
applied
sciences

Article

Real-Time and Robust Hydraulic System Fault
Detection via Edge Computing

Dzaky Zakiyal Fawwaz and Sang-Hwa Chung *

School of Computer Science and Engineering, Pusan National University, Busan 46241, Korea;
dzakybd@gmail.com
* Correspondence: shchung@pusan.ac.kr

Received: 10 August 2020; Accepted: 25 August 2020; Published: 27 August 2020
����������
�������

Abstract: We consider fault detection in a hydraulic system that maintains multivariate time-series
sensor data. Such a real-world industrial environment could suffer from noisy data resulting from
inaccuracies in hardware sensing or external interference. Thus, we propose a real-time and robust
fault detection method for hydraulic systems that leverages cooperation between cloud and edge
servers. The cloud server employs a new approach that includes a genetic algorithm (GA)-based
feature selection that identifies feature-to-label correlations and feature-to-feature redundancies.
A GA can efficiently process large search spaces, such as solving a combinatorial optimization
problem to identify the optimal feature subset. By using fewer important features that require
transmission and processing, this approach reduces detection time and improves model performance.
We propose a long short-term memory autoencoder for a robust fault detection model that leverages
temporal information on time-series sensor data and effectively handles noisy data. This detection
model is then deployed at edge servers that provide computing resources near the data source to
reduce latency. Our experimental results suggest that this method outperforms prior approaches
by demonstrating lower detection times, higher accuracy, and increased robustness to noisy data.
While we have a 63% reduction of features, our model obtains a high accuracy of approximately 98%
and is robust to noisy data with a signal-to-noise ratio near 0 dB. Our method also performs at an
average detection time of only 9.42 ms with a reduced average packet size of 179.98 KB from the
maximum of 343.78 KB.

Keywords: hydraulic system; edge computing; feature selection; fault detection; genetic algorithm;
long short-term memory; autoencoder

1. Introduction

Hydraulic systems are utilized in several industrial applications, including manufacturing,
automobiles, and heavy machinery [1–5]. Monitoring the condition of hydraulic equipment is essential,
as it can maintain high productivity and reduce the costs of system processes [6]. Three challenges to
the formulation of fault detection in a hydraulic system exist. First, conducting automated and real-time
fault detection without human intervention is difficult because of the time-sensitive requirements
to maintain proper system functionality [7]. Second, industrial sensor data are now more abundant
in sample quantity and dimension [8]. A hydraulic system operates with multivariate time-series
data obtained from multiple sensors, so identifying errors is challenging due to complex nonlinear
relationships between data. Third, real-world industrial sensors are often located within noisy
environments, so the data collected from these tend to be noisy and unreliable. Noise occurs typically
because of inaccuracies in sensor configurations or interference from the external environment [9].
Because operational decisions are made based on these sensor readings, the data must be more
reliable. Therefore, a solution that addresses these challenges of fault detection in hydraulic systems

Appl. Sci. 2020, 10, 5933; doi:10.3390/app10175933 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-4005-417X
http://dx.doi.org/10.3390/app10175933
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/17/5933?type=check_update&version=2

Appl. Sci. 2020, 10, 5933 2 of 19

must include establishing a real-time detection process, learning multivariate time-series sensor data,
and handling noisy data.

The concept of Industry 4.0 [10] is proposed as the current state-of-the-art among IT and
manufacturing that offers enhancements in product quality, real-time decision-making, and integrated
systems. Advanced technologies, such as the cloud, internet of things, and artificial intelligence,
are integrated into modern manufacturing [11,12]. The cloud includes the drawback of high response
times due to the long-distance transmission of massive data volumes. However, real-time responses
are essential for fault detection systems. Edge computing is designed to overcome this challenge by
offering computational resources near the data source resulting in decreased latency and transmission
costs [13]. Cooperation between cloud and edge servers must occur for real-time fault detection in
hydraulic systems [14]. For example, the cloud server can utilize offline learning, such as selecting the
important data to transfer and performing model training, while the real-time intelligent service of
fault detection is executed on the edge server.

We propose a genetic algorithm (GA)-based feature selection method that considers feature
correlations and redundancies. Sensor feature selection is incorporated to improve the fault detection
model performance while simultaneously utilizing fewer data by defining which sensor data
should be sent to reduce packet transmission. A GA offers an efficient solution for search without
pre-training with any domain knowledge. For the fault detection model, we employ a stacked long
short-term memory autoencoder (LSTM-AE) to extract features from the sequence data automatically,
which performs efficiently on latent features from clean or noisy data. Finally, the pre-trained encoder
is merged and re-trained with a dense layer and Softmax classifier to perform the fault detection.

The main contributions of this study include the following:

• We propose cooperation between cloud and edge servers to support a real-time fault detection
system. The cloud performs feature selection and offline learning, and the edge computes online
detection near the data source, which together reduces latency and transmission costs.

• We propose a GA-based feature selection that considers correlation and redundancy to ensure the
selection of features that are most important and not redundant for learning.

• We propose an LSTM-AE as the fault detection model to learn the temporal relations in the
time-series data and extract latent features from noisy data.

In the remainder of this paper, we explain the hydraulic system fault analysis in Section 2.
Next, we review previous work dedicated to hydraulic system fault detection in Section 3. An elaboration
of the proposed architecture and algorithm are presented in Sections 4–7. We demonstrate extensive
experiments to measure the effectiveness of the proposed method in Section 8. Finally, our conclusions
and future research directions are discussed.

2. Hydraulic System Fault Analysis

We use the hydraulic system condition monitoring dataset available from the UC Irvine Machine
Learning Repository [15], which is comprised of the primary and secondary circuits shown in Figure 1.
This dataset consists of 17 sensor measurements with the details of these sensor specifications listed in
Table 1. The components of the hydraulic sensor include 14 physical sensors, including six pressure
sensors (PS1–PS6), four temperature sensors (TS1–TS4), two volume flow sensors (FS1–FS2), a motor
power sensor (EPS1), a vibration sensor (VS1), and three virtual sensors of a computed values-efficiency
factor sensor (SE), a cooling efficiency sensor (CE), and a cooling power virtual sensor (CP). In addition,
the hydraulic circuit maintains other sensors, such as oil parameter monitoring (COPS) and oil
particle contamination (CS and MCS). Each sensor conducts measurements during a load cycle of 60 s,
with sampling rates or frequencies ranging from 1 Hz to 100 Hz. The dataset consists of 2205 load
cycles or samples, with each sample having a component state label corresponding to the fault
condition of the components. Table 2 describes the detailed taxonomy of the fault states for the
components, which includes four fault component targets of Cooler, indicating a cooling power fault,

Appl. Sci. 2020, 10, 5933 3 of 19

Valve, indicating a switching fault, Pump, indicating an internal pump leakage, and Accumulator,
indicating a gas leak. Each type of fault includes several classes that represent various component
degradation states.

Figure 1. Illustration of the hydraulic system.

Table 1. Hydraulic system sensors.

Sensor Description Unit Rate (Hz) Packet Size (KB)

PS1-6 Pressure bar 100 47.02
EPS1 Motor power W 100 47.02
FS1-2 Volume flow L/min 10 4.84
TS1-4 Temperature °C 1 0.62
VS1 Vibration mm/s 1 0.62

CE (Virtual) Cooling efficiency % 1 0.62
CP (Virtual) Cooling power kW 1 0.62
SE (Virtual) Efficiency factor % 1 0.62

Table 2. Hydraulic fault component targets.

Component Fault Condition Control Parameter States Samples

Cooler (C1)
Cooling power

decrease Fan duty cycle of C1
100%: Full efficiency
20%: Reduced efficiency
3%: Close to total failure

732
732
741

Valve (V10)
Switching

degradation
Switchable bypass

orifices V9

100%: Optimal behavior
90%: Small lag
80%: Severe lag
73%: Close to total failure

1125
360
360
360

Pump (MP1)
Internal
leakage Control current of V10

0: No leakage
1: Weak leakage
2: Severe leakage

1221
492
492

Accumulator (A1–4) Gas leakage
A1-4 with different

pre-charge pressures

130 bar: Optimal pressure
115 bar: Slightly reduced
100 bar: Severely reduced
90 bar: Close to total failure

599
399
399
808

3. Related Work

Edge computing is a paradigm that brings computation resources to devices on the network
that are closer to the data source. Edge computing is utilized for time-sensitive applications, such as

Appl. Sci. 2020, 10, 5933 4 of 19

industrial condition monitoring. Park et al. [16] proposed an edge-based fault detection using an LSTM
model in an industrial robot manipulator that incorporated vibration, temperature sensors, and the
use of one edge device attached to the machine and pressure sensors. Syafrudin et al. [17] proposed
edge-based fault detection using density-based spatial clustering and a random forest algorithm for
an automobile parts factory that employed an edge model on each workstation of the assembly line.
Li et al. [18] proposed edge-based visual defect detection using a convolutional neural network (CNN)
model in a tile production factory that deployed multiple cameras to capture visual information of
the products [19]. These data were then sent to an edge node to inspect potential defects. Even with
these approaches, there remain few studies on fault detection within the context of applications in
edge computing.

Several works exist that used the same data sets as in this study. Helwig et al. [15,20] convert the
time domain data into frequency domain using fast fourier transform, and generate statistical features,
such as the slope of the linear fit, median, variance, skewness, the position of the maximum value,
and kurtosis [21]. They then calculated features for fault label correlation and selected the n features by
ranking or sorting the correlation (CS). Finally, this approach applied linear discriminant analysis [22]
for the fault classification. Prakash et al. [23] also utilized statistical features of frequency domain data,
such as mean, skewness, and kurtosis, and applied XGBoost [24] to define feature importance (XFI)
and select half of the highest correlations along with a deep neural network for the classification model.
In [25], the authors proposed a dimensional reduction approach with principal component analysis
(PCA) [26] to transform the raw features to a fewer number of principal component features, and then
classify the faults using XGBoost. Konig et al. [27] and Yuan et al. [28] proposed a CNN [29] as the
classification model into which they directly fed the raw data because CNNs can extract features.

These previous approaches include several drawbacks. First, none considered edge computing
for application to hydraulic system fault detection that supports real-time detection and reduces
transmission costs. Second, such statistical feature extraction, PCA, and other feature engineering
methods are not suitable for real-time detection. These techniques must be applied to each new
incoming sample, thereby consuming more time and computation power. Thus, directly using the raw
data with less feature engineering is preferred. Third, the proposed feature selection methods, such as
CS and XFI, may suffer from utilizing redundant features, as omitting redundant features would
improve the model learning. Finally, noisy data in such real-world industrial environments, such as a
hydraulic system, are inevitable because sensors can receive external noise factors (e.g., distorted sensor
sensing) or internal factors (e.g., sensor malfunction), and no previous work addressed this issue.

With the aforementioned open issues, we propose cooperation between edge and cloud to
ensure real-time detection and low transmission costs. Then, selecting and processing raw data
with less extensive processing using the new approach of correlation and redundancy-aware feature
selection (CRFS) that supports faster processing and better model learning. We overcome multivariate
time-series and noisy data handling issues with an LSTM-AE fault detection model. Finally,
the comparison between the prior works and our proposed method presented in Table 3.

Table 3. Comparison with related works.

Paper Feature
Usage

Feature Selection
Method

Fault Detection
Model

Temporal
Learning

Dimensional
Reduction Denoising

Helwig et al. [15]
Statistical

feature subset CS LDA 7 3 7

Prakash et al. [23]
Statistical

feature subset XFI DNN 7 7 7

Lei et al. [25]
Transformed

features PCA XGBoost 7 3 7

Konig et al. [27]
Transformed
raw features - CNN 7 3 7

Proposed
Raw feature

subset CRFS LSTM-AE 3 3 3

Appl. Sci. 2020, 10, 5933 5 of 19

4. Real-Time Fault Detection in Edge Computing

We propose a holistic framework for real-time and robust hydraulic system fault detection,
as illustrated in Figure 2. The process for real-time detection is described in Algorithm 1. In lines 1–3,
we conduct offline learning at the cloud server using historical data consisting of selecting the feature
subsets, training the fault detection model or classifier (CLF), and deploying the model to the edge
server. We use our proposed correlation and redundancy-aware feature selection to select on most
relevant and less redundant features that described in detail in the Section 6. By performing the feature
selection, we determine which features are essential during the fault detection process. These smaller
feature subsets are directed to the edge and used for real-time detection. We pre-train an LSTM-AE,
then put and tune the encoder part with a classifier layer to obtain a classifier model. These learning
models will be further depicted in Section 7. By deploying the classifier model on the edge server with
the features selected, the urgency of time-sensitive applications, such as fault detection, is supported.
All feature data can still be sent to the cloud for collection as historical data and further analysis. Hence,
the cooperation between the cloud and edge servers established in this framework provides efficient
real-time fault detection for a hydraulic system.

Edge layer

Cloud

Edge server

Cloud layer

Encoded
features

Classifier
Output

data t-2data t-1
Prediction

Fault

Normal

Fault
monitor

 Correlation-based feature
selection using GA

xx

Windowed
data (queue)

Historical
data

Faster processing by
using raw data, instead

of enginereed data

Real-time & robust
fault detection

Offline
learning

Real-time
detection

Process flow:

Hydraulic
sensor data
in time cycle

LSTM-AE has abilty to
learn temporal relation
and handle noisy data

data t
Smaller
features

All
features

Light data transfer
and processing by

using feature subset

LSTM
encoder

LSTM
decoder

Figure 2. Architecture of the proposed real-time fault detection with edge computing.

Algorithm 1 Real-time time-series fault detection.
Input Historical data with all features f
Output Predicted output c

. Offline learning at Cloud server
1: Feature selection fs based on Algorithm 2
2: Train LSTM-AE using fs based on Algorithm 3
3: Deploy trained classifier CLF to Edge server

. Real-time detection at Edge server
4: Initialize queue Q = {} with size w
5: for all incoming data x with feature subset fs do
6: Calculate mean and normalize x
7: Push x to Q
8: if number of elements in Q == w then
9: Predict Q using CLF model

10: Pop top element in Q

Within a real-world scenario, the sensor data stream arrives sequentially, so these incoming data
are queued, and the detection is performed on these queued elements. The window queue functions
accommodate the data stream that is then fed into the LSTM model, which learns the temporal
relationships between these sequence data. The incoming data include the selected features resulting

Appl. Sci. 2020, 10, 5933 6 of 19

from the CRFS algorithm. Therefore, our framework is suitable for general industrial systems that
conduct simultaneous condition monitoring in time cycles. These processes are shown in lines 4–10.

5. Data Pre-Processing

5.1. Data Balancing

The dataset used in this study suffers from an imbalanced class distribution over several fault
types, including Valve, Pump, and Accumulator components with a ratio of normal and fault class
at least 1:2 or more. An imbalanced class dataset can result in our model ignoring the learning of a
minority class, thereby resulting in biased model performance [30]. Thus, we perform data balancing
using a random over-sampling to duplicate samples randomly from the minority class. As a result of
this pre-processing, the number of component samples becomes 741 × 3 for the Cooler, 1125 × 4 for
the Valve, 1221 × 3 for the Pump, and 808 × 4 for the Accumulator.

5.2. Mean and Normalization

Additional pre-processing steps are performed after the data are obtained at the edge server.
First, the means of the data are calculated to obtain a single value over the different sampling rate data.
Second, the incoming data are normalized in the range of 0–1. By normalizing all inputs to a standard
scale, the network model can learn the optimal parameters for each input node more rapidly.

5.3. Data Windowing

Before sending the input into the fault detection model, we perform data windowing to divide and
group the multivariate time-series sensor data based on the window length w, X → X, as expressed
in Equation (1). The value of w describes how many time-steps are processed, and the length of data
changes from t to n = t− w + 1 sequences, as shown in Equation (2):

x1 = [x1, . . . , xw]

x2 = [x2, . . . , xw+1]

xn = [xn, . . . , xt]

(1)

X = [x1, x2, . . . , xt]

X = [x1, x2, . . . , xn]
(2)

5.4. Adding Noise

We also evaluate the robustness of our proposed method against noise as compared to the prior
works described earlier. We add noise at different levels to the raw sensor data, as illustrated with
the temperature sensor TS1, presented in Figure 3. Each figure shows the sensor data applied with
a different noise degree in the signal-to-noise ratio (SNR), as defined in Equation (3), where Pnoise
represents the power of the noise, and Psignal represents the power of the signal:

SNRdB = 10 log10

(
Psignal

Pnoise

)
(3)

Appl. Sci. 2020, 10, 5933 7 of 19

35

40

45

50

55

Te
m

pe
ra

tu
re

 (°
C

)
Input Original Input SNR 20 dB Input SNR 15 dB Input SNR 10 dB Input SNR 5 dB Input SNR 0 dB

0 1000 2000
Time (s)

35

40

45

50

55

Te
m

pe
ra

tu
re

 (°
C

)

Reconstructed Original

0 1000 2000
Time (s)

Reconstructed SNR 20 dB

0 1000 2000
Time (s)

Reconstructed SNR 15 dB

0 1000 2000
Time (s)

Reconstructed SNR 10 dB

0 1000 2000
Time (s)

Reconstructed SNR 5 dB

0 1000 2000
Time (s)

Reconstructed SNR 0 dB

Figure 3. Plots of noisy data collected at the TS1 sensor with different signal-to-noise ratios.

6. Correlation and Redundancy-Aware Feature Selection Using a Genetic Algorithm

A GA is designed to find optimal solutions within a large search space by exploiting the process of
natural selection. As a GA can discover more fit solutions after each generation, it can then identify the
best solution among these [31]. Thus, a GA does not require domain knowledge to assist in the search
process. Three standard operators exist to regulate the population, including a selection, crossover,
and mutation operator. The selection operator determines the parents from the population, and the
crossover operator defines a recombination method between the parents. Then, the mutation operator
defines the genetic diversity among the offspring. The GA iterations are terminated when a pre-defined
stopping criterion is met, which typically is a maximum generation number. In terms of the feature
selection problem, the GA considers all possible subsets of the given feature set [32]. The individual
is represented as an n-bit binary string that reflects a certain feature subset. Each bit represents the
elimination or inclusion of the related feature, such that 0 represents elimination, and 1 represents the
inclusion of the feature.

The CRFS process is presented in Algorithm 2 and follows the goal of selecting features based
on their correlation. CRFS adopts the non-dominated sorting genetic algorithm (NSGA) that works
with the multiobjective problem [33]. CRFS minimizes three objectives formulated in Equation (5).
First, gcoro (x) attempts to obtain features with a high correlation to the output label, which is important
for the learning process. Second, gcor f (x) maintains the selected features that have a low correlation to
each other because high feature-to-feature correlations represent redundant features. Avoiding these
redundant features results in fewer feature subsets, reduces model overfitting, and enables the model
to identify interactions and important interrelated information better [34]. In our case, length n is 17
representing the number of all sensor features, and k is the number of features included in the solution.
These objectives ensure that the selected features have a high correlation, low redundancy, and are
part of a smaller feature subset. CRFS automatically defines the number of selected features because
it is included in the objective. At the end of the iteration, we obtain the non-dominated individuals
at the Pareto front, from which we select only one solution by first normalizing the values and then
applying the weight (importance) of each objective with respect to the others.

In lines 2–3 of Algorithm 2, CRFS calculates the Pearson correlation coefficient [35] using
Equation (4), which represents the linear relationship between two variables ranging between−1 and 1.
The values of −1 and 1 represent a perfect relationship, while 0 indicates the absence of a relationship
between the variables. We take the absolute value because 1 and −1 have the same meaning, and then
we run the NSGA from lines 4 through 13. In line 14, we obtain the non-dominated individuals at
the Pareto front and select the fittest one among these by scaling the objectives using Equation (6).
Then, this scaled objective is applied to calculate each objective weight formulated with Equation (7),
where the weight represents each objective priority. The total of the objective weights is 1, and the
weighted and scaled objective score ranges between 0 and 1, as presented in Equation (8). Because this
process is a minimization problem, we select the solution with the lowest objective value, as performed
in lines 15–17:

Appl. Sci. 2020, 10, 5933 8 of 19

ρ(f1, f2) =
cov(f1, f2)

σf1 σf2

=
∑n

i (f1i − f1)(f2i − f2)√
∑n

i (f1i − f1)2(f2i − f2)2

(4)

minimize
x

gcoro (x), gcor f (x), k

subject to gcoro (x) = n−
k

∑
i

∣∣ρ(fi, o)
∣∣

gcor f (x) =
Ck

2

∑
i,j

∣∣∣ρ(fi, f j)
∣∣∣

(5)

g′i =
gi −min(g)

max(g)−min(g)
(6)

gw(x) = wcoro g′coro (x) + wcor f g′cor f
(x) + wnb f

k
n

(7)

0 ≤ gw(x), g′coro (x), g′cor f
(x),

k
n
≤ 1

0 ≤ wcoro + wcor f + wnb f
≤ 1

(8)

Algorithm 2 Correlation-based Feature Selection using GA.
Input Set of all features f , Number of features n, Objective weights wcoro , wcor f , wnb f

Output Set of selected features fs

1: for all feature f do
2: Calculate all feature-to-output correlation ρ(fi, o)
3: Calculate correlation between features ρ(fi, f j)
4: Initialize empty population P(i) and archive A(i) at generation i, where initially i = 1
5: Generate random individuals with length k to P(i)
6: Calculate objective values of each individual in P(i)
7: repeat
8: Assign Pareto rank to each individual in P(i)
9: Selecting the highest ranked individuals with ties broken by preferring large crowding distances

from population P(i) into archive A(i)
10: Form a mating pool from A(i) using binary tournament selection
11: Generate P(i + 1) using crossover and mutation operator to the mating pool
12: until Maximum generation t reached
13: Get the non-dominated individuals from A(t)
14: Calculate the weighted and scaled objective of each non-dominated individual, gw(x)
15: Get the individual with lowest gw(x)
16: Get the set of selected features fs

7. Robust Fault Detection Using LSTM-AE

7.1. Learning Temporal Information

Deep learning models have continuously advanced over many years. For applications in
time-series data research, such approaches as the recurrent neural network (RNN) introduced the

Appl. Sci. 2020, 10, 5933 9 of 19

idea of a time sequence within a neural network structure design that enables it to handle time-series
data analysis [36]. The subsequent development of LSTM cells extended this capability to enable the
learning of long-term dependencies through gates that control the learning process [37]. With the
option to add or delete information from this cell state, LSTM could then solve the vanishing-gradient
problem that occurs in the standard RNN [38]. The cell computes a hidden state, or output vector
ht, of the LSTM cell, and then updates the cell state ct based on the previous cell (ct−1, ht−1) and the
input sequence xt at time step t. The three gates of the input gate it, forget gate vt, and output gate ot

are the key components for the LSTM in learning long-term relations through the selection of which
information should be kept. These LSTM gates are represented in Equation (9) and illustrated in
Figure 4. The c0 and h0 coefficients are initialized with the value of 0, and the operator ◦ represents an
element-wise product. The term c̃t is the cell input activation vector, and σ and tanh are the sigmoid
and hyperbolic tangent functions, respectively. The training objective is to optimize W, R, and the
b parameter, where W and R are the input and recurrent cell weights, respectively, while b is the
bias vector:

vt = σ
(

W f xt + U f ht−1 + b f

)
it = σ (Wixt + Uiht−1 + bi)

ot = σ (Woxt + Uoht−1 + bo)

c̃t = tanh (Wcxt + Ucht−1 + bc)

ct = ft ◦ ct−1 + it ◦ c̃t

ht = ot ◦ tanh (ct)

(9)

X +

X X

σ

ct-1

ht-1

xt

ct

ht

it otct̃

σ σ

vt

tan h

tan h

Figure 4. LSTM illustration.

7.2. Denoising and Latent Feature Extraction

The schema of the proposed fault detection method is shown in Figure 5 and is presented as
an LSTM-based autoencoder model or LSTM-AE. AEs are used in representation learning with the
objective of reconstructing the input data x from an encoded representation. The components of the
AE include an encoder eφ and a decoder dθ as expressed in Equation (10). The process of pre-training
is described in Algorithm 3 with lines 4–9. The encoder focuses on the task to learn the prominent
characteristics and extract the encoded features h [39]. The decoder reconstructs the input from the
encoded features x′. Because the encoder returns a vector, we require a repeated vector function
to convert the vector into sequence data, so that it can input into the decoder. The encoder and
decoder feature a symmetric architecture. The reconstruction error measured with the mean squared
error is expressed in Equation (11). The model parameter optimization is based on the error via the
backpropagation algorithm. An AE can handle noisy data because it can extract latent features from
the data if it is clean or noisy [40]. Our LSTM-based autoencoder basically is a sequence-to-sequence
model that reconstruct time-series sequences [41]. The LSTM-AE provides the functionality of the

Appl. Sci. 2020, 10, 5933 10 of 19

feature extractor during the pre-training phase, which provides the initial weight to the model [42].
Therefore, the classifier has an optimized initial weight for training the model:

eφ(x) = h

dθ(h) = x′
(10)

LAE(θ, φ) =
1
n

n

∑
i=1

(xi − dθ(eφ(xi)))
2 (11)

y1: Fault

yN: Label

...

y1: Fault

yN: Label

...

Data windowing

y1: Fault

yN: Label

...

Y Ŷ

Actual label Predicted label

Dataset

x1

X X̂

Input
sequence

Reconstructed
sequence

Loss = |X - X̂|

Multivariate
features

LSTM
cell

LSTM
cell

...

LSTM
cell

LSTM
cell

LSTM
cell

LSTM
cell

......

Repeated
vector

Encoder
LSTM layer 1

Encoder
LSTM layer N

Dense

Dense

...

Dense

Dense

Time-distributed
dense layer

Window
size

(return vector)

LSTM
cell

LSTM
cell

...

LSTM
cell

LSTM
cell

LSTM
cell

LSTM
cell

... ...

Decoder
LSTM layer 1

Decoder
LSTM layer N

(return sequence)

Encoded
feature vectorx2

Label
data

Sequence
data

Autoencoder

Classifier

Dropout
layer

Loss = J(Y, Ŷ)

Feature-to-feature &
feature-to-label

correlations

Feature
selectionx

...

p
1

p
n

...

Softmax
layer

1. Pretraining
(unsupervised learning)

2. Training and testing
(supervised learning)

Process area:

Dense
layer

Mean
Normalization (0-1)

Figure 5. Schema of the proposed fault detection method.

Algorithm 3 Pre-training-Training of the LSTM-AE.
Input Number of epochs, Feature selected data X
Output Trained classifier CLF

1: Calculate mean and normalize X
2: Data windowing X → X
3: Parameter initialization θ, φ

. Pre-training Autoencoder
4: Build autoencoder model AE
5: for all epochs do
6: Calculate encoder output vector h
7: Calculate reconstructed output x′

8: Calculate reconstruction cost LAE(θ, φ)
9: Update parameter θ, φ via backpropagation

. Training Classifier
10: Build CLF model from encoder and classifier layer
11: for all epochs do
12: Calculate dense layer output vector z
13: Calculate class probability s(z)i
14: Calculate classification error LCLF(θ, σ)
15: Update parameter θ, W via backpropagation

7.3. Fault Classification

After pre-training the LSTM-AE, the encoder is merged and trained with a dropout layer, a fully
connected, or dense layer [43], and a softmax classifier layer. The dropout is a regularization method

Appl. Sci. 2020, 10, 5933 11 of 19

where random neurons are ignored during training so that the network can obtain better generalization
and prevent overfitting [44]. The softmax classifier layer [45] assigns the transformed vector into the
predicted classes and its distribution. The process of training is described in Algorithm 3 with
lines 10–15. This classifier model undergoes supervised training using labeled data, and a categorical
cross-entropy loss [46] optimizes the dense weight and encoder parameters via the backpropagation
algorithm, as expressed in Equation (14):

zt = R(Wiht + bi)

R(x) = max(0, x)
(12)

s(z)i =
ezi

∑c
j ezj

for i = 1, . . . , c (13)

LCLF(θ, σ) = −
c

∑
i

yi log
(
s(z)i

)
(14)

8. Performance Evaluation

8.1. Experimental Setup

We performed experiments using three devices to act as a sensor pool, edge server, and cloud
server. The sensor pool sends the data to the target server, and either the edge or cloud server collects
the data and performs the fault detection with the trained model. We implemented the CRFS algorithm
using JmetalPy [47], and the fault detection model was implemented in Tensorflow [48] with Keras [49]
for the high-level API to build the model. The experiments were evaluated through the accuracy (0–1),
detection time (ms) that maintains the total of data transmission time and model prediction time, and
packet size (KB). Table 4 lists the parameters considered for these experiments.

Table 4. Experimental parameters.

Parameter Value

CRFS

Population and Offspring size 100
Mutation Bit-flip (1/n) [50]
Crossover Single-point (0.9) [51]
Selection Binary tournament [52]
Weights wcoro = 0.4, wcor f = 0.4, wnb f

= 0.2
Iterations 25,000

LSTM-AE

Test data ratio 0.2
Encoder and Decoder units [64, 32, 16] and [16, 32, 64]
Encoded features 8
Dense neurons 8
Dropout 0.3
Window size 3
Learning rate 0.001
Optimizer Adam [53]
Batch 30
Epochs 500

Device
Sensors pool Ubuntu 16, Intel i3-6x, RAM 4GB
Edge server Windows 10, Intel i5-7x, RAM 4GB
Cloud server Digitalocean Ubuntu 18, 1TB Transfer

Appl. Sci. 2020, 10, 5933 12 of 19

8.2. Experiment on Feature Selection

8.2.1. Selected Features for Each Fault Type

We evaluated the feature selection method with the results of the selected features for each fault
type presented in Table 5. Figure 6 shows the non-dominated individuals that spread across the Pareto
front. Among these, we selected the best according to the lowest weighted and scaled objective value.
These features are those that fulfill the CRFS objectives such that they have a high correlation to the
label and low redundancy with the other features. From these results, the CRFS reduces the features
by 63%, from 17 initially into 5–7 features. The Cooler and Accumulator obtain the smallest number of
selected features. Thus, although we did not incorporate domain knowledge of the hydraulic system
and its fault correlations, the CRFS finds the sensor features that relate to a fault in certain components.
The Valve and Pump components share nearly similar features, which suggests that these have a
strong fault correlation. Therefore, these selected features are used for the subsequent experiment.

Table 5. Selected features for each fault type.

Component Selected Sensor Feature gcoro gcor f k

Cooler PS5, PS6, TS1, TS2, TS4 12.127 9.958 5
Valve EPS1, FS1, PS1, PS3, PS4, SE, VS1 15.855 12.516 7
Pump EPS1, FS1, PS1, PS2, PS3, PS4, SE 14.551 13.558 7

Accumulator EPS1, PS1, PS5, PS6, CE, CP 15.723 8.736 6

g co
r o

5

10

15
gcorf

0 25 50 75

k

0

5

10

15

(a) Cooler component features.

g co
r o

16.0

16.5

17.0gcorf

0 25 50 75

k

0

5

10

15

(b) Valve component features.

g co
r o

15

16

17gcorf

0 25 50 75

k

0

5

10

15

(c) Pump component features.

g co
r o

15

16

17gcorf

0 25 50 75

k

0

5

10

15

(d) Accumulator component features.

Figure 6. Pareto front for each fault type feature selection.

Appl. Sci. 2020, 10, 5933 13 of 19

8.2.2. Performance of Server Types

We evaluated the usage of the CRFS in different architectures, with results listed in Table 6 and
presented in Figure 7. The detection time by the edge server is below 30 ms, even when dealing with
all features, while the detection time by the cloud server exceeds 200 ms. The packet size is calculated
from the total of the selected features packet size. The Cooler component maintains the smallest packet
size because its selected features are those with a small sampling rate. The difference between the
detection times by the cloud is large (i.e., unstable) and of at least 10 ms, while in the edge it is at least
1–2 ms. The cloud has a high detection time because of the long-distance connection with a significant
amount of data being sent. These results suggest that edge computing is a suitable architecture to apply
to fault detection systems by providing computing resources near the data sources while maintaining
low latency. Hence, an edge server is incorporated in the next experiment.

Table 6. Performance of server types.

Server Component Features Detection Time (ms) Packet Size (KB)

Edge

Cooler CRFS (5) 7.31 95.9
All (17) 26.74 343.78

Valve CRFS (7) 9.53 194.16
All (17) 27.63 343.78

Pump CRFS (7) 11.85 240.56
All (17) 28.21 343.78

Accumulator CRFS (6) 8.99 189.32
All (17) 27.45 343.78

Cloud

Cooler CRFS (5) 152.56 95.9
All (17) 261.52 343.78

Valve CRFS (7) 168.75 194.16
All (17) 288.35 343.78

Pump CRFS (7) 180.14 240.56
All (17) 293.11 343.78

Accumulator CRFS (6) 157.13 189.32
All (17) 272.52 343.78

3

8

13

18

23

28

Ti
m

e
(m

s)

Detection time on Edge

Cooler-CRFS Valve-CRFS Pump-CRFS Accumulator-CRFS

Cooler-All Valve-All Pump-All Accumulator-All

(a) Edge server

125

175

225

275

325

Ti
m

e
(m

s)

Detection time on Cloud

Cooler-CRFS Valve-CRFS Pump-CRFS Accumulator-CRFS

Cooler-All Valve-All Pump-All Accumulator-All

(b) Cloud server

Figure 7. Detection times by the servers.

8.2.3. Performance of Feature Selection

We evaluated the feature selection method on the fault detection model performance, with results
listed in Table 7. Although the CRFS maintains fewer selected features, it offers similar accuracy to the
model that utilizes all features. The CRFS outperforms the accuracy of CS with its larger number of

Appl. Sci. 2020, 10, 5933 14 of 19

features. While CS maintains many features with a high correlation to the label, as seen in Figure 8,
it also suffers by selecting redundant features, as also shown in Figure 9, with more green block
feature-to-feature correlation indicating a high correlation between them. The CRFS maintains a high
feature-to-label correlation, but also includes fewer redundant features. Thus, the CRFS should exhibit
better feature learning on the model. In contrast, CS maintains a larger packet size and detection time
with its larger number of selected features compared to that of CRFS.

Table 7. Performance of feature selection.

Component Features Accuracy Detection Time (ms) Packet Size (KB)

Cooler
All (17) 1 26.74 343.78
CS (9) 1 13.86 102.6

CRFS (5) 1 7.31 95.9

Valve
All (17) 0.982 27.63 343.78
CS (9) 0.969 14.37 246.02

CRFS (7) 0.984 9.53 194.16

Pump
All (17) 0.991 28.21 343.78
CS (9) 0.986 15.21 246.02

CRFS (7) 1 11.85 240.56

Accumulator
All (17) 0.979 27.45 343.78
CS (9) 0.968 14.23 144.78

CRFS (6) 0.989 8.99 189.32

0.00 0.05 0.10 0.15 0.20 0.25
CP

EPS1
PS6
PS5

CE
TS2
TS4
TS1
TS3
PS1
PS2
VS1
FS2

SE
FS1
PS3
PS4

(a) All (17)

0.00 0.05 0.10 0.15 0.20 0.25

CP

EPS1

PS6

PS5

CE

TS2

TS4

TS1

TS3

(b) CS (9)

0.00 0.05 0.10 0.15 0.20 0.25

CP

EPS1

PS6

PS5

CE

PS1

(c) CRFS (6)

Figure 8. Feature-to-label correlation on Accumulator fault label. Higher value represents
more importance.

EP
S1 FS

1
FS

2
PS

1
PS

2
PS

3
PS

4
PS

5
PS

6 SE TS
1

TS
2

TS
3

TS
4

VS
1 CE CP

EPS1
FS1
FS2
PS1
PS2
PS3
PS4
PS5
PS6

SE
TS1
TS2
TS3
TS4
VS1

CE
CP

0.0

0.2

0.4

0.6

0.8

1.0

(a) All (17)

CP

EP
S1 PS

6

PS
5 CE TS
2

TS
4

TS
1

TS
3

CP
EP

S1
PS

6
PS

5
CE

TS
2

TS
4

TS
1

TS
3

0.0

0.2

0.4

0.6

0.8

1.0

(b) CS (9)

EPS1 PS1 PS5 PS6 CE CP

EP
S1

PS
1

PS
5

PS
6

CE
CP

0.0

0.2

0.4

0.6

0.8

1.0

(c) CRFS (6)

Figure 9. Feature-to-feature correlation on Accumulator fault label. Lower value represents
less redundancy.

Appl. Sci. 2020, 10, 5933 15 of 19

8.3. Experiment with Fault Detection Methods

We measured the performance of our method and previous approaches spanning various noise
levels, with results listed in Table 8 and presented in Figure 10. XFI, CS, and CRFS are based on a
one-time analysis during offline learning that defines the selected features. CRFS maintains smaller
packet sizes compared to other methods that require all features to be transmitted before they can be
processed, so they have a maximum packet size of 343.78 KB. Another advantage of CRFS over XFI
and CS is that defining the number of selected features is not required because this is set as an objective.
CS+LDA and XFI+DNN have another drawback in that they must generate statistical features on
every sample, requiring more time and computational resources. CRFS uses the raw feature subset
rather than statistical features, thus CRFS can define the sensor to send only those selected features,
while XFI and CS still need to retrieve all of the data to be converted into statistical features before
filtering. Due to the model simplicity in CS+LDA as a traditional machine learning approach, this
method could maintain the lowest detection time. XFI-XGBoost is also a lightweight model but suffers
from the need to transform all features into principal components, which is time-consuming.

Table 8. Comparison to previous methods.

Component Method
Accuracy Detection

Time (ms)Original 20 dB 15 dB 10 dB 5 dB 0 dB

Cooler

CS+LDA 1 0.961 0.897 0.784 0.678 0.557 3.75
PCA+XGBoost 0.978 0.953 0.846 0.785 0.634 0.584 12.61

XFI+DNN 0.995 0.962 0.899 0.865 0.723 0.652 13.44
CNN 0.996 0.983 0.968 0.896 0.845 0.715 32.5

CRFS+LSTM-AE 1 0.993 0.984 0.966 0.952 0.937 7.31

Valve

CS+LDA 0.941 0.917 0.855 0.714 0.623 0.540 4.64
PCA+XGBoost 0.966 0.930 0.822 0.768 0.659 0.555 11.74

XFI+DNN 0.988 0.962 0.881 0.789 0.735 0.621 12.89
CNN 1 0.975 0.933 0.824 0.765 0.672 30.15

CRFS+LSTM-AE 0.984 0.971 0.955 0.924 0.899 0.831 9.53

Pump

CS+LDA 0.955 0.923 0.873 0.746 0.635 0.545 5.13
PCA+XGBoost 0.969 0.948 0.845 0.738 0.648 0.574 12.16

XFI+DNN 0.972 0.945 0.898 0.859 0.745 0.647 14.19
CNN 0.969 0.944 0.921 0.898 0.823 0.701 29.98

CRFS+LSTM-AE 1 0.981 0.951 0.933 0.911 0.885 11.85

Accumulator

CS+LDA 0.947 0.887 0.846 0.747 0.634 0.521 3.61
PCA+XGBoost 0.941 0.893 0.867 0.786 0.646 0.539 12.33

XFI+DNN 0.960 0.896 0.839 0.798 0.645 0.597 15.18
CNN 0.982 0.947 0.886 0.849 0.734 0.642 31.21

CRFS+LSTM-AE 0.989 0.943 0.893 0.861 0.847 0.821 8.99

A comparison of the complexity between the deep learning-based fault detection models is listed
in Table 9 and suggests that the classifier part of our proposed LSTM-AE model maintains the least
number of parameters and smallest model size. Because the LSTM-AE classifier features a lower
complexity than the DNN and CNN architectures used in previous works, this approach also supports
real-time predictions at the edge server. The CRFS+LSTM-AE obtains the second-lowest detection time.
As the detection times of every algorithm are below 50 ms, this approach enables edge computing that
is capable of real-time detection. In addition, the CRFS+LSTM-AE has the smallest packet size among
these experiments. The accuracy of the CRFS+LSTM-AE also outperforms the others, even when
processing data with a signal-to-noise ratio of 0 dB and above. The CNN also works well in noisy data,
followed by the DNN, while XGBoost and LDA do not perform well.

Appl. Sci. 2020, 10, 5933 16 of 19

Table 9. Complexity of the deep learning models.

Deep Learning Model Total Parameters Model Size (KB)

DNN [23] 52,351 227
CNN [27] 16,189,496 63,275

LSTM-AE (CLF) 34,584 169

0.5

0.6

0.7

0.8

0.9

1

Original 20 dB 15 dB 10 dB 5 dB 0 dB

A
cc

ur
ac

y

Cooler Faults

CS+LDA PCA+XGBoost XFI+DNN CNN CRFS+LSTM-AE

(a) Cooler component

0.5

0.6

0.7

0.8

0.9

1

Original 20 dB 15 dB 10 dB 5 dB 0 dB
A

cc
ur

ac
y

Valve Faults

CS+LDA PCA+XGBoost XFI+DNN CNN CRFS+LSTM-AE

(b) Valve component

0.5

0.6

0.7

0.8

0.9

1

Original 20 dB 15 dB 10 dB 5 dB 0 dB

Ac
cu

ra
cy

Pump Faults

CS+LDA PCA+XGBoost XFI+DNN CNN CRFS+LSTM-AE

(c) Pump component

0.5

0.6

0.7

0.8

0.9

1

Original 20 dB 15 dB 10 dB 5 dB 0 dB

Ac
cu

ra
cy

Accumulator Fault

CS+LDA PCA+XGBoost XFI+DNN CNN CRFS+LSTM-AE

(d) Accumulator component

Figure 10. Experiments on fault detection with multiple algorithms spanning a range of noise levels.

9. Conclusions

The challenges in fault detection for hydraulic systems include maintaining real-time fault
detection, learning multivariate time-series sensor data, and handling noisy data. To address these
issues, we propose a real-time and robust fault detection approach through cooperation between
cloud and edge servers. The cloud conducts feature selection and offline learning, while the edge
processes online detection near the data source to reduce latency and transmission costs. We outline
a new method leveraging GA-based feature selection to identify feature-to-label correlations and
feature-to-feature redundancies. By using fewer important features that are transmitted to the edge
and processed, detection time is reduced, and model performance is improved. Finally, we describe
an LSTM-AE as a robust fault detection model that fully uses temporal information on time-series
sensor data that is capable of handling noisy data. The experimental results suggested that our
method outperforms previous approaches as we obtain lower detection times, higher accuracies,
and more robust performance in the presence of noisy data. With a 63% reduction in features, from 17
to 5–7, our model still attains high accuracy above 98% while being robust to noisy data when the
signal-to-noise ratio is approximately 0 dB. Our method also maintains low detection times with an
average of 9.42 ms and reduces the packet size to 179.98 KB from a maximum of 343.78 KB.

Appl. Sci. 2020, 10, 5933 17 of 19

For future work, we will first consider other deep learning models, such as CNN combined with
LSTM, to offer a better learning model for spatio-temporal data. Then, we will apply this proposed
method to other real-world datasets or systems. Finally, we will consider incomplete sensor data issues
that could arise from hardware malfunctions or during device replacement.

Author Contributions: Conceptualization, D.Z.F.; Methodology, D.Z.F.; Implementation, D.Z.F.; Validation, D.Z.F.
and S.-H.C.; Formal analysis, D.Z.F. and S.-H.C.; Investigation, D.Z.F. and S.-H.C.; Resources, D.Z.F. and S.-H.C.;
Data curation, D.Z.F.; Writing—original draft preparation, D.Z.F.; Writing—review and editing, D.Z.F. and S.-H.C.;
Visualization, D.Z.F.; Supervision, S.-H.C.; Project administration, S.-H.C.; Funding acquisition, S.-H.C. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea(NRF) grant funded by
the Korea government(MSIT) (No. 2018R1D1A1B07049355) and Institute of Information & communications
Technology Planning & Evaluation(IITP) grant funded by the Korea government(MSIT) (No. 2020-0-01450,
Artificial Intelligence Convergence Research Center [Pusan National University]).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Fu, X.B.; Liu, B.; Zhang, Y.C.; Lian, L.N. Fault diagnosis of hydraulic system in large forging hydraulic press.
Measurement 2014, 49, 390–396. [CrossRef]

2. Jegadeeshwaran, R.; Sugumaran, V. Fault diagnosis of automobile hydraulic brake system using statistical
features and support vector machines. Mech. Syst. Signal Process. 2015, 52, 436–446. [CrossRef]

3. He, X. Fault diagnosis approach of hydraulic system using FARX model. Procedia Eng. 2011, 15, 949–953.
[CrossRef]

4. Lu, C.; Wang, S.; Wang, X. A multi-source information fusion fault diagnosis for aviation hydraulic pump
based on the new evidence similarity distance. Aerosp. Sci. Technol. 2017, 71, 392–401. [CrossRef]

5. Liu, X.; Tian, Y.; Lei, X.; Liu, M.; Wen, X.; Huang, H.; Wang, H. Deep forest based intelligent fault diagnosis
of hydraulic turbine. J. Mech. Sci. Technol. 2019, 33, 2049–2058. [CrossRef]

6. Alsyouf, I. The role of maintenance in improving companies’ productivity and profitability. Int. J. Prod. Econ.
2007, 105, 70–78. [CrossRef]

7. Gao, Z.; Ding, S.X.; Cecati, C. Real-time fault diagnosis and fault-tolerant control. IEEE Trans. Ind. Electron.
2015, 62, 3752–3756. [CrossRef]

8. Xu, Y.; Sun, Y.; Wan, J.; Liu, X.; Song, Z. Industrial big data for fault diagnosis: Taxonomy, review, and
applications. IEEE Access 2017, 5, 17368–17380. [CrossRef]

9. Tan, Y.L.; Sehgal, V.; Shahri, H.H. Sensoclean: Handling Noisy and Incomplete Data in Sensor
Networks Using Modeling. 2005. Available online: https://pdfs.semanticscholar.org/d3d4/
91fe3ea49c5d03b98b6fc517eee2bd27cabf.pdf (accessed on 30 July 2020).

10. Xu, L.D.; Xu, E.L.; Li, L. Industry 4.0: State of the art and future trends. Int. J. Prod. Res. 2018, 56, 2941–2962.
[CrossRef]

11. Zhong, R.Y.; Xu, X.; Klotz, E.; Newman, S.T. Intelligent manufacturing in the context of industry 4.0:
A review. Engineering 2017, 3, 616–630. [CrossRef]

12. Wan, J.; Yang, J.; Wang, Z.; Hua, Q. Artificial intelligence for cloud-assisted smart factory. IEEE Access 2018,
6, 55419–55430. [CrossRef]

13. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge computing: Vision and challenges. IEEE Internet Things J. 2016,
3, 637–646. [CrossRef]

14. Bangui, H.; Rakrak, S.; Raghay, S.; Buhnova, B. Moving to the edge-cloud-of-things: Recent advances and
future research directions. Electronics 2018, 7, 309. [CrossRef]

15. Helwig, N.; Pignanelli, E.; Schütze, A. Condition monitoring of a complex hydraulic system using
multivariate statistics. In Proceedings of the 2015 IEEE International Instrumentation and Measurement
Technology Conference (I2MTC), Pisa, Italy, 11–14 May 2015; pp. 210–215.

16. Park, D.; Kim, S.; An, Y.; Jung, J.Y. Lired: A light-weight real-time fault detection system for edge computing
using lstm recurrent neural networks. Sensors 2018, 18, 2110. [CrossRef]

17. Syafrudin, M.; Fitriyani, N.L.; Alfian, G.; Rhee, J. An affordable fast early warning system for edge computing
in assembly line. Appl. Sci. 2019, 9, 84. [CrossRef]

http://dx.doi.org/10.1016/j.measurement.2013.12.010
http://dx.doi.org/10.1016/j.ymssp.2014.08.007
http://dx.doi.org/10.1016/j.proeng.2011.08.175
http://dx.doi.org/10.1016/j.ast.2017.09.040
http://dx.doi.org/10.1007/s12206-019-0408-9
http://dx.doi.org/10.1016/j.ijpe.2004.06.057
http://dx.doi.org/10.1109/TIE.2015.2417511
http://dx.doi.org/10.1109/ACCESS.2017.2731945
https://pdfs.semanticscholar.org/d3d4/91fe3ea49c5d03b98b6fc517eee2bd27cabf.pdf
https://pdfs.semanticscholar.org/d3d4/91fe3ea49c5d03b98b6fc517eee2bd27cabf.pdf
http://dx.doi.org/10.1080/00207543.2018.1444806
http://dx.doi.org/10.1016/J.ENG.2017.05.015
http://dx.doi.org/10.1109/ACCESS.2018.2871724
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.3390/electronics7110309
http://dx.doi.org/10.3390/s18072110
http://dx.doi.org/10.3390/app9010084

Appl. Sci. 2020, 10, 5933 18 of 19

18. Li, L.; Ota, K.; Dong, M. Deep learning for smart industry: Efficient manufacture inspection system with fog
computing. IEEE Trans. Ind. Inform. 2018, 14, 4665–4673. [CrossRef]

19. Wang, T.; Chen, Y.; Qiao, M.; Snoussi, H. A fast and robust convolutional neural network-based defect
detection model in product quality control. Int. J. Adv. Manuf. Technol. 2018, 94, 3465–3471. [CrossRef]

20. Schneider, T.; Helwig, N.; Schütze, A. Industrial condition monitoring with smart sensors using automated
feature extraction and selection. Meas. Sci. Technol. 2018, 29, 094002. [CrossRef]

21. Nanopoulos, A.; Alcock, R.; Manolopoulos, Y. Feature-based classification of time-series data. Int. J.
Comput. Res. 2001, 10, 49–61.

22. Li, Y.R.; Xiang, G.B. A linear discriminant analysis classification algorithm based on Mahalanobis distance.
Comput. Simul. 2006, 8, 86–88.

23. Prakash, J.; Kankar, P. Health prediction of hydraulic cooling circuit using deep neural network with
ensemble feature ranking technique. Measurement 2020, 151, 107225. [CrossRef]

24. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd Acm
Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA,
13–17 August 2016; pp. 785–794.

25. Lei, Y.; Jiang, W.; Jiang, A.; Zhu, Y.; Niu, H.; Zhang, S. Fault diagnosis method for hydraulic directional
valves integrating PCA and XGBoost. Processes 2019, 7, 589. [CrossRef]

26. Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459.
[CrossRef]

27. König, C.; Helmi, A.M. Sensitivity Analysis of Sensors in a Hydraulic Condition Monitoring System Using
CNN Models. Sensors 2020, 20, 3307. [CrossRef] [PubMed]

28. Yuan, Y.; Ma, G.; Cheng, C.; Zhou, B.; Zhao, H.; Zhang, H.T.; Ding, H. A general end-to-end diagnosis
framework for manufacturing systems. Nat. Sci. Rev. 2020, 7, 418–429. [CrossRef]

29. LeCun, Y.; Bengio, Y. Convolutional networks for images, speech, and time series. Handb. Brain Theory
Neural Netw. 1995, 3361, 1995.

30. Leevy, J.L.; Khoshgoftaar, T.M.; Bauder, R.A.; Seliya, N. A survey on addressing high-class imbalance in big
data. J. Big Data 2018, 5, 42. [CrossRef]

31. Kramer, O. Genetic Algorithm Essentials. In Studies in Computational Intelligence; Springer: Cham,
Switzerland, 2017.

32. Yang, J.; Honavar, V. Feature Subset Selection Using a Genetic Algorithm. In Feature Extraction, Construction
and Selection: A Data Mining Perspective; Springer: Boston, MA, USA, 1998; pp. 117–136. [CrossRef]

33. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II.
IEEE Trans. Evol. Comput. 2002, 6, 182–197. [CrossRef]

34. Yu, L.; Liu, H. Efficient feature selection via analysis of relevance and redundancy. J. Mach. Learn. Res. 2004,
5, 1205–1224.

35. Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson correlation coefficient. In Noise Reduction in Speech
Processing; Springer: Berlin, Germany, 2009; pp. 1–4.

36. Dorffner, G. Neural Networks for Time Series Processing. Neural Netw. World 1996, 6, 447–468.
37. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
38. Hochreiter, S. The vanishing gradient problem during learning recurrent neural nets and problem solutions.

Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 1998, 6, 107–116. [CrossRef]
39. Wang, Y.; Yao, H.; Zhao, S. Auto-Encoder Based Dimensionality Reduction. Neurocomputing 2016,

184, 232–242. [CrossRef]
40. Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.A. Extracting and composing robust features with

denoising autoencoders. In Proceedings of the 25th International Conference on Machine Learning,
Helsinki, Finland, 5–9 July 2008; pp. 1096–1103.

41. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. In Advances in
Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2014; pp. 3104–3112.

42. Erhan, D.; Courville, A.; Bengio, Y.; Vincent, P. Why does unsupervised pre-training help deep
learning? In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics,
Sardinia, Italy, 13–15 May 2010; pp. 201–208.

43. Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [CrossRef]
[PubMed]

http://dx.doi.org/10.1109/TII.2018.2842821
http://dx.doi.org/10.1007/s00170-017-0882-0
http://dx.doi.org/10.1088/1361-6501/aad1d4
http://dx.doi.org/10.1016/j.measurement.2019.107225
http://dx.doi.org/10.3390/pr7090589
http://dx.doi.org/10.1002/wics.101
http://dx.doi.org/10.3390/s20113307
http://www.ncbi.nlm.nih.gov/pubmed/32532058
http://dx.doi.org/10.1093/nsr/nwz190
http://dx.doi.org/10.1186/s40537-018-0151-6
http://dx.doi.org/10.1007/978-1-4615-5725-8_8
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1142/S0218488598000094
http://dx.doi.org/10.1016/j.neucom.2015.08.104
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://www.ncbi.nlm.nih.gov/pubmed/25462637

Appl. Sci. 2020, 10, 5933 19 of 19

44. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

45. Bridle, J.S. Probabilistic interpretation of feedforward classification network outputs, with relationships to
statistical pattern recognition. In Neurocomputing; Springer: Berlin, Germany, 1990; pp. 227–236.

46. Janocha, K.; Czarnecki, W.M. On loss functions for deep neural networks in classification. arXiv 2017,
arXiv:1702.05659.

47. Benitez-Hidalgo, A.; Nebro, A.J.; Garcia-Nieto, J.; Oregi, I.; Del Ser, J. jMetalPy: A python framework for
multi-objective optimization with metaheuristics. Swarm Evol. Comput. 2019, 51, 100598. [CrossRef]

48. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.;
Isard, M.; et al. Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th
Symposium on Operating Systems Design and Implementation, Savannah, GA, USA, 2–4 November 2016;
pp. 265–283.

49. Chollet, F. Keras. 2015. Available online: https://keras.io (accessed on 30 July 2020).
50. Chicano, F.; Sutton, A.M.; Whitley, L.D.; Alba, E. Fitness probability distribution of bit-flip mutation.

Evol. Comput. 2015, 23, 217–248. [CrossRef]
51. Bridges, C.L.; Goldberg, D.E. An analysis of reproduction and crossover in a binary-coded genetic algorithm.

Grefenstette 1987, 878, 9–13.
52. Blickle, T. Tournament selection. Evol. Comput. 2000, 1, 181–186.
53. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.swevo.2019.100598
https://keras.io
http://dx.doi.org/10.1162/EVCO_a_00130
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Hydraulic System Fault Analysis
	Related Work
	Real-Time Fault Detection in Edge Computing
	Data Pre-Processing
	Data Balancing
	 Mean and Normalization
	Data Windowing
	Adding Noise

	Correlation and Redundancy-Aware Feature Selection Using a Genetic Algorithm
	Robust Fault Detection Using LSTM-AE
	Learning Temporal Information
	Denoising and Latent Feature Extraction
	Fault Classification

	Performance Evaluation
	Experimental Setup
	Experiment on Feature Selection
	Selected Features for Each Fault Type
	Performance of Server Types
	Performance of Feature Selection

	Experiment with Fault Detection Methods

	Conclusions
	References

