 and ch3 respectively. Minimal temperature value of the object was
assumed to be equal to the threshold temperature between the background and the object calculated
by the Otsu method, marked as a red line in the Figure 2a and called maxOtsuthres. The green and blue
dashed lines named as T2 and T3 respectively defined one- and two-thirds of the temperature interval
from maxOtsuthres to the maximal value for all data. The ch1 range was selected between maxOtsuthres
and the maximal temperature value. The ch2 image was created for the temperature range from T2

to the maximal temperature value, and analogously, the lower limit of the ch3 image was T3 value
and the upper limit was the maximum temperature. Re-scaling 16-bit raw thermal data representation
to 8-bit image caused loss of accuracy. Therefore, the last type of images was an image of the entire
range of recorded data saved as a 16 bit image (16-bit). In [16] we proved that proper range selection
improved the results of semantic segmentation.

2.2. Training Models

In this study we chose one single- and one two-stage architectures to compare the instance
segmentation methods on thermal images of laboratory rodent. The decision was made for the Mask
R-CNN [23] and the TensorMask [34].
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(a)

(b) (c)

(d) (e)

Figure 2. Range selection: (a) histogram of one frame raw thermal data with values of: minimal
rodent’s surface thermal value named maxOtsuthres, marked with red solid line; the minimum values
for images ch2 and ch3 marked as green (T2) and blue (T3) lines respectively, (b) orig image of the whole
thermal range, (c) ch1 image of the first range: maxOtsuthres to Tmax, (d) ch2 image of the second range:
T2 to Tmax, (e) ch3 image of the third range: T3 to Tmax.

2.3. Learning Configurations

We made two training and one testing manually segmented datasets. The only difference between
training sets was their size: 200 and 500 images respectively. The smaller set was used for the
transfer-learning training, where we used pre-trained network: Mask R-CNN with a ResNet-Feature
Pyramid Network (FPN) backbone 50 layers deep trained on the COCO dataset [36], and similarly
TensorMask with a ResNet-FPN backbone 50 layers deep [37], both implementations from Detectron2
v0.1.2.

The 500 images were used for training the whole architectures from random initialization. In this
training the number of training iterations had to be increased so models could converge. However, even
despite the very large number of iterations, the TensorMask architecture sometimes had convergence
problems: the loss function increased over time. In such cases we have used normalization techniques
according to [38], and replaced Frozen Batch Normalization with Group Normalization [39]. Group
Normalization’s accuracy was insensitive to batch sizes [39] and allowed for successful TensorMask
model training from scratch.

The testing set consisted of 50 images not included in the training sets. Images in all data-sets
depicted two rodents during physical contact of varying degrees: from a small part of the body contact
(e.g., nose-to-nose) to the body overlapping and covering.

For every training model we performed three independent training sessions. Json files with
ground-truth rat regions were manually created for every training and testing set using the VGG
Image Annotator (VIA) [40]. The regions were marked on a zoomed image by a set of points forming a
closed polygon.

To compare the trained and commonly available models, we tested the inference using weights
pre-trained on MS COCO Dataset [20], Citiscapes [41] and LVIS [42] and not trained on our database.
We have also used two different Python3 implementations of Mask R-CNN (Mask R-CNN2.1 [36],
Detectron2 v0.1.2 [37]) and one for TensorMask Detectron2 v0.1.2 [37].

In total, we tested 24 different model configurations for pre-trained learning and 22 for training
from scratch.

For both models and both training methods with the best segmentation results 3-fold
cross-validation was performed. The first fold was made for all the model configurations. The second
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and third folds used the whole testing data-set from the first fold in their training sets and replaced the
training set with 50 different images selected from the training set of the first fold.

All experiments were performed using NVIDIA DGX-1 Station with Ubuntu 18.

2.4. Evaluation Metrics

To evaluate the results we are using three different detection metrics for bounding box- (bbox)
and segmentation-level (segm): mean Average Precision (mAP), AP under Intersection-over-Union
thresholds of 0.5 (AP50) and 0.75 (AP75).

The mean average precision (mAP) is actually the standard for the quantitative evaluation of
object detection and instance segmentation methods [43,44]. The general definition for the Average
Precision is finding the area under the precision-recall curve. The precision and recall are defined
as follows:

Precision =
TP

TP + FP
; Recall =

TP
TP + FN

(1)

where: TP = True Positive, FP = False Positive and FN = False Negative.
The precision measures how accurate the prediction was, and recall measures how good all the

positives were found.
In object detection and instance segmentation it is important to appropriately define a true

positive and other types of results. As a current standard, the IoU metric was used. It was defined
as the intersection between the predicted segment (bbox) and the actual segment (bbox) divided by
their union:

IoU =
Area o f Overlap
Area o f Union

(2)

In this study the actual (ground truth) segment was manually drawn by the authors on each
reference image.

A prediction is considered to be True Positive if the IoU value is higher than the threshold
(e.g., IoU > 0.5), and False Positive otherwise. However, different thresholds could be used and the
precision recall curve could be obtained. Then, the area under the curve could be calculated as:

AP =
∫ 1

0
p(r)dr, (3)

where: p(r) is the precision-recall curve.
In practice, in a majority of current papers about instance segmentation, the interpolated curve is

calculated in ranges of IoU threshold values from 0.5 to 0.95 with a step size of 0.05. This method was
also used in this paper. The mAP metric calculates the mean of AP across all of the IoU thresholds.
We also used AP at fixed IoUs: IoU = 0.5 (AP50) and IoU = 0.75 (AP75). Which means, that a
prediction is considered as True Positive if its IoU is >0.5 and >0.75 respectively. Thus, the higher the
threshold, the greater the requirement for the accuracy of matching the prediction to the ground-truth.
The standard metrics used in this study allow direct comparison of future methods with the approach
used in this paper.

We have evaluated bounding box AP for object detection and segmentation AP for instance
segmentation. The metrics are measured for all five types of images (orig, ch1, ch2, ch3, 16-bit) and
training parameters shown in Table 1.
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Table 1. Training parameters that achieved the best results in training.

Transfer Learning Training from Scratch

Mask R-CNN TensorMask Mask R-CNN TensorMask

Batch Epochs Batch Epochs Batch Epochs Batch Epochs

2 1000 2 2000 4 16,000 2 100,000

4 1000 4 1000 4 24,000 4 100,000

4 2000 4 2000 8 16,000

8 2000 8 24,000

2 100,000

3. Results

The best results among all the training parameter combinations were achieved by the values
presented in Table 1.

The TensorMask’s convergence problems during training from scratch forced the use of a large
iteration number, much larger than for Mask R-CNN architecture. In order to compare the effectiveness
of both architectures, we performed additional Mask R-CNN training with optimal parameters for
TensorMask (2 batches, 100,000 epochs). Values in bold indicate parameters that have been selected for
cross-validation.

In Tables 2 and 3 we compare Mask R-CNN testing results for pre-trained and from scratch
learning respectively. Analogous measurements for the TensorMask architecture are presented in
Tables 4 and 5.

Table 2. Testing results for Mask R-CNN pre-trained learning and 200 images.

mAP AP50 AP75 mAP AP50 AP75

orig bbox segm

2 batch, 1000 epochs 88.641 100 98.99 89.007 100 98.99

4 batch, 1000 epochs 89.025 100 100 89.444 100 100

4 batch, 2000 epochs 88.781 100 99 89.068 100 99

ch1 bbox segm

2 batch, 1000 epochs 87.332 100 100 89.289 100 100

4 batch, 1000 epochs 86.942 100 100 89.715 100 100

4 batch, 2000 epochs 90.205 100 100 89.655 100 100

ch2

2 batch, 1000 epochs 85.252 100 99 87.323 100 100

4 batch, 1000 epochs 85.847 100 98.98 88.256 100 100

4 batch, 2000 epochs 87.915 100 98.98 88.893 100 100

ch3

2 batch, 1000 epochs 63.719 99.114 73.409 52.901 93.649 59.722

4 batch, 1000 epochs 69.028 99.417 80.98 55.181 97.284 60.683

4 batch, 2000 epochs 73.908 99.952 87.824 65.687 98.902 83.376

16-bit bbox segm

2 batch, 1000 epochs 88.128 100 99.01 89.604 100 100

4 batch, 1000 epochs 89.965 100 100 89.194 100 100

4 batch, 2000 epochs 90.549 100 100 89.417 100 100



Appl. Sci. 2020, 10, 5979 8 of 16

Table 3. Training results for Mask R-CNN from scratch learning and 500 images.

mAP AP50 AP75 mAP AP50 AP75

orig bbox segm

4 batch, 16,000 epochs 81.811 100 98.307 85.586 100 100

4 batch, 24,000 epochs 82.567 100 100 86.864 100 100

8 batch, 16,000 epochs 81.658 100 100 84.728 100 98.584

8 batch, 24,000 epochs 84.465 100 100 86.224 100 100

2 batch, 100,000 epochs 86.695 100 100 89.569 100 100

ch1

4 batch, 16,000 epochs 82.085 100 100 83.666 100 100

4 batch, 24,000 epochs 84.368 100 100 85.821 100 100

8 batch, 16,000 epochs 81.426 100 100 84.038 100 100

8 batch, 24,000 epochs 85.153 100 98.772 86.389 100 100

2 batch, 100,000 epochs 86.564 100 100 87.208 100 100

ch2

4 batch, 16,000 epochs 80.629 100 98.95 80.896 100 100

4 batch, 24,000 epochs 82.979 100 100 84.834 100 100

8 batch, 16,000 epochs 80.983 100 100 79.931 100 100

8 batch, 24,000 epochs 83.091 100 100 84.428 100 100

2 batch, 100,000 epochs 82.55 100 97.55 82.397 100 100

ch3

4 batch, 16,000 epochs 60.947 97.766 73.004 48.183 93.325 47.4

4 batch, 24,000 epochs 67.739 98.113 79.816 58.782 96.882 69.92

8 batch, 16,000 epochs 65.355 97.874 74.09 54.855 96.873 64.968

8 batch, 24,000 epochs 66.014 98.4 78.156 57.452 95.887 63.699

2 batch, 100,000 epochs 66.369 98.504 84.891 56.116 94.891 67.155

16-bit

4 batch, 16,000 epochs 82.826 100 98.842 84.561 100 100

4 batch, 24,000 epochs 84.29 100 100 86.111 100 100

8 batch, 16,000 epochs 83.493 100 97.82 85.313 100 100

8 batch, 24,000 epochs 85.596 100 100 86.607 100 100

2 batch, 100,000 epochs 84.862 100 100 85.877 100 100

Table 4. Training results for TensorMask pre-trained learning and 200 images.

mAP AP50 AP75 mAP AP50 AP75

orig bbox segm

2 batch, 2000 epochs 90.646 100 98.01 89.82 100 100

4 batch, 1000 epochs 91.264 100 99.01 89.877 100 99.01

4 batch, 2000 epochs 90.916 100 99.01 90.158 100 100

8 batch, 2000 epochs 90.672 100 98.96 89.824 100 100
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Table 4. Cont.

mAP AP50 AP75 mAP AP50 AP75

ch1

2 batch, 2000 epochs 89.091 100 100 89.808 100 100

4 batch, 1000 epochs 89.624 100 100 89.547 100 99.01

4 batch, 2000 epochs 90.299 100 100 90.171 100 99.01

8 batch, 2000 epochs 90.052 100 100 90.087 100 99.01

ch2

2 batch, 2000 epochs 88.319 100 100 89.496 100 100

4 batch, 1000 epochs 88.17 100 100 87.949 100 100

4 batch, 2000 epochs 87.912 100 98.931 89.335 100 100

8 batch, 2000 epochs 88.828 100 100 89.264 100 100

ch3

2 batch, 2000 epochs 74.37 99.933 88.433 65.062 99.933 80.743

4 batch, 1000 epochs 71.325 99.834 84.895 60.251 99.602 69.757

4 batch, 2000 epochs 75.031 99.961 91.558 64.849 99.423 79.397

8 batch, 2000 epochs 76.159 100 91.406 65.307 99 83.105

16-bit

2 batch, 2000 epochs 91.248 100 100 90.249 100 100

4 batch, 1000 epochs 90.443 100 98.951 89.857 100 98.951

4 batch, 2000 epochs 91.609 100 100 90.199 100 100

8 batch, 2000 epochs 90.939 100 100 90.171 100 98.99

Table 5. Training results for TensorMask from scratch learning and 500 images.

mAP AP50 AP75 mAP AP50 AP75

orig bbox segm

2 batch, 100,000 epochs 78.235 100 92.41 79.615 100 95.535

4 batch, 100,000 epochs 76.413 99.99 95.435 80.371 99.99 91.678

ch1

2 batch, 100,000 epochs 78.862 100 98.307 77.724 100 90.687

4 batch, 100,000 epochs 77.725 100 94.535 81.259 100 95.188

ch2

2 batch, 100,000 epochs 64.42 99.18 69.516 62.307 96.206 71.867

4 batch, 100,000 epochs 75.275 99.833 90.342 74.431 99.833 89.674

ch3

2 batch, 100,000 epochs 44.557 84.367 40.402 13.097 60.133 0.012

4 batch, 100,000 epochs 55.982 95.072 57.009 32.752 89.025 16.88

16-bit

2 batch, 100,000 epochs 78.112 99.99 97.29 80.198 99.99 94.435

4 batch, 100,000 epochs 76.296 100 90.662 81.267 100 94.887
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Figure 3 presents the exemplary testing results for two images (Figures 3a,b) which constituted
quite a serious challenge for segmentation. For a better illustration, the contact area was zoomed and
manually segmented with a yellow line in Figures 3c,d. The examples given include animals that
overlapped one another. Figures 3e–h present the results of pre-trained learning for Mask R-CNN and
TensorMask respectively. The instance segmentation made by those architectures trained from scratch
are shown in Figures 3i–l.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3. Examples of segmentation and detection prediction made for (a,b) the original images;
(c,d) proper segmentation zoomed and marked with yellow lines. Results for: (e,f) pre-trained Mask
R-CNN; (g,h) pre-trained TensorMask; (i,j) random initialized Mask R-CNN; (k,l) random initialized
TensorMask.

Table 6 demonstrates the results of the inference made for orig images using commonly available
models pre-trained only on MS COCO Dataset, Citiscapes and LVIS. We also used two different
implementations of Mask R-CNN pre-trained on the COCO dataset.

Table 6. Segmentation results for commonly available models.

mAP AP50 AP75 mAP AP50 AP75

Mask R-CNN bbox segm

MS COCO—implementation [37] 4.14 13.39 1.4 5.36 14.44 1.05

MS COCO—implementation [36] 7.62 13.5 7.62 - - -

Citiscapes 0.06 0.3 0 0.01 0.09 0

LVIS 0.71 3.45 0.04 0 0 0

TensorMask

MS COCO—implementation [37] 1.69 3.41 1.29 3.06 6.31 2.6

The results of 3-fold cross-validation for the parameters of four batch size with 2000 epochs and
two batch size with 100,000 epochs for pre-trained and trained from random initialization models
respectively are presented in Table 7. The results are presented in the form of box and segmentation
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mAP. The folds of model training for three different training and testing datasets were repeated twice.
Presented result values are the best selected repetition.

Table 7. 3-fold cross-validation mean Average Precision (mAP) results for pre-trained (four batch, 2000
epochs) and trained from scratch (two batch, 100,000 epochs) models of Mask R-CNN and TensorMask.

Mask Mask TensorMask TensorMask
Pre-Trained From Scratch Pre-Trained From Scratch

mAP bbox segm bbox segm bbox segm bbox segm

orig

1. fold 88.8 89.1 83.6 85.9 90.9 90.2 78.2 79.6
2. fold 92.0 89.5 84.7 87.6 91.9 90.5 73.9 70.6
3. fold 89.7 89.2 87.7 88.0 90.5 90.2 70.6 76.6

average 90.2 89.3 85.3 87.2 91.1 90.3 74.2 75.6

ch1

1. fold 90.2 89.7 84.6 87.2 90.3 90.2 78.9 77.7
2. fold 88.4 89.1 88.3 88.9 91.3 90.4 78.7 77.8
3. fold 89.6 89.4 88.3 89.0 90.2 89.8 75 74.4

average 89.4 89.4 87.1 88.4 90.6 90.1 77.5 76.6

ch2

1. fold 87.9 88.9 82.6 82.4 87.9 89.3 64.4 62.3
2. fold 84.7 86.4 86.6 88.2 89.1 89.0 66 57.2
3. fold 89.5 88.1 85.0 87.7 88.3 88.9 65.7 54.3

average 87.4 87.8 84.7 86.1 88.4 89.1 65.4 57.9

ch3

1. fold 73.9 65.7 66.4 56.1 75.0 64.8 44.6 13.1
2. fold 63.0 51.9 65.6 57 70.9 61.9 40.2 11.2
3. fold 72.6 62.9 66.6 62.4 71.3 62.5 36.6 11.2

average 69.8 60.2 66.2 58.5 72.4 63.1 40.5 11.8

16-bit

1. fold 90.5 89.4 84.9 85.9 91.6 90.2 78.1 80.2
2. fold 89.2 89.4 85.8 88.5 92.5 90.8 76.8 77.6
3. fold 90.0 89.1 86.6 87.8 90.6 89.9 71.5 73.9

average 89.9 89.3 85.8 87.4 91.6 90.3 75.5 77.2

4. Discussion

The objective of the study was to compare two different instance segmentation approaches and
two different learning methods for the purpose of experimental animals segmentation on thermal
images. Various methods for re-scaling thermal data to a standard image were also compared.

In paper [38] authors showed that the model trained from random initialization, if it only has
proper training parameters, can get results similar to the pre-trained models, however, it needs more
iterations to converge. In our experiments training Mask R-CNN from scratch needed about 16 times
the number of epochs (16,000 or 24,000) (Tables 4 and 5) than for the pre-trained model (1000 or 2000)
to achieve similar results (Tables 2 and 3). Increasing the number of epochs to 100,000 improved the
results only for the orig and ch1 images, but not significantly. TensorMask architecture required a
much larger number of epochs for the random initialization training (100,000), and still did not achieve
results comparable to the pre-trained model (see Tables 4 and 5).

Mask R-CNN training from scratch neither is time nor data expensive. Only a slightly larger
number of images and epochs allow it to achieve all-layers training results comparable to the
pre-trained models.
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The values in Tables 2 and 4 indicate that the best segmentation results for the pre-trained models
can be obtained for the 16-bit and ch1 image followed by the orig for Mask R-CNN and also 16-bit
with orig this time followed by ch1 using TensorMask. Ch2 images achieved only slightly lower results
than the top ones. The bbox and segmentation mAP values for both architectures were close to 90
percent, with a slight TensorMask advantage. Detection for ch3 in both cases achieved the best mAP
above 70, while the segmentation best mAP was equal to 65 percent. If we look at the results for all
combinations of training parameters, not only the best ones, it can be clearly seen that TensorMask
achieves better results for various training models.

The results of training from scratch show the opposite trend (see Tables 3 and 5). This time
it is Mask R-CNN that achieves better results for all images (mAP above 80 percent for almost all
images) under various criteria, suggesting that this model trained from scratch catch up not only by
chance for a single metric. The differences were especially visible for the ch3 image, for which the best
TensorMask segmentation mAP was equal only to 32.752 percent.

The pre-trained model shows generally similar results for instance segmentation and detection for
all images except ch3. The image ch3 contains a very narrow range of only the highest animals’ surface
thermal values (Figure 2a,e), so it is deprived of a significant part of the body area. Such an object is
detectable, but difficult to correctly segment if there is no information about the object’s boundaries.
That is why the mAP for segmentation is much smaller than for detection.

The data in Tables 3 and 5 show that models trained from scratch are likely to perform
segmentation more accurately than the detection (except ch3). Detection and segmentation accuracy
for the pre-trained models are more similar.

In the Figure 3 we have presented the results of the detection and segmentation for challenging
views with the critical regions zoomed in white frames. The image in Figure 3c is difficult to segment,
because the snout of one rodent covers the snout of the other one over the entire width of the body.
However, there is a small element of the snout that belongs to the animal at the bottom and in this
camera view is not connected to the rest of the body. One of animals in Figure 3d has its snout hidden
under the body of the other rat, which, as a matter of fact, is not so rare. Here, the cooler water mark
left on the fur creates a line, that can be mistaken as a continuation of the body boundary. In this
particular way it was segmented by the pre-trained TensorMask (Figure 3h), as a result of which a
small area of the body on the border was miss-assigned to the wrong object. It also marked both
individuals as the object, however with low probability (7%). The Mask R-CNN architecture set the
boundaries more precisely (Figure 3f,j) but left a few pixels’ gap between the objects. TensorMask
trained from scratch segmented the rodents’ body areas similarly to the pre-trained model, (Figure 3l),
and here also an additional object—a combination of both body parts—was detected.

The separated object from the Figure 3c caused the Mask R-CNN the most problems. The
pre-trained model (Figure 3e) considered the separated part of the animal’s mouth as an element of
the other rat’s body. In addition, as the only one, it inaccurately determined the bbox of the detected
object. Mask R-CNN trained from scratch did not assign this small part of the snout to any object,
but correctly detected the bbox (Figure 3i). The pre-trained TensorMask (Figure 3g) classified the
problematic snout partly to both individuals—this line of segmentation seems to be the closest to the
correct one. TensorMask architecture trained from scratch assigned both animal snouts to both objects
at once (Figure 3k).

Although the segmentation results were not always satisfactory, it should be remembered that
difficult cases were presented here. For the vast majority of images, the prediction was very similar to
ground-truth images and succeeded in its mission of rodent segmentation, in contrast to the semantic
segmentation algorithms presented in paper [16]. The results of U-Net segmentation (see Figure 1d)
show that the boundary between objects disappears during close contact, although it was previously
visible during small connection.

The results of segmentation made by the commonly available models (see Table 6) are much
worse than those trained on the target images, and do not exceed 8 mAP. The Citiscapes and LVIS
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datasets achieved extremely low values—bellow 0.75 mAP. During the evaluation, the correctness of
class assignment is also taken into account. Although the COCO data-set has a “mouse” class [20],
however, rat objects were not assigned to it, so in this case the assignment correctness was zero.

The 3-fold cross-validation results presented in Table 7 are very similar. The top segmentation and
detection results (marked as bold in Table 7) on average was achieved by the pre-trained TensorMask.
Both pre-trained models show greater accuracy than those trained from scratch, which is consistent
with the previous results (see Tables 2–5). It is probably related to a much smaller training set
comparing to the COCO set [20]. As far as a random initialized models are concerned, the difference
between the both models is significant. Mask R-CNN (marked as bold italic in Table 7) obtains mAP
even 10 percent higher than TensorMask. It is possible that TensorMask needs more data and/or
epochs number to achieve a Mask R-CNN-like results.

5. Conclusions

The deep instance segmentation algorithms are able to distinguish between two individuals in
close contact where overlaps may appear. The segmentation mAP almost reach value of 90 percent.
The detection results are slightly higher and usually oscillate around 90 percent. The top results are
achieved by the single-stage (TensorMask) pre-trained network, however, two-stage method (Mask
R-CNN) works better than single-stage when trained from scratch. Training Mask R-CNN model from
random initialization is neither time nor data consuming. It can be used for training non-standard
images, however, keeping in mind that networks trained from scratch focuses more on segmentation
than detection. In turn, the cost of training TensorMask is large, and still does not achieve results
similar to the pre-trained version. The pre-trained TensorMask model shows the best performance.
The research indicates that thermal images can be successfully analyzed by architectures pre-trained
on standard images. However, some layers of the network must be trained on thermal images, because
the models pre-trained only on publicly available databases achieve very poor segmentation results
and even worse in detection.

The thermal data conversion from different thermal data range does not improve the quality of
segmentation. The results for 16-bit (16-bit) and 8-bit (orig) image representation as well as for image
deprived of the background (ch1) are comparable. Results of images with narrower thermal range
(ch2) do not differ much from the others. Unlike the results for ch3 image, where only the information
about the warmest parts of the body is visible. However, the bounding box mAP values of this images
for pre-trained model suggest that detection for limited-data images is possible.

The main contributions of this paper are the following:

• the adopted deep instance segmentation algorithms have been experimentally verified for the
laboratory rodents detection from thermal images,

• it was shown that laboratory rodents can be accurately detected (and separated from each other)
from the thermal images using the Mask R-CNN and TensorMask models,

• the obtained results demonstrated that the adopted TensorMask model, pre-trained using visible
light images and trained with thermal sequences gave the best results with the mean average
precision (mAP) greater that 90,

• it was verified that thermal data conversion from narrower raw thermal range does not improve
the quality of segmentation,

• single-stage pre-trained networks achieves better results than two-stage pre-trained models,
however two-stage methods seem to work better than single-stage when trained from scratch,

• network pre-training using visible light images improves the segmentation results for
thermal images.

The conclusion of this work is that segmentation algorithms can be used to segment experimental
animals in thermal images. Depending on the needs, one can customize architectures, learning
methods or image types for the best performance. Instance segmentation methods work better than the
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semantic segmentation methods. The presented approach will work well in social behaviour tests, but
not only that. It can be used wherever identification and tracking of experimental animals is required,
especially in numerous groups.

In the future it is worth training both architectures with a more diverse thermal database.
Increasing the amount of training data can also improve the results, especially for the TensorMask.

Author Contributions: Conceptualization, M.M.-M. and J.R.; data curation, M.M.-M.; formal analysis, M.M.-M.
and J.R.; funding acquisition, J.R.; investigation, M.M.-M.; methodology, M.M.-M. and J.R.; project administration,
M.M.-M. and J.R.; resources, M.M.-M.; software, M.M.-M. and T.K.; supervision, J.R.; validation, M.M.-M., J.R.
and T.K.; visualization, M.M.-M.; writing—original draft preparation, M.M.-M.; writing—review and editing, J.R.
and T.K. All authors have read and agreed to the published version of the manuscript.

Funding: This work has been partially supported by Statutory Funds of Electronics, Telecommunications and
Informatics Faculty, Gdansk University of Technology

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lezak, K.; Missig, G.; Carlezon, W.A., Jr. Behavioral methods to study anxiety in rodents. Dialogues Clin.
Neurosci. 2017, 19, 181–191. [PubMed]

2. Franco, N.H.; Gerós, A.; Oliveira, L.; Olsson, I.A.S.; Aguiar, P. ThermoLabAnimal—A high-throughput
analysis software for non-invasive thermal assessment of laboratory mice. Physiol. Behav. 2019, 207, 113–121.
[CrossRef] [PubMed]

3. Junior, C.F.C.; Pederiva, C.N.; Bose, R.C.; Garcia, V.A.; Lino-de-Oliveira, C.; Marino-Neto, J.
ETHOWATCHER: Validation of a tool for behavioral and video-tracking analysis in laboratory animals.
Comput. Biol. Med. 2012, 42, 257–264. [CrossRef] [PubMed]

4. Grant, E.; Mackintosh, J. A comparison of the social postures of some common laboratory rodents. Behaviour
1963, 21, 246–259.

5. Kask, A.; Nguyen, H.P.; Pabst, R.; von Hoorsten, S. Factors influencing behavior of group-housed male rats
in the social interaction test—Focus on cohort removal. Physiol. Behav. 2001, 74, 277–282. [CrossRef]

6. Aslani, S.; Harb, M.; Costa, P.; Almeida, O.; Sousa, N.; Palha, J. Day and night: diurnal phase influences the
response to chronic mild stress. Front. Behav. Neurosci. 2014, 8, 82. [CrossRef]

7. Roedel, A.; Storch, C.; Holsboer, F.; Ohl, F. Effects of light or dark phase testing on behavioural and cognitive
performance in DBA mice. Lab. Anim. 2006, 40, 371–381. [CrossRef]

8. Manzano-Szalai, K.; Pali-Schöll, I.; Krishnamurthy, D.; Stremnitzer, C.; Flaschberger, I.; Jensen-Jarolim, E.
Anaphylaxis Imaging: Non-Invasive Measurement of Surface Body Temperature and Physical Activity in
Small Animals. PLoS ONE 2016, 11, e0150819. [CrossRef]

9. Etehadtavakol, M.; Emrani, Z.; Ng, E.Y.K. Rapid extraction of the hottest or coldest regions of medical
thermographic images. Med. Biol. Eng. Comput. 2019, 57, 379–388. [CrossRef]

10. Jang, E.; Park, B.; Park, M.; Kim, S.; Sohn, J. Analysis of physiological signals for recognition of boredom,
pain, and surprise emotions. J. Phys. Anthropol. 2015, 34, 1–12. [CrossRef]

11. Tan, C.; Knight, Z. Regulation of Body Temperature by the Nervous System. Neuron 2018, 98, 31–48.
[CrossRef] [PubMed]

12. Sona, D.; Zanotto, M.; Papaleo, F.; Murino, V. Automated Discovery of Behavioural Patterns in Rodents.
In Proceedings of the 9th International Conference on Methods and Techniques in Behavioral Research,
Wageningen, The Netherlands, 27–29 August 2014.

13. Koniar, D.; Hargaš, L.; Loncová, Z.; Simonová, A.; Duchoň, F.; Beňo, P. Visual system-based object tracking
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