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Abstract: Image captioning is an important task for improving human-computer interaction as well
as for a deeper understanding of the mechanisms underlying the image description by human.
In recent years, this research field has rapidly developed and a number of impressive results have
been achieved. The typical models are based on a neural networks, including convolutional ones
for encoding images and recurrent ones for decoding them into text. More than that, attention
mechanism and transformers are actively used for boosting performance. However, even the best
models have a limit in their quality with a lack of data. In order to generate a variety of descriptions
of objects in different situations you need a large training set. The current commonly used datasets
although rather large in terms of number of images are quite small in terms of the number of
different captions per one image. We expanded the training dataset using text augmentation methods.
Methods include augmentation with synonyms as a baseline and the state-of-the-art language model
called Bidirectional Encoder Representations from Transformers (BERT). As a result, models that
were trained on a datasets augmented show better results than that models trained on a dataset
without augmentation.
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1. Introduction

Image captioning is the task of automatically generating a textual description of an image [1].
The goal pursued by the researchers is to make these textual descriptions as similar as possible to
how a human would describe an image. Systems of such generation capability can be used to help
visually impaired people improve a human-computer interactions by introducing visual concepts to a
computer and create better features for information retrieval using images [2,3].

In recent years, most approaches to solving the image captioning task include using neural networks.
Most of the used neural networks architectures are of an encoder-decoder type for example [4–8]. In such
models, an image is first encoded to its hidden representation and then a textual description of this
image is generated (decoded) based on this hidden representation. Convolutional neural networks, such
as VGG [9] and ResNet [10], are most often used as encoders, because they have proven themselves in a
variety of different computer vision tasks. Recurrent neural networks, such as RNN [11] or LSTM [12],
are used as decoders due to their wide applicability for natural language processing tasks.

However, the training and use of recurrent neural networks is quite challenging. To preserve
the information from the previous steps RNN uses a hidden state which task is to summarize and
store this information in a single vector. Nevertheless, this vector usually has a rather small dimension
and, as a result, a limited ability to remember information. In addition, as the length of the sequence
increases the complexity of training, the model for generating a sequence of words also increases.

Such methods as attention introduced in [13] and transformers described in [14], which has
proven their efficiency in solving a large set of NLP tasks, particularly sequence to sequence tasks,

Appl. Sci. 2020, 10, 5978; doi:10.3390/app10175978 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://dx.doi.org/10.3390/app10175978
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/17/5978?type=check_update&version=2


Appl. Sci. 2020, 10, 5978 2 of 11

allow for dealing with mentioned problems for caption generation task. The attention mechanism
helps RNN to attend areas of the image that are the most important on a next word generation step.
This helps to improve the quality of generated captions and gives some interpretation of the generation
process. The transformer has the self-attention and multi-head attention modules, which allow you
to get rid of recurrence while not losing the quality of taking into account the context and history of
previously generated words.

Year after year, models for image captioning are becoming increasingly complicated. However,
high-quality training of complex models (in particular neural networks) requires a sufficiently large
amount of labeled data. Although such commonly used for image captioning dataset as MSCOCO [15]
and Flickr30K [16] have a relatively large number of images in the training set, they still have a lack of
different descriptions per one image. Each image has in average no more than five different captions.
More than that some captions within the same image are quite similar and do not show all the diversity
with which a person can describe an image. Therefore, many models has poor performance from the
generated descriptions diversity point of view.

Problems with an insufficient number of diverse answers that a person can give in response
to a specific problem also exist for other vision-language tasks. Accordingly, for example, in the
main datasets [17–21] for the visual question answering problem there are only a few correct answers
for each question. However, the various answers that a person could give in reality are quite large.
The similar problems can be encountered when solving the visual dialog task. The datasets [22,23] for
this task contain only a limited number of replicas.

To tackle this problem, we applied text augmentation methods to image captions from a MSCOCO
dataset. The dataset augmentation is widely used for boosting a performance and obtaining model
stability in a many machine learning tasks. The various language model can be used for a text
augmentation. One of the most recent successful language models at the moment is BERT introduced
in [24]. BERT makes use of Transformer, an attention mechanism that learns contextual relations
between words (or sub-words) in a text. Transformer consists of two separate mechanisms—an
encoder that reads the text input and a decoder that produces a prediction for the task. As opposed to
directional models, which read the text input sequentially, the Transformer encoder reads the entire
sequence of words at once. This characteristic allows for the model to learn the context of a word
based on all of its surroundings.

Augmentation of a MSCOCO dataset using BERT has helped us to speed up several of the
state-of-the-art model for image captioning training and achieve better results when compared to the
same model trained on a dataset without augmentation at all.

The main contributions of this paper are as follows:

• we proposed the use of augmentation of image captions in a dataset (including augmentation
using BERT) to improve a solution of the image captioning problem. To our best knowledge this
is the first attempt to improve quality in image captioning through captions augmentation;

• we compared different augmentation methods—using synonyms and using BERT, as well as the
various increase in a dataset size on the training three state-of-the-art image captioning models
and its final quality;

• intensive experiments have shown that the proposed augmentation methods improve model
performance on the commonly used image captioning metrics, such as CIDEr and SPICe; and,

• the proposed methods are not limited to an image captioning task and can be used for different
vision-language tasks.

2. Related Work

2.1. Image Captioning

Image captioning is a difficult task on the intersection of computer vision (CV) and natural
language processing (NLP), which involves the generation of a short sentence describing the image [1].
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Encoder-decoder architectures are commonly used for this task which shows decent results. The task
of generating captures is a task of a sequence generation. More than that images can be treated like
a sort of “visual language” so the image captioning task can be considered as a machine translate
task from a “visual language” to a human language. Regarding this, many methods that have shown
themselves in the machine translation problem have also been successfully adapted to solve the image
captioning problem.

One of the most used methods that significantly improved the quality of basic models is a
mechanism called attention [13]. As an attention special case visual attention mechanism is widely
used in current state-of-the-art image captioning models. The main idea of visual attention is to allow
models to selectively concentrate on objects of interest.

Another approach is to use advantages of a transformer-based architectures [14]. They are
the state-of-the-art methods in sequence modeling tasks like machine translation [25] and language
modeling [24]. A number of image captioning models use transformer architectures in order to
improve their quality, like [26–28]. The great advantage of transformer models over other sequence
generation models is that transformers use a fully connected neural network instead of a recurrent
one. This simplifies model training and increases the ability of the model to take context into account.
Recent studies have shown that such approaches can be also applied to the image captioning task.

2.2. Augmentation

Augmentation is a method of creating additional training data from existing dataset. There are
many different augmentation techniques for data of a different nature. Augmentation showed itself
well for main tasks that are associated with the analysis of structured data such as images [29] and
text [30–32]. Usually augmentation methods depend on a specifics of the task however there are some
general approaches. For example for image augmentation [29] horizontal flip, random crop and more
are used. The various combinations of mentioned methods may also be used. Small image changes do
not affect its class and its content what allows you to expand the training set with such manipulations.
For the text augmentation tasks, random word deletions and insertions, synonymous replacements,
and word permutations within a sentence are usually used [30].

However, augmentation is rarely used in vision-language tasks, such as image captioning,
visual question answering, or visual dialog. The most of them, such as [33,34], use standard images
augmentation methods described above. The others use text augmentation techniques. For example,
in [35], simple augmentations, such as word permutations for captions or random words replacement,
are used for better evaluation metrics design. However, there are several works about more complex
augmentation methods for vision-language tasks. For example, in [36], the authors use the template
based generation method that uses image annotations and a LSTM based language model for
generating question-answer pairs about images.

2.3. BERT

BERT—Bidirectional Encoder Representations from Transformers [24]. The idea behind BERT
learning is to teach the model to predict missed words in a sentence. In order to do this, part of the
words in the sentence are replaced with a special token (MASK) and the task of the model is to predict
those words by their context. More than that to increase the model quality and to teach neural network
to understand the relationship between sentences at the same time it is taught to predict whether one
phrase is a logical continuation of the second. As a result, BERT is pre-trained on a large set of texts in
an unsupervised manner having high-quality vector representations of words and a model that can
predict words by context and the presence of a connection between sentences. In addition, thanks
to its architecture, BERT can be easily fine-tuned and adopted for specific tasks from the NLP field.
All of these features allowed it to become an essential part of almost all state-of-the-art NLP models
for today.
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3. Methodology

In this section, we will describe main methods of text augmentation. Particularly, we concentrate
on methods used in our research. In Section 3.1, we describe captions augmentation using a
synonymous replacement that we used as a baseline method for our studies. In Section 3.1,
we concentrate on an augmentation using language models, especially contextualized word
embeddings and BERT.

3.1. Synonymous Augmentation

Unlike image and speech processing augmentation by making random noises into the input
signal (characters) is not suitable for text augmentation. The relative order of letters and their presence
in a word can significantly affect the semantic meaning of the word itself. The best method of
text augmentation is to rephrase sentence as a person would do. However, this approach is very
complicated due to the size of a training datasets. One of the simpler, but still qualitative method,
is synonymous replacing augmentation first introduced in [30].

Let I be an image from a training set, C = {c1, . . . , ck} be a set of captions corresponding to that
image where each caption is a sequence of words ci = (wi,1, wi,2, . . . , wi,li ), li is a length of i-th caption.
Additionally, fix some synonymous thesaurus T and let T(wi,j) = (si,j,1, si,j,2, . . . , si,j,mi,j) be a list of
synonyms to a word wi,j sorted in descending order of semantic closeness to the most frequently seen
meaning of the word wi,j, mi,j—the number of synonyms of the word wi,j in the thesaurus T.

The following operation is performed in order to generate a new caption c′i based on a ci. Fix some
probability p. For every word wi,j ∈ ci, which has synonyms in a dictionary i.e., for which mi,j > 1
replace it with synonym with a probability p. To chose with which of the synonyms it will be replaced
fix another probability q. With a probability q, replace a word with the most semantically close
synonym si,j,1. If the word was not replaced by the first synonym replace it with the second closest one
si,j,2 with a probability q and so on. Thus, the probability of replacing word with synonym si,j,r is equal
to qr and it exponentially decreases with the semantic similarity of the synonym to the original word.
This operation of replacing a word with it synonym occurs independently for each word in a sentence.

The above operation of obtaining a new caption based on an existing one is done d times,
where d is called the augmentation coefficient. Accordingly, if the image has k captions after applying
augmentation with a coefficient d it will have kd captions, i.e., training set is increased d times.

3.2. Contextualized Word Embeddings Augmentation

To augment with contextualized word embeddings approach similar to described in [31,32] can
be used. Similarly to a synonymous replacement, let for some image I there is a set of sentences
C = {c1, . . . , ck} describing that image. Each sentence is a word sequence ci = (wi,1, wi,2, . . . , wi,li ).
For the purpose of augmentation fix a language model LM that can predict the probability that a
particular word w will occur in a certain context. More formally, consider some caption ci and the
j-th word of this caption. Let its context be the entire caption, except of the word itself, which is
ci \ {wi,j} = (wi,1, wi,2, . . . , wi,j−1, wi,j+1, . . . , wi,li ). Thus, LM(ci, j) = P(·|ci \ {wi,j}) is a probability
distribution over the words that can stand on a place j in a caption ci taking its context into account.

The following procedure needs to be done to obtain a new caption c′i based on an existing caption
ci using the language model. Fix the probability p that each concrete word from the caption should be
replaced by another word. In order to replace the word wi,j with another calculate LM(ci, j). After that,
generate the word w′i,j ∼ LM(ci, j) and take it as the next word of the new caption c′i. Repeating
the procedure for each word wi,j will create an augmented caption. Performing this operation of
augmenting the sentence d times for each of the captions will lead to obtaining kd sentences describing
the corresponding image.

Contextualized word embeddings models, such as BERT [24], DistilBERT [37], RoBERTA [38] or
XLNet [39], are the most suitable for using during the procedure described above.
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4. Results and Discussion

4.1. Dataset

We used MSCOCO [15], which is the largest and most used dataset for image captioning as a
base dataset for performing augmentation, in order to compare the effectiveness of the augmentation
methods. Its standard version consists of 82,783 training images and 40,504 validation images. There are
five different captions for each of the images. For offline evaluation, we used the standard Karpathy
split from [6], which is used by the most of the articles for results comparison. As a result, the final
dataset consists for 113,287 images for training, 5000 images for validation, and 5000 images for testing.

After dataset augmentation, we also performed postprocessing by replacing all the words that
occurred less than five times in the final dataset with a special token <UNK>. More than that,
because the vast majority of captions was no more than 16 words length we truncated the words to
maintain the maximal length of the caption equal to 16.

4.2. Implementation Details

We compared five different augmentation techniques for augmenting the original dataset.
Augmentation was only used for a train part of the dataset. In one of the options, we did not augment
the dataset at all and used this result as a baseline for comparison. In the other methods, we augmented
dataset using BERT with augmentation factor d equal to 2 and 3. We also performed augmentation
using synonyms with an augmentation factor equal to 2. The default value of replacement rate p was
equal to 0.1 in all cases except during the studies about replacement rate influence.

The effect of described augmentations was compared while training a model [40], which is one
of the state-of-the-art models with an open source code. We conducted extensive experiments to
choose the best augmentation method suitable for this model. Models on all datasets were trained for
12 epochs in a regular way and than for seven epochs in a self-critical way described in [4]. For captions
generation during the testing phase beam search algorithm with a beam size of 5 was used.

Additionally, we have confirmed our results on the other state-of-the-art models, such as [41,42],
on the best variant of dataset chosen based on the previous experiments with [40].

For all models, we used open source code released by the authors of the corresponding
papers. We used https://github.com/aimagelab/meshed-memory-transformer for [40], https://
github.com/husthuaan/AoANet for [41], and https://github.com/JDAI-CV/image-captioning for [42].
For augmentation, the nlpaug library [43] was used. The models were trained and tested using the
Google Cloud Platform on a cloud machine with 8 CPU cores, 30 GB operative memory and two Tesla
K80 GPUs.

4.3. Results

To compare the results we used BLEU [44], METEOR [45], ROUGE-L [46], CIDEr [47], and
SPICE [48], which are widely used for image captioning models comparison. BLEU is metrics which
is widely used for machine translation task. It uses n-grams precision to calculate a similarity score
between reference and generated sentences. METEOR is also a metric that is based on n-grams,
but it uses synonym matching functions along with exact word matching. ROUGE-L is based on a
longest common subsequence statistics. The longest common subsequence problem takes into account
sentence level structure similarity naturally and identifies longest co-occurring in sequence n-grams
automatically. We especially focused on a CIDEr and SPICE metrics, as they are a human consensus
metrics. CIDEr measures the similarity of the captions generated by the model and the captions that
created by a person using n-grams and performing TF-IDF weighting each of them. SPICE is based on
a semantics graph parsing is used to determine how well model has captured the attributes of objects
and their relationships.

It is important to note that all of the models trained based on their open source code show slightly
worse result than that reported in corresponding papers.

https://github.com/aimagelab/meshed-memory-transformer
https://github.com/husthuaan/AoANet
https://github.com/husthuaan/AoANet
https://github.com/JDAI-CV/image-captioning
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In Figure 1, you can see a comparison of augmentation using BERT with d = 2 for different values
of replacement rate p. It can be seen that, with a large value of p equal to 0.5 model performs worse
than with smaller value equal to 0.1. This may be due to the fact that too much information is lost
regarding the original caption and therefore the sentences become less grammatically correct and less
human-like. On the other hand, model with a value of 0.1 performs better than all others. Such small
changes adds some variety to the dataset without a damage to meaning and grammatical structure.
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Figure 1. Validation scores per epochs during a training phase on a datasets with Bidirectional Encoder
Representations from Transformers (BERT) augmentation with d = 1 and p = 0.1, 0.3, 0.6.

The comparison of models trained using various augmentation techniques—synonyms and
BERT—with a model trained on an original dataset is shown in Figure 2. The model trained on a
dataset with synonymous augmentation is slightly better that the original model. A model that was
trained on a dataset augmented with BERT shows significantly better results than both original model
and the model trained on a synonymous augmented dataset.
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Figure 2. Validation scores per epochs during a training phase on a dataset without augmentation,
on a dataset with BERT augmentation with d = 2 and on a dataset with synonyms augmentation with
d = 2.

Models that are trained on a BERT augmented dataset with d = 2 and d = 3 and p = 0.1 (as the
more promising replacement rate) are compared on a Figure 3. Comparison shows that the training
on the more augmented dataset don’t increases model performance. With a three-times increase in
dataset size the model trains worse than with a two-times increase. This shows some boundaries of
the proposed method and that the quality do not increase with the significant increase of the dataset
more than two-times.
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Figure 3. Validation scores per epochs during a training phase oon a dataset with BERT augmentation
with d = 2 and d = 5.

Table 1 summarizes the final test scores for all of the trained [40] models. The model trained on the
two-times increased dataset obtained using BERT with p = 0.1 augmentation shows the best results in
almost all of the metrics significantly exceeding the model trained on an original dataset by 2.7 points
for CIDEr and 0.2 points for SPICE. This proves the applicability of the proposed augmentation method
for models designed for image captioning task quality improvement. Augmentation can be widely
used to increase the quality of existing state-of-the-art approaches without any changes to that models.

Table 1. Evaluation results of the [40] model trained with our augmentation methods.

Augmentation BLEU-4 METEOR ROUGE-L CIDEr SPICE

No augmentation 38.3 1 28.6 58.0 126.1 22.6
BERT, d = 2, p = 0.1 37.8 28.9 58.3 128.8 22.8
BERT, d = 2, p = 0.3 37.3 28.5 57.8 125.4 21.9
BERT, d = 2, p = 0.5 37.3 28.8 58.0 126.5 22.3

BERT, d = 3 37.9 28.6 57.9 127.2 22.4
Synonyms, d = 2 37.7 28.7 57.8 127.4 22.2

1 The best result for each metric is marked with bold.

Table 2 summarizes the results for all three models trained with BERT augmentation with d = 2
and p = 0.1. All of the models trained with augmentation show better results than the corresponding
models trained without augmentation. This confirms our conclusions about benefits of the proposed
augmentation usage for training state-of-the-art image captioning models.

Table 2. Evaluation results of all of three tested models trained with our augmentation methods.

BLEU-4 METEOR ROUGE-L CIDEr SPICE

M2 Transformers [40], no augmentation 38.3 28.6 58.0 126.1 22.6
M2 Transformers, augmentation 37.8 28.9 58.3 128.8 22.8

AoANet [41], no augmentation 38.2 28.6 57.9 125.9 22.3
AoANet, augmentation 37.6 28.8 58.0 128.4 22.5

X-LAN [42], no augmentation 38.8 28.9 58.2 126.1 22.8
X-LAN, augmentation 37.9 29.2 58.3 128.6 22.9

4.4. Quantitative Analysis

We selected several examples of captions generated by the resulting models on a test data. They are
presented in Figure 4. Here, “Ground truth” denotes a real human-generated capture from a test set
used in a quality measuring. “Original” denotes a caption that is generated by a model trained on
an original dataset without augmentation. We can see that augmentation helps the model trained
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on augmented datasets to construct more elegant and rich sentences than the model trained on an
original dataset.

Figure 4. Examples of captions generated by the proposed models.

Additionally, some examples of augmentation of the original captions are presented in Figure 5.
Here, we can see that both augmentation methods using synonyms and BERT can diversify the captions
adding a model potential to learn more complex and general ideas about textual description of the
image. Additionally, since augmentation does not take into account the content of the image itself
sometimes the augmented captions do not reflect the essence on the image well enough. This simulates
the noise that may be present in the descriptions that are created by humans. Although augmentation
is not perfect, in general captions are similar to the ground truth ones.

Figure 5. Examples of proposed captions augmentation.

5. Conclusions

In this work, we proposed the use of augmentation of image captions in a dataset using
synonyms and contextualized word embeddings. Comparison of the results achieved by the models
during training on augmented datasets based on the MSCOCO dataset showed that the proposed
augmentation methods improve the quality of models for solving the image captioning problem.
It has also been shown that augmentation with contextualized word embeddings helps more than
with a synonymous replacement. In addition, the larger than two-times increased dataset after
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augmentation do not improve the results of the models. This may indicate the limits of the proposed
augmentation methods.

Despite the good results, it is worth noting that the captions generated by proposed augmentation
methods cannot completely replace human ones. In addition we augment the captions only at the word
level that limits the structure of augmented sentences (in particular, the number of words). Each word
may not have as many words that can be used instead in a particular context. This can also make it
difficult to automatically generate new captions for a training dataset.

In future works, other augmentation methods that work at the sentence level can be explored or
text paraphrasing methods can be used for the same purpose. Additionally, the applicability of the
proposed methods for the visual question answering task can be studied.
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1. Staniūtė, R.; Šešok, D. A Systematic Literature Review on Image Captioning. Appl. Sci. 2019, 9, 2024.
[CrossRef]

2. Zafar, B.; Ashraf, R.; Ali, N.; Iqbal, M.K.; Sajid, M.; Dar, S.H.; Ratyal, N.I. A novel discriminating and relative
global spatial image representation with applications in CBIR. Appl. Sci. 2018, 8, 2242. [CrossRef]

3. Belalia, A.; Belloulata, K.; Kpalma, K. Region-based image retrieval in the compressed domain using
shape-adaptive DCT. Multimed. Tools Appl. 2016, 75, 10175–10199. [CrossRef]

4. Rennie, S.J.; Marcheret, E.; Mroueh, Y.; Ross, J.; Goel, V. Self-critical sequence training for image
captioning. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition,
Honolulu, HI, USA, 21–26 July 2017; pp. 7008–7024.

5. Shuster, K.; Humeau, S.; Hu, H.; Bordes, A.; Weston, J. Engaging image captioning via personality.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA,
16–17 June 2019; pp. 12516–12526.

6. Karpathy, A.; Li, F.-F. Deep visual-semantic alignments for generating image descriptions. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015;
pp. 3128–3137.

7. Vinyals, O.; Toshev, A.; Bengio, S.; Erhan, D. Show and tell: A neural image caption generator. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015;
pp. 3156–3164.

8. Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhudinov, R.; Zemel, R.; Bengio, Y. Show, attend and tell:
Neural image caption generation with visual attention. In Proceedings of the 2015 International Conference
on Machine Learning, Lille, France, 6–11 July 2015; pp. 2048–2057.

9. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition.
arXiv 2015, arXiv:1409.1556.

10. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
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