
applied  
sciences

Article

The Application and Improvement of Deep Neural
Networks in Environmental Sound Recognition

Yu-Kai Lin 1, Mu-Chun Su 1,* and Yi-Zeng Hsieh 2,3,4,*
1 Department of Computer Science & Information Engineering, National Central University,

Taoyuan City 32001, Taiwan; stan.yk.lin@g.ncu.edu.tw
2 Department of Electrical Engineering, National Taiwan Ocean University, Keelung City 20224, Taiwan
3 Institute of Food Safety and Risk Management, National Taiwan Ocean University,

Keelung City 20224, Taiwan
4 Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung City 20224, Taiwan
* Correspondence: muchun@csie.ncu.edu.tw (M.-C.S.); yzhsieh@mail.ntou.edu.tw (Y.-Z.H.)

Received: 28 July 2020; Accepted: 21 August 2020; Published: 28 August 2020
����������
�������

Featured Application: Authors are encouraged to provide a concise description of the specific
application or a potential application of the work. This section is not mandatory.

Abstract: Neural networks have achieved great results in sound recognition, and many different
kinds of acoustic features have been tried as the training input for the network. However, there is
still doubt about whether a neural network can efficiently extract features from the raw audio
signal input. This study improved the raw-signal-input network from other researches using deeper
network architectures. The raw signals could be better analyzed in the proposed network. We also
presented a discussion of several kinds of network settings, and with the spectrogram-like conversion,
our network could reach an accuracy of 73.55% in the open-audio-dataset “Dataset for Environmental
Sound Classification 50” (ESC50). This study also proposed a network architecture that could combine
different kinds of network feeds with different features. With the help of global pooling, a flexible
fusion way was integrated into the network. Our experiment successfully combined two different
networks with different audio feature inputs (a raw audio signal and the log-mel spectrum). Using the
above settings, the proposed ParallelNet finally reached the accuracy of 81.55% in ESC50, which also
reached the recognition level of human beings.

Keywords: deep neural network; convolutional neural network; environmental sound recognition;
feature combination

1. Introduction

We live in a world surrounded by various acoustic signals. People react from their sense of
hearing in situations like passing streets, finding someone in a building, or communicating with others.
The development of computer vision has given machines the ability to support our lives in many
ways. Hearing sense, as another important factor of our lives, is also an appropriate target to develop
with artificial intelligence. A machine assistance acoustic detection system could be applied in several
aspects, such as healthcare [1], monitoring [2], security [3] and multi-media applications [4].

In the artificial intelligence domain, neural networks have been a popular research field in recent
years. Many acoustic topics have been researched with this technique, such as speech recognition [5,6]
and music information retrieval (MIR) [7,8]. However, this kind of acoustic research only work for a
certain purpose. Unlike this kind of content, the general acoustic events in our lives might not have
periodicity or clear rhythms that can be detected, and the non-stationary properties of environmental
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sound make this problem difficult and complex. To achieve a system that can deal with general
acoustic cases, the first step might be to recognize the current environmental scene. Scenes such as
coffee shops, streets, and offices all have a unique event set; by adding the scene information into
the detection system, the system complexity could be reduced. This is why environmental sound
recognition techniques are important and essential.

This study attempted to provide an end-to-end solution for an environmental sound recognition
system. There were two major contributions from this research. First, we improved the performance of
the network feed with a raw audio signal. Second, we proposed a more flexible parallel network that
could combine several kinds of features together. The result showed that this kind of network could
combine raw audio signals and the log-mel spectrum efficiently.

The rest of this paper is organized as follows: In Section 2, we introduce the background of this
research, including the current research on environmental sound recognition and the fundamental
knowledgement of neural networks. In Section 3, a detailed description of our network and development
methods is introduced. In Section 4, we perform experiments to examine our network architecture and
the proposed development method, and we compare our results with those of other research, using a
number of public datasets. In Section 5, we present a conclusion of our work and provide suggestions
for further research.

2. Related Works

2.1. Environmental Sound Recognition

The intention of the study is to resolve the conditions around Environmental sound recognition
(ESR), which is also known as environmental sound classification. The study is not specifically intended
to detect the event trigger time precisely, but more important to understand what the acoustic scene is.
In past years, numerous methods, such as the Gaussian Mixture Model (GMM) [9], Hidden Markov
model (HMM) [10,11], random forest [12], and support vector machine [13], etc., have been used
to solve the ESR problem. However, none of these methods can reach the level of human beings.
Since 2012, neural networks have shown the great potential in computer vision [14]. Increasingly,
researchers have begun to apply neural networks in the ESR field.

For a neural network, it is important to choose a suitable feature to be the input value. In 2014,
Piczak [15] proposed a usable network structure using the log-mel spectrum and delta as the input
features, which was once considered state-of-art in the ESR field. The log-mel spectrum has been a
popular feature used in the ESR field in recent years. In Challenge on Detection and Classification of
Acoustic Scenes and Events (DCASE challenges) [16,17], most of the researchers still choose to take the
log-mel spectrum as one of the network inputs in acoustic scene classification tasks.

In 2015, Sainath et al. [6] used a raw audio wave as the network input to train for speech recognition
and had promising results. Raw signals seem to be one of the choices in the ESR field.

In 2016, Aytar et al. [18] proposed SoundNet, which is trained using both images and raw
audio. The image part is used to assist in the training, but the scene is still recognized according
to the raw audio signals. The result of the network was impressive. Although, the performance
might drop considerably, the network structure can still be trainable using the raw audio signal
only. In the same year, Dai et al. [19] proposed an 18-layer network that could also work with raw
audio signals, and the larger number of filters and a deeper structure provided a much better result
using raw audio signals. We could clearly see that network architecture has a huge effect with the
raw signal input when comparing these two works [18,19]. The depth and the filter numbers are
obviously worth further discussions. On the other hand, both the two works use the global pooling
strategy [20] to integrate the network output information, which has shown an outstanding effect on
dimension reduction. Global pooling has other benefits in structure integration, which is explained in
our method development.
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In 2017, Tokozume and Harada [21] proposed EnvNet, which transforms a signal from a raw 1d
signal to a 2d spectrogram-like graph through the network. This is an interesting idea, because training
with a spectrum might also be adapted to this kind of graph. In the same year, Tokozume et al. [22]
proposed another augmentation method that could be applied in the same kind of network, and the
results could even reach the level of human beings.

These related works reveal that the input features greatly influence the performance of a network.
Although many features have been tried on the network, a proper way to combine individual acoustic
features are lacking. Moreover, network architectures that use raw signals as the input also require
further discussion. Therefore, based on the existing research, this study focuses on improving the
above-mentioned aspects.

2.2. Review of Neural Networks

The concept of neural networks has been proposed for a long time [23]. However, it was
not considered useful due to the enormous computation requirements. The recent development
of computer hardware has given researchers new opportunities to apply the technique in various
problems, such computer vision [14] and speech recognition [5], etc. Neural networks show great
potential in these aspects. In the following sections, we introduce the fundamental concepts of a neural
network, as well as some techniques to tune up a network.

2.3. Feed-Forward Neural Network

The simplest feed-forward neural networks would be Single-layer perceptrons, which can be
built up to do a regression. Assume we would like to project a X ε Rn to Y ε Rm, the two variables
could be rewrite as two vectors X = [§1 · · · §n]

T and Y = [†1 ··· †m]
T, so we could simply try the

formula below:
Y = WX+ b. (1)

In (1), W ε Rm ×n and b ε Rm ×1, therefore, the main purpose to solve the equation is to find the
suitable w and b. If we already had a certain sample Si = (Xi,Yi), obviously, we make the result of
input Xi could be as close toYi as possible. There are several methods that can be used to retrieve the
correct value of w and b, such as the stochastic gradient descent (SGD) or Newton’s method. No matter
which method is applied, the equation will have a good result when X andY among all the samples
are linearly dependent. Inspired by the animal neuron system, the activation function ϕ was added to
improve Equation (1), and the new equations are listed as (2) and (3):

ν = WX+ b (2)

Y = ϕ(ν). (3)

The activation function provides a non-linear transform to filter out the weaker signal. For example,
the classic activation function sigmoid is:

sigmoid(x) =
1

1 + e−x . (4)

After passing Equation (4), every output value is straightly normalized to a range between 0 and
1, which is a superior non-linear transform. Equation (3) can now have the ability to make a regression
to the non-linear equation.

From Equation (3), it can be clearly seen that each element in Y is actually composed of every
element of X in different weights. Here, X form an input layer, and each node create an element ofY is
called a neuron in the network.

To enhance the network structure, a hidden layer can be added to improve the network performance.
The neuron numbers in the hidden layer needs to be decided by users, it usually setup to the value
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bigger than both input and output dimensions. The hidden layer is used to project the input vector
into another dimension, resulting in a greater chance of finding a linear way to transform from a higher
dimension to the output layers. Several non-linear transform also make the network hold greater
power to complete complex regression.

To obtain the correct weights of the feed-forward neural networks, the backpropagation method [24]
(BP) is widely used. By calculating the gradient from the loss function, the gradients can be backward
propagated to each of the weights.

It seems that the network would better be design deeper, more layers, or wider, more neurons
per layer, but actually both of the two methods all get some issues need to be deal with. The weight
number grows exponentially with the width of the network, which also leads to a large growth of the
computation times and also causes the network to face a serious overfitting condition. This also means
that the network might easily fit the training data but still result in poor performance while testing.
Deeper networks need to solve the gradient decent problem. When performing BP, the gradient travels
from the end of the network and gets thinner and thinner while arriving at the front, and it can even
vanish directly. A number of methods have been proposed to improve the vanishing gradient problem,
of which a deeper network is recommended to be built as a solution.

2.4. Convolutional Neural Networks

The convolutional neural network (CNN) is a special type of neural network used in image
recognition. LeNet [25] is considered to be the first complete CNN. It is composed of convolution layers,
activation layers, pooling layers, and fully connected layers. These layers all have special usages, which
are introduced later in the paper. CNN resembles the original input image into a series of feature maps,
by which each pixel in the feature map is actually a neuron. Unlike the way in which a normal neural
network acts, each neuron does not connect to all the neurons in the previous layer; the connections
only build up when these two neurons have a certain locality relationship. It makes sense because the
information revealed in a certain location intuitively has a little chance to be related to another distant
location. In this way, the total weight is reduced, which helps to improve the over-fitting condition.

2.5. Convolutional Layers

Each convolutional layer is composed of several graphic filters called kernels, it works just like
the way in image processing does. Through convolutions, the kernels enhance part of the image’s
characteristic and turn the image into an individual feature map. The feature maps are all the same
size and are bundled together to become a brand-new image. The convolutional layer provides
an example regarding what the new image will look like. Each map in the same image is called a
channel, and the number of channels becomes the depth of the image. When working through the
convolution layers, the kernel actually processes all the channels once at a time. Another important
aspect of the convolutional layer is parameter sharing. If we look back to the processing method of
MLP, we can discover that each pixel in the same image needs to be applied to different kernels.
However, in convolutional layers, the whole image shares the same kernel to create a feature map,
which gives CNN an important shift invariant characteristic. As the kernel can move all around the
image, the features correlated with the kernel can be detected anywhere, which gives CNN superior
performance in image recognition.

2.6. Activation Layers

As mentioned in the previous section, the main purpose of the activation layer is to provide a
non-linear transform. These functions need to be derivative. There are several types of activation
functions, including sigmoid (4), tanh (5) and rectified linear unit (ReLU) (6):

tanh(x) =
ex
− e−x

ex + e−x (5)
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ReLU(x) = max(x, 0). (6)

Unfortunately, these activation functions all have some flaws. When using the gradient decent
methods, ReLU can be affected by gradient exploding, because ReLU does not change the range of the
output value from the input. Another problem cause by ReLU is the dead ReLU problem. When a relu
has a negative input value, it will give an output of 0, which will cause the whole chain of the input to not
update at that time, or even worse, never update until training is finished. On the other hand, sigmoid
and tanh are affected by the vanishing gradient problem, because the gradients BP from these functions
will at most only have 1/4 left. Comparing with these two groups of activation functions, we observe
that the problem of ReLU can be solved by adding a normalization layer, which also results in a faster
processing speed. For these reasons, ReLU is now the most commonly-used activation function.

2.7. Pooling Layers

Even though parameter sharing reduces the large number of parameters for CNN, for a large-scale
picture, it is still necessary to find a reasonable way to perform subsampling. Pooling layers can be
used to finish this job.

For a continuous signal (like an image), it is intuitive to perform downsampling by grouping a
fixed number of adjacent values and then picking up an output value from each group. The pickup
method could be based on the average, maximum, or minimum. Among these methods, maximum
pooling has shown the best result and is commonly used now.

However, care must be taken, as not all feature maps can take pooling as the down sampling
method. According to the previous description, each value in the same group needs to be adjacent,
which means these values actually have some spatial relationships, and each group also needs to have
the same spatial meaning. Therefore, pooling layers might not be suitable to in some cases using CNN,
such as in game maps [26].

2.8. Fully Connected Layers

Fully connected (FC) layers are similar to the typical MLP. The processing feature maps are
flattened before entering this layer and transform from several dimensions to a single vector. Most of
the parameters in a CNN are set in FC layers, and the size of the FC layer determines the capacity of
the network.

2.9. Loss Function

A neural network can be used for classification and regression, each of which needs a different
loss function, and these functions all need to be derivate:

Lossmse
(
y, t

)
=

1
2

(
y− t

)2
. (7)

Equation (7) is the mean square loss (MSE) function, which is often used in regression tasks.
It directly shows the difference between the output value and the target value. Another loss function
often used in classification is cross entropy, which usually works with the softmax logistic function.

In Equation (7), y =
[
y1 · · · yJ

]T
is the output vector coming from the FC layer and the J is the final class

number. Softmax tends to find the probability distribution of the classification result. After passing
through the function, the sum of output vector S becomes 1, and S j represents the probability of the
input being classified as class j:

S j
(
y
)
=

ey j∑J
k=1 eyk

(8)

Losscross entropy
(
y, t

)
= −

J∑
j=1

t jlogS j
(
y
)

(9)
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Losscross entropy = −logS j
(
y
)
. (10)

The purpose of cross entropy is to estimate the difference between two vectors by calculating the
log likely-hood function. The result is the same as that shown by Equation (9). In most classification
cases, the final result will be a one-hot vector, in which target j has a value of one and the other element
is zero, that is, only S j has the value. Therefore, the loss function then be simplified to (10).

2.10. Model Initialization

In a network, there are numerous hyper parameters that need to be decided, it is normally to
consider a way to do the initialize. An ideal properly-initialized network could have the following
property: if we take a series of random inputs into the network, the output should be fairly distributed
in each of the classes, and there should not be any particular trends at the beginning. Obviously,
randomly initializing the parameters will not have this effect. Glorot and Bengio proposed normalized
initialization [27] to keep the various from the layer input to output.

W ∼ U

 − √
6√

n j + n j+1
,

√
6√

n j + n j+1

 (11)

n j in Equation (11) means the number of inputs in layer j. Equation (11) performs well for linear layers,
but for nonlinear layers like ReLU, the equation needs to be adjusted.

He et al. proposed another method [28] to fix the formula, in which n j+1 in (11) can be simply
ignored. Our experiment used He’s method to initialize the network.

2.11. Batch Normalization

In the previous section, it was mentioned that ReLU needs a method to support it in arranging the
output value. The distribution of the output value also needs to be controlled. Sergey et al. proposed a
method called batch normalization [29]. The main concept of this method is to force the addition of a
linear transform before the nonlinear layer to make the variance and mean of the nonlinear layer input
X, Xε Ri × j ×k, i + j + k = m be in a certain range:

µβ ←
1
m

m∑
i=1

xi (12)

σ2
β ←

1
m

m∑
i=1

(
xi − µβ

)2
(13)

x̂i ←
xi − µβ√
σ2
β+ ∈

(14)

In Equations (12) and (13), the value of m is the total number of elements in the mini-batch and
channels. After Equation (14), the purpose is to find the current mean value µβ and current variance
σβ, and then adjust them to become 0 and 1:

yi ← γx̂i + β ≡ BNγ,β(xi). (15)

Other learnable transform parameters can be added into the formula, and the final result will
be similar to Equation (15). These two variables help the input values to do a little bit adjustment,
which helps to solve the dead ReLU problem. It is essential to take batch normalization in a
deep network.



Appl. Sci. 2020, 10, 5965 7 of 16

3. Method Development

3.1. Data Sets

In our experiments, we took two kinds of public data sets to evaluate our network structure
improvements: ESC50 [30] and ESC10 (Warsaw University of Technology, Warsaw, Poland).

ESC50 is a collection of environmental sound recordings that contains 50 classes, such as airplanes,
car horns, cats, humans laughing, and rain, etc. There are 2000 short clips in total, and each class has
40 files. Each clip is five seconds long, and there is a total length of 2.78 h. It was recommended to test
with the official 5-fold setting, as some of the files in the same class are extracted from the same source,
using the official fold could avoid some problems.

ESC10 is a subset of ESC50 that takes out 10 classes from ESC50, while other configurations remain
the same. It was beneficial to do a small-scale test in this dataset first.

3.2. Data Preprocessing

There are three kind of data put into our CNN such as the raw signal, the mel-spetrogram, and the
output of 1D network. The output of 1D network is that we input signal into the 2D network. For the
preprocessing, we first down-sampled the audio files to a sample rate of 16,000, averaged the stereo
audio to mono, and eliminated the empty segments at the front and the tail of the files. If the resulting
file was less than 1.5 s, we equally filled up the length with the 0 value at the beginning and end of
the files. In the training phase, based on the method in [22], we appended 750 ms of 0 to both sides
of the audio and then randomly cropped a 1.5 s clip, while the variance of the clip was 0. We then
continued to repeat the procedure. After cropping the file, the mean and variance of the clip were
normalized to 0 and 1. In the testing phase, we sequentially cropped 10 clips of 1.5 s each from the test
audio. Each clip overlapped for about 390 ms. We chose the majority of probability scheme to do the
final classification for each test file.

For the log spectrum, we transferred from the normalized clip with a sample rate of 16,000.
The frame size was set to 512 (about 30 ms) with a 50% overlap, and the resulting values were then put
through the log operation and mel-filters. This finally resulted in a 128-bin mel-spectrum. We did not
make further normalizations to the spectrum graph, and they were fed into the network directly.

3.3. Data Augmentation

Compared to image datasets [31,32], acoustic datasets are not very popular; the number of files is
insufficient, and there is a lack of diversity. Some researches [22,33] have revealed that data augmentation
can help to enhance the result of classification. Common acoustic augmentation methods include pitch
shifting and time stretching. Although CNN is shift invariant, these augmentation methods still have
an effect on network training, therefore we chose both of them to be our augmentation methods.

We performed another augmentation method, known as wave overlapping, which was inspired
by the study in [22] and their use of between class learning. We simplified the method to perform
augmentation for just for a signal class. We, first, randomly cropped two segments of the same size
from a single file, and then multiplied each of them by an individual random ratio from 0 to 1.
These two crops were then summed up together, and the mean and variance were normalized to 0 and
1. The difference of volume we create for the new segment riches the diversity of the data. It is a simple
method to enhance the dataset, and keeps the labels unchanged. The result shows that it is even better
than just provide two of the individual crops. The experiment is described in the following chapter.

3.4. Network Customization

CNN provides a flexible method to extract features from any kind of input.
Many researches [18,19,21,22] have shown that raw signals can be the input of a network. Inspired
by [21], we assumed that the concatenation of a 1d feature map would form a spectrum-like graph.
In fact, the 1d convolution along the time axis could actually fetch the frequency information from
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the raw signal. Each channel represents a set of frequencies, and the Y axis of the concatenation map
means the frequency sets the response at a certain moment. We believed that more features could be
extracted from this kind of map. Therefore one of our purposes was to optimize the extraction network.
As shown in Figure 1, we proposed a network structure feed with raw signals and output a feature
vector to entering a full connected layer to do the classification.

The network was composed of a 1D and 2D network. Just like the description above, the 1D
network was used to extract a spectrum-like map, and the 2D network was used to find detailed
features from the map.

Furthermore, the 2D network could not only be used in our network-organized map but could
also be applied in the mel filter bank spectrum. In the next chapter. We would show the result of
our network processing these two kinds of feature maps. Our network architectures are listed in
Tables 1 and 2.
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In Table 1, Conv refers to the convolutional layers and Pool refers to the max pooling layers.
All the Conv layers were appended with a batch normalization layer and a ReLU layer. The input



Appl. Sci. 2020, 10, 5965 9 of 16

tensor of the network was a 1d tensor of 1 × 24,000 (a 1.5 s clip under a sample rate of 16,000), and the
output tensor was a 2d tensor of 1 × 128 × 120.

Table 1. Architecture of the 1d network.

Layer Ksize Stride Padding #Filters

Input (1 × 24,000)
Conv1 13 1 same 32
Pool 2 2 0 –
Conv2 13 1 same 64
Conv3 15 3 same 128
Conv4 7 5 same 128
Conv5 11 8 same 128
Channel concatenation (1 × 128 × 100)

Table 2. Architecture of the 2D network and full connections.

Layer Ksize Stride #Filters

Input (1 ×M × N)
3 × Conv (1~3) (15, 1) (1, 1) (1, 1) (1, 1) 32
3 × Conv (4~6) (15, 1) (1, 1) (1, 1) (2, 1) 64
3 × Conv (7~9) (15, 1) (1, 1) (1, 1) (2, 1) 128
3 × Conv (10~12) (5, 5) (1, 1) (1, 2) (2, 2) 256
3 × Conv (13~15) (3, 3) (1, 1) (1, 1) (1, 1) 256
3 × Conv (16~18) (3, 3) (1, 1) (1, 1) (1, 1) 512
Conv19 (3, 3) (2, 2) 512
Conv20 (3, 3) (1, 1) 1024
Global max pooling (1024)
FC1 (2048)
FC2 (# classes)

In Table 2, the first six blocks contained three Conv layers each. These three Conv layers had the
same kernel size and filter number, but were constructed with different stride settings. All the Conv
layers were appended with a batch normalization layer and a ReLU layer. FC1 was also followed by a
batch normalization layer, a ReLU layer, and a drop out [34] for 50%. Padding was always applied on
Conv layers, and if there was no stride, the size of the output would be the same as the input of each
layer. The input size of this network was adjustable, but due to global pooling, the output size of the
max pooling layers could be controlled as the last channel number, which was 1024 in Conv 20.

3.5. Network Parallelization

One of the main purposes of our work was to find a suitable method to combine several features in
the network, we desired these features could eventually help adjust other networks during the training
procedure. Applying the idea to the features with high homogeneity is intuitive. Based on our 1D and
2D networks, we proposed a feature parallel network and took raw signals and the mel-spectrum as
examples. Figure 2 represents the concept of our method. In the last layer of the two-dimensional
(2D) network, we used the global max pooling [20] to extract the feature vector from different kinds of
feature maps. These extracted vectors could easily connect along the same axis whether their length
being the same or not. In our experiment, we tested the parallel features using the same vector size of
1024; therefore, the length of the 1d tensor entering the FC layer shown in Figure 2 was 2048.



Appl. Sci. 2020, 10, 5965 10 of 16

Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 16 

 
Figure 2. Parallel architecture of the network. 

4. Results and Discussion 

4.1. Experiment Setup 

The neural network could be highly complex, but have only a few non-linear layers. The 
increasing of the depth makes the network easier to fetch the abstract expression form the source. 
Our intention of increasing the depth of the network allows the network to generate an effective 
acoustic filter, like mel-filter from signal processing. 

We were interested in some particular setting within the network, so we would like to try modify 
some of these settings to examine what would they take effect. Our experiment focused on the 
following topics: 

 Signal length per frame in the 1d network 
 Depth of the 1d network 
 Channel numbers of the 1d network (the height of the generated map) 
 Kernel shape in the 2d network 
 The effect of pre-training before parallel 
 The effect of the augmentation 

We took ESC50 and ESC10 as our datasets, and used the official fold settings. The experiments 
only consisted of training and testing, and we did not perform additional validations. Each 
experiment ran for 350 epochs, and we used Nesterov’s accelerated gradient [35] as our network 
optimization method. The momentum factor was set to 0.8. The initial learning rate was set to 0.005 
and decayed to 1/5 in the following epochs: 150 and 200. L2 regulation was also used and was set to 
5*10-6. Our models were built using PyTorch 0.2.0 and were trained on the machine with GTX1080Ti 
(NVIDIA, Santa Clara, CA, USA). The audio wav files were extracted using PySoundFile 0.9, and 
LibROSA 0.6 was used to create the mel-spectrums. 

4.2. Architecture of the 1D Network 

To test the influence of the filter size in the 1d network, it was necessary to slightly modify the 
network structure shown in Table 1. 

The kernel sizes of Conv 4 and Conv 5 in the 1d network affected the frame length the most, 
therefore we tried three kinds of combinations to reach 25 ms, 35 ms, and 45 ms per frame. Test 
accuracy with the different frame lengths setting: the frame indicates the output unit of the 1d 
network. The dataset used in this test was ESC50, as shown in Table 3. 
  

Figure 2. Parallel architecture of the network.

4. Results and Discussion

4.1. Experiment Setup

The neural network could be highly complex, but have only a few non-linear layers. The increasing
of the depth makes the network easier to fetch the abstract expression form the source. Our intention
of increasing the depth of the network allows the network to generate an effective acoustic filter,
like mel-filter from signal processing.

We were interested in some particular setting within the network, so we would like to try modify
some of these settings to examine what would they take effect. Our experiment focused on the
following topics:

• Signal length per frame in the 1d network
• Depth of the 1d network
• Channel numbers of the 1D network (the height of the generated map)
• Kernel shape in the 2d network
• The effect of pre-training before parallel
• The effect of the augmentation

We took ESC50 and ESC10 as our datasets, and used the official fold settings. The experiments
only consisted of training and testing, and we did not perform additional validations. Each experiment
ran for 350 epochs, and we used Nesterov’s accelerated gradient [35] as our network optimization
method. The momentum factor was set to 0.8. The initial learning rate was set to 0.005 and decayed
to 1/5 in the following epochs: 150 and 200. L2 regulation was also used and was set to 5 × 10−6.
Our models were built using PyTorch 0.2.0 and were trained on the machine with GTX1080Ti (NVIDIA,
Santa Clara, CA, USA). The audio wav files were extracted using PySoundFile 0.9, and LibROSA 0.6
was used to create the mel-spectrums.

4.2. Architecture of the 1D Network

To test the influence of the filter size in the 1D network, it was necessary to slightly modify the
network structure shown in Table 1.

The kernel sizes of Conv 4 and Conv 5 in the 1D network affected the frame length the most,
therefore we tried three kinds of combinations to reach 25 ms, 35 ms, and 45 ms per frame. Test accuracy
with the different frame lengths setting: the frame indicates the output unit of the 1D network.
The dataset used in this test was ESC50, as shown in Table 3.
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Table 3. Test accuracy with different frame length settings.

Frame Length ~25 ms ~35 ms ~45 ms

ksize of Conv4 7 15 21
ksize of Conv5 11 15 19

Avg. 73.55% 72.45% 72.55%
Std. dev. 2.89% 2.57% 1.54%

Clearly, the most stable result was found at a frame size of 25 ms; as the frame size increased,
the accuracy worsened. The result found at 25 ms showed the most generalizability.

4.3. Network Depth

In the depth test, the epochs times is 350, but the result always converged before the 350 epochs.
Increasing the depth of the network could enhance the non-linear transform ability of the network,
and it is known as to enrich the abstract expressiveness. Also, the non-linear transform could consider
as the processes to form the acoustic filter just like mel-filter, gammatone-filter, etc.

In this test, we inserted a certain number of layers before Conv 2–5. The settings of these layers
were ksize = 3 and strides = 1. Padding was introduced to maintain the input length, the filter
numbers were equal to the former Conv layer, and each of the insertion layers was followed by a
batch normalization layer and a ReLU layer. The distribution of these layers was considered to not
significantly affect the frame length. We get two kinds of setting, 12 or 24 additional layers, the location
means in front of where these layers would be put. The configuration is shown in Table 4, and the
result in Table 5.

Table 4. Configuration of the depth test.

Location
#Layers Distribution of 12 Layers Distribution of 24 Layers

Conv2 6 10
Conv3 3 8
Conv4 2 5
Conv5 1 1

Table 5. Test accuracy with different depth settings of the 1d network.

Depth 12 + 5 24 + 5

Avg. 72.00% 66.95%
Std. 1.28% 2.62%

Although parameter numbers of the network increased slightly, we found that the network could
still converge within 350 epochs, so we kept it the same.

It was surprising that the depth of the 1D network did not significantly affect the result, or even
worse, the results going down while the network becomes deeper. The results were not consistent with
that of Dai et al. [19]. The main reason for this discrepancy may have been due to the frame size in
their experiment but not the depth of the network. More researches and experiments may be needed
to prove this argument.

4.4. Number of Filters

A sufficient number of filters was necessary to provide sufficient capacity for the network to load
the frequency information. Therefore, it could not be set too small. On the other hand, an excessively
large setting would cause a large graph to pass into the 2D network, which would slow down the
network processing but not provide a significant improvement in accuracy. We tried three different
settings: 64, 128, and 256, and the result is shown in Table 6.
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Table 6. Test accuracy using different filter numbers in the 1d network.

#Filters 64 128 256

Avg. 71.05% 73.55% 74.15%
Std. 2.05% 2.89% 3.16%

Although the setting of 256 had a slightly better result than 128, it required almost three times the
amount of training compared with the 128 filters model, we chose 128 filters as our final decision.

4.5. Architecture of the 2D Network

The kernel shape could affect the invariant shifting of CNN, and it is not desired for this kind of
invariant characteristic to show up in the frequency domain. In fact, a square kernel has been proven
to not be suitable for spectrum content. We tried three different shape settings to see which would the
best performer using our 1D-2D network by modified the size value of Conv (1~9). The test result is
shown in Table 7.

Table 7. Test accuracy using different kernel shapes in the 2D network.

Size (15,1) (15,15) (1,15)

Avg. 73.55% 67.25% 70.85%
Std. 2.89% 2.57% 2.75%

4.6. Parallel Network: The Effect of Pre-Training

To achieve the best performance of the parallel network, a pre-training procedure was required.
Our network was composed of a raw-signal-1D-2D network, a spectrogram-2D network, and a set
of fc layers. The pre-training procedure was built on the first two parts individually with their
own fc layers (see Figure 1), trained the network alone, and then took over the essentials part and
connected them into the parallel network. Likewise, we added an additional data source to improve
the network analysis capability. These two data sources with high homogeneity are chosen. The neural
network tends to ignore some information during the training, and our adding procedure is additional
information, the feature vector from another network, back to it after training. We tried two kinds of the
pre-training settings and compared them with the network before pre-training: Only pre-trained the
raw-signal-1D-2D network. Both the upper reaches were pre-trained. The result is shown in Table 8.

Table 8. Test accuracy.

Pre-Train Network Without Pre-Train Raw Signal Only Both Network

Avg. 78.20% 75.25% 81.55%
Std. 2.96% 2.18% 2.79%

The worst result occurred when the network was pre-trained only using the raw-signal-input
network; however, if we pre-trained both networks, we could then get the best result. This revealed
that the trained 1D-2D network could disturb the training procedure of the spectrogram network.

4.7. Data Augmentation

In this section, we test the augment method mentioned in the former paragraph. The wave-
overlapping method was used to insert two different crops into a single clip, and then three different kinds
of settings were applied. The original ESC50 had 1600 sets of training data in each fold. We randomly
picked up certain sets of data to make the additional training clips. Setting 1 took 800 original clips,
and Setting 2 took 400 clips. The wave overlapping created two crops from a single original source.
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Setting 3 caused these two crops to be pitch shifted or time stretched. We tested the result using a
partially pre-trained network and a fully pre-trained one. The results are shown in Tables 9 and 10.

Table 9. Test accuracy of augments applied in partial pre-pertained network.

Aug Type Original with Extra Overlap with Raw Overlap with PS/TS

Avg. 74.05% 76.95% 75.20%
Std. 3.55% 3.59% 2.65%

Table 10. Test accuracy of augments applied in full pre-trained network.

Aug Type Original with Extra Overlap with Raw

Avg. 81.40% 81.35%
Std. 3.04% 3.03%

4.8. Network Conclusion

The previous experiments found a network architecture with the most efficient settings. We next
compared our results with the networks with other researches based on raw signals or spectrograms
without augmentations, as shown in Table 11.

Table 11. Test result of different kinds of models with open-datasets.

Models Features
Accuracy

ESC50 ESC10

Piczak’s CNN [15] log-mel spectrogram 64.5% 81.0%

m18 [19] raw audio signal 68.5% [22] 81.8% [22]

EnvNet [21] *
raw audio signal
⊕

log-mel spectrogram
70.8% 87.2%

SoundNet (5 layers) [18] raw audio signal 65.0% 82.3%

AlexNet [36] spectrogram 69% 86%

GoogLeNet [36] spectrogram 73% 91%

EnvNet with BC [22] *
raw audio signal
⊕

log-mel spectrogram
75.9% 88.7%

EnvNet–v2 [22] raw audio signal 74.4% 85.8%

1D-2D network (ours) raw audio signal 73.55% 90.00%

ParallelNet (ours) raw audio signal
&log-mel spectrogram 81.55% 91.30%

Human accuracy [30] 81.3% 95.7%

* Result combined before softmax.

We summarized our experiment results as following:

• Our proposed method is an end to end system achieving 81.55% of accuracy in ESC50.
• Our proposed 1D-2D network could properly extract features from raw audio signal, compared

with the old works.
• Our proposed ParallelNet could efficiently raising the performance with multiple types of

input features.
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5. Conclusions and Perspectives

This study proposed a 1D-2D network to perform audio classification, using only the raw signal
input, as well as obtain the current best result in ESC50 among the networks using only the raw signal
input. In the 1D network, we showed that the frame size had the largest effect, and that a deeper
network might not be helpful when only using batch normalization. In addition, our parallel network
showed great potential in combining different audio features, and the result was better than that for
networks taking only one kind of feature individually. The final accuracy level corresponded to that of
a human being.

Although we found that different frame size and network depth settings could affect the
performance of a 1D network, the reasons causing these phenomena require more studies.
Much research [37–39] has proposed methods to show the response area in the input graphics
of CNN for the classification result or even for certain filters. The deep learning on sequential data
processing with Kolmogorov’s theorem is more and more important. Fine-grained visual classification
tasks, Zheng et al. [40] proposed a novel probability fusion decision framework (named as PFDM-Net)
for fine-grained visual classification. The authors in [41] proposed a novel device preprocessing of a
speech recognizer, leveraging the online noise tracking and deep learning of nonlinear interactions
between speech and noise. While, Osayamwen et al. [42] showed that such a supervisory loss of
function is not optimal in human activity recognition, and they improved the feature discriminative
power of the CNN models. These techniques could help find out hot spots in a spectrogram and
could also help to generate a highly response audio clip for certain layers, which could provide a good
direction for analyzing the true effect behind each kind of setting.

Most of our work focused on the arrangement of a 1D network, and there are still some topics
for a 2D network that need to be discussed, such as network depth, filter size, and layer placement.
These topics are all good targets for future work.

Our parallel network combined the raw audio input and log-mel spectrum successfully. More input
features could also be tried in the future, such as mel-frequency cepstral coefficients (MFCC) and
gammatone spectral coefficients (GTSC), etc. The feature vector ratio is also a good topic for future
discussion. With the help of global pooling, we could even combine different kinds of network
structures to perform the parallel test, just like the diverse fusion network structures used in computer
visual. Our parallel methods have excellent research potential.
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