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Abstract: A new approach to solve plate constructions using combined analytical and numerical
methods has been developed in this paper. It is based on an exact solution of an equilibrium
equation. The proposed mathematical model is implemented as a computer program in which known
analytical formulae are rewritten as wrapper functions of two arguments. Partial derivatives are
calculated using automatic differentiation. A solution of a system of linear equations is substituted
to these functions and evaluated using the Einstein summation convention. The calculated results
are presented and compared to other analytical and numerical ones. The boundary conditions are
satisfied with high accuracy. The effectiveness of the present method is illustrated by examples of
rectangular plates. The model can be extended with the ability to solve plates of any shape.
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1. Introduction

Thin plates are widely used as elements of building and engineering structures. The Kirchhoff
plate theory is the basis of engineering design and calculation of such elements. It is an approximate
zeroth-order shear deformation plate theory. Discrepancy between order of basic differential equation
and number of boundary conditions is the main disadvantage of the Kirchhoff theory. There are
considered only three from six physical equations. Shearing and normal transverse stresses are not
taken into account. They are determined from equation of equilibrium. The higher-order shear
deformation plate theories are free from this discrepancy.

According to the Kirchhoff plate theory solution of thin isotropic plates is equivalent to solution
of fourth-order partial differential equation [1,2]

∇2∇2w =
q
D

, (1)

for given boundary conditions. In the above equation w is the deflection of the plate, and D is
its flexural rigidity. Function q(x1, x2) describes distribution of load on upper surface of the plate.
Uniform equation corresponds to (1) has the form

∇2∇2w = 0. (2)

In many cases, Kirchhoff theory gives satisfactory results and sufficient accuracy for practical
purpose and correctly describes behavior of the structure. It is based on the linear distribution of
the displacements through the plate thickness. As a result, parabolic distributions of the shearing
stresses are obtained. For comparison Mindlin plate theory [3] also takes the same distribution
of displacements but gives incorrect uniform distribution of the shearing stresses through the
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plate thickness. Higher-order theories like Christensen, Mindlin, Timoshenko can represent the
kinematics better. However, they involve higher-order stress resultants that are difficult to interpret
physically. Therefore, such theories should be used only when necessary [4]. In addition to its inherent
simplicity and low computational cost, the first-order plate theory often provides a sufficiently accurate
description of the global response for thin to moderately thick plates. Higher-order theories provide a
small increase in accuracy relative to the first-order plate theory solution, at the expense of a significant
increase in computational effort [5]. Therefore, the choice of the Kirchhoff theory to analysis of
thin-walled engineering structures is still justified.

Let us note that exact solution of boundary problems of theory of the plates is possible only for
simplest cases. At present, there are many various methods to solve thin plates, which can be divided
into two basic groups: analytical [2,6–8] and numerical ones [6,9–11].

Analytical methods are more exact than numerical methods but they allow the solving of boundary
problems of plates with a small number of unknown parameters and constrained by canonical contour
as rectangle, square, triangle, circle or ellipse. Numerical methods are less exact but they allow the
solving of arbitrary configuration plates [12] at the expense of a significant increasing of unknown
parameters. It increases the time for calculations and leads to the accumulation of computational errors.

Numerical methods are currently reaching their limits. Among numerical methods, the Finite
Element Method (FEM) [13,14] and Finite Boundary Method (FBM) [15–18] are the most common.
The finite element method allows us to approximately solve plate of arbitrary configuration, where the
analytical solution is impossible. Research on this method can be conventionally divided into:
theoretical (related the construction of finite element model) and applied (related to the use of the
method to solve complicated technical problems).

In recent years, many methods which are free from disadvantages of standard numerical ones
have been suggested. They create separate group called analytical-numerical methods. According to
these methods part of equations are performed in analytical manner and others with help of numerical
procedures. The method suggested in present paper belongs to this group. Differences compared to
numerical methods:

• Simplicity of structure modeling. Equations of equilibrium are solved once independently of the
boundary conditions and solution remains unchanged throughout the calculation process. This
allows the reduction of structure modeling to set kinematic and static boundary conditions in the
separate points at the plate contour.

• Possibility to provide better accuracy in comparison with finite element method. It is achieved
only by increasing of number of the approximations (parameter K) or replace nodes at the contour.
This procedure is performed automatically with author’s program to solve of the plate structure.

• Possibility to define the load as a function of two variables. Because not all FEA programs provide
such functionality, ABAQUS software have been chosen to compare the results.

• Possibility of implementing of suggested method in higher-order theory, say Mindlin-Reissner theory.

The mathematical model proposed in the article has been implemented as a computer program
which is characterized by a readable and concise source code (Appendix B). This method requires
much less computation operations to solve the structure in comparison to FEM. There is no need to:

• Discretize of the structure into set of finite elements,
• Aggregate of this set into discrete structure,
• Introduce local and global coordinate system,
• Numerate of nodes. Solution of equilibrium equation can be obtained with given accuracy and it

is independent of the number of approximations.

In contrast to FEM, the suggested method uses essentially fewer equations to solve the structure.
Owing to high accuracy of solution of equilibrium equation we need fewer nodes to satisfy boundary
conditions. These nodes are placed only at the contour.
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There are four main techniques to calculate derivatives in the literature [19]: hand-coded
analytical derivatives, numerical differentiation, symbolic differentiation and automatic differentiation.
Hand-coded analytical derivatives are exact but time consuming to code, error prone and not
automated. Numerical differentiation is easy to code. However, as an estimation approach, it is
known to produce inaccurate results. Symbolic differentiation is a technique for computing derivatives
of mathematical expressions via symbolic manipulation. This technique is used by computer algebra
systems. It is exact, but memory intensive and slow.

In author’s computer program automatic differentiation (AD) is used, because it is free from
the drawbacks of techniques described above. Unlike symbolic differentiation, which operates on
mathematical expressions, automatic differentiation operates on code. Automatic differentiation
leverages the chain-rule-based for evaluating the derivatives. It is exact and speed in
comparable to hand-coded derivatives. We calculate higher-order derivatives using autograd library.
Finally, using jax [20]—the successor of the autograd library—it is possible to run our Python and
NumPy programs not only on CPUs (central processing units) but also on much more efficient GPUs
(graphics processing units) and TPUs (tensor processing units). Therefore, significant acceleration of
calculations can be expected.

The purpose of this paper is construction of effective analytical-numerical method to solve of thin
symmetrical plates. The suggested method is based on continuum material model. General solution
of equation of equilibrium (1) is presented as sum of general solution of uniform Equation (2) and
particular solution of non-uniform Equation (1). They are independent between themselves and
contain theoretically infinite number of unknown parameters which allow the performance of the
equation of equilibrium and boundary conditions with given accuracy.

General solution of equilibrium equation includes functions of shape of deflection. Functions of
shape of displacements, moments, shearing forces and generalized shearing forces have been obtained
using automatic differentiation. Such structure of solution allows easily to model various boundary
conditions. Obtained relations create the mathematical model of a plate.

Equation of equilibrium is performed by collocation method in each point on the plate surface
which are called surface nodes. They are not vertexes of finite element. Improvement of accuracy of
solution is achieved by increasing of unknown parameters with author’s program. General solution
of Equation (2) contains separate unknown coefficients which allow the performance of boundary
conditions written in the points at the plate contour. They are called edge nodes. author’s program
fulfils generation of edge and surface nodes and their distribution.

To obtain solution of the plate with proposed method we at first perform equation of equilibrium
in the separate points on the plate surface and obtain particular solution of the problem. Next, we
expect that this solution is unchanged and satisfy boundary conditions in the separate points at the
plate contour.

2. Literature Review of the Methods for Solving Plate Bending Problems

Exact solution of the boundary problems of the plate theory are possible only for simplest cases.
So far, many methods of approximate solution of plates have been developed. All of them can be
divided into two basic groups: analytical [1,2,6,7] and numerical ones [2,9,10,15]. Their analysis is
given in fundamental monograph by editor Czeslaw Wozniak [21].

Formulation of the problem of the plate theory usually is performed one of the three techniques:
system of equilibrium differential equations, variation approach and method of integral equations.

Solution of differential equations of equilibrium causes development of analytical methods.
Numerical methods are less exact but they allow the solving of arbitrary configuration plates [2,10] at
the expense of a significant increasing the number of unknowns. It increases the time for calculations
and leads to accumulation of computational errors.

Analytical methods include: Ritz-Timoshenko [8], Bubnov-Galerkin [22] and other [23] variational
methods, Navier’s [24] method of single and double trigonometric series, Lévy’s method of functional
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series [1,8,25] and spline-function method [26,27] which is widely used for solution of the plate with
discontinuous configuration.

Ritz-Timoshenko method is based on the principle of minimum of the structure potential energy
(Principle of Virtual Works).

δΠ = δ(V − A) = 0, (3)

Here Π is potential energy of the structure; V – specific potential energy; A is work of outer load
applied to plate structure; δ – Lagrange variation symbol.

Minimalization of error R of approximate solution of Equation (4)

D∇2∇2w− q = R 6= 0, (4)

with respect to test functions is object of Bubnov-Galerkin method.
Navier’s method only deals with rectangular plate free supported at the contour and arbitrary

loaded. Lévy’s method allows the solving of the plates with two opposite edges free supported.
Other edges can be arbitrary fixed.

Numerical methods includes: method of boundary collocation [9,28] and Trefftz collocation
method [13,29], finite element method (FEM) [14,30–34], finite boundary method (FBM) [15,17,18] and
method of time-space elements (MTSE) [35].

Method of boundary collocation demands satisfaction of integral equations and Trefftz collocation
method demands to perform equilibrium equation. In both methods, the boundary conditions are
performed at separate points called collocation points at the edges of the plate. Trefftz method does not
contain singular integrals and it is more exact in comparison with other methods. Variant of collocation
method is worked in paper [36] for a plate inscribed in rectangular contour. Collocation points
are Chebyshev nodes. The authors argue that with the number of computational nodes increasing,
the accuracy is not improved because of the round-off error effect.

Finite element method (FEM) follows from variation formulation and finite boundary method
(FBM) does from boundary integral equation. In the paper [34] four nodal plate element based on
Reissner-Mindlin plate theory is worked. Mesh refinement increase the accuracy of the solution.
Finite element modeling of stiffened and unstiffened orthotropic plates is presented in the paper [37].

In recent years, besides numerical and analytical methods, many analytical-numerical ones
appear. There are: boundary integral method (BIM) or boundary integral equation method [17],
global element method (GEM) [38] and global-local finite element method (GLFEM) [11], spline finite
element method [39], scaled boundary finite element method [40], least squares collocation method [41],
symplectic superposition method [42] and matrix method [43].

BIM is part of general method BEM associated with calculation singular integrals containing in
BEM. According to global element method (GEM) [38] considered area is divided into some simple
subareas (greater than in FEM). Division is defined by configuration of the area, solution typologies and
mechanical properties of material. In each area approximate functions are taken as linear combinations
of polynomial, trigonometric and exponential functions. For example, linear global or superelement
has three degrees of freedom. Interpolation functions are taken in the form of second order polynomial.
Boundary and continuity conditions at the common edges of the subareas are performed in manner of
principle of virtual work. Fault of the method is difficulty of division of considered area into elements
and selection of the functional for minimization.

Global-local finite element method (GLFEM) [11] uses Ritz-Timoshenko method at the one part
of the plate and finite element method at the another. Fault of this method is necessity of individual
treatment of each problem and unstudied effectiveness. According to this method structure is first
analyzed as a whole. Therefore, all the local details obtained from the global analysis are considered to
be boundary conditions in local details analysis. The global-local analysis is especially useful in the
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stress concentration analysis, and so on. More information on global-local finite element method can
be found in [44–48].

The extended finite element method (G/XFEM) [3,49–55] is generalization of classical finite
element method and it was especially developed for modeling structural problems with discontinuities.
According to that generalized global approximation of the deflection of the plate is presented as [51]:

ũ(x) =
N

∑
j=1
Nj(x)uj︸ ︷︷ ︸

standard interpolation

+
N

∑
j=1
Nj(x)

{
q

∑
i=2

Lji(x)bji

}
︸ ︷︷ ︸

enriched interpolation

(5)

where uj is a nodal parameter associated with finite element shape functions Nj(x), bji are nodal
parameters associated with G/XFEM shape functions – Nj(x) · Lji(x). Lji are so-called enrichments
functions that hold the information about the problem solution.

In the last ten years, there has been a growing interest in meshless methods [56,57]. These methods
do not demand of mesh as finite element ones. Area discretization is accomplished by a set of ordered
or scattered nodes that are independent of the plate configuration. This approach does not cause
difficulties in satisfying boundary conditions. The method is a simply, effective and attractive.

Novel plate and shell analysis methods also include analysis of the Kirchhoff plate using
rational Bézier triangles in isogeometric analysis coupled with a feature-preserving automatic meshing
algorithm [58] and modeling using a NURBS-based isogeometric analysis (IGA) approach [59].

Some results obtained by analytical and numerical methods are given below.
Rectangular uniformly loaded plate free supported at two opposite edges or rigidly clamped
at the contour is considered in the paper [60]. To solution the problem Lévy’s method was used here.
In each concrete case particular solution is taken separately. In similar manner the same plate free
supported at the corners was considered in the paper [61].

The exact solution of orthotropic rectangular cantilever arbitrary loaded plate is obtained in [62].
Rectangular plate free supported at the contour was solved [63] using Bubnov-Galerkin variation
method. Various kinds of outer load were considered. Using combination of functional series
S. Timoshenko obtained original analytical solution of thin orthotropic plate rigidly clamped at
the contour [8]. Krjukov using spline approximation method obtained solution of parallelogram and
trapeze plates [26].

Trefftz method boundary collocation was used to solve thin anisotropy plate of various
geometry [29]. The obtained results are in perfect agreement with known analytical and numerical
solutions. Thin rectangular cantilever plate [28] and irregular thin plate on Winkler foundation [36]
were also solved with this method.

Finite element method was used [64] to solve the anisotropic elastic plates with holes and cracks.
Method of boundary equations is applied to bending problem of the thin plate [65]. Plate is

supported on the columns. Substitute forces at the edges and concentrated forces in the corners are
not introduced in the given formulation. The problem was solved by boundary integral equations
method. Collocation points were placed outside of the plate. This approach allowed to eliminate
singular integrals in calculation.

Bending analysis of rectangular moderately thick plates with spline finite element method is
subject of the paper [39]. Analysis of deflection of regular and irregular plates with matrix method is
fulfilled in the paper [43].

Boundary element method was used to solve stiffened plates [37]. Elastic bending problem of
such plates were investigated with boundary element method [66].

Fracture mechanics problems for plane stress and plane strain state solved with extended finite
element method is considered in the paper [51]. With help of this method Reissner-Mindlin cracked
plate was solved [3]. In article [67] bending by concentrated force of a cantilever strip with a
through-thickness crack perpendicular to its axis was solved using linear conjunction method.
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The new analytical-numerical method to analysis of symmetric Kirchhoff plate is presented in this
paper. The method combines the advantages of an analytical (Navier and Lévy) as well as numerical
(Trefftz collocation and finite element) methods. Equation of equilibrium is performed exactly in whole
area within the plate. Kinematic and static boundary conditions are satisfied only at the separate nodes
at the plate edges with the high accuracy.

The suggested method is close to Trefftz collocation method and meshless ones. It was tested
on examples of cantilever plate [68], isotropic irregular plate [69], orthotropic plate resting on
Winkler’s foundation [70,71], double-connected isotropic rectangular plates [71] and plate connected
with truss [72]. Its improved version is given in the presented paper. Polynomial which was
introduced in our previous publications for improvement of calculation results has been removed here
as unnecessary.

3. Materials and Methods

Plate is a body constrained by two parallel planes and lateral surface. Upper and bottom planes
are bases of the plate. Plane equidistant from the bases is called middle plane. Line of the cross-section
middle plane with lateral surface is plate contour. Further we will be designate plate P, surface S and
contour C and we take into account the assumptions proposed by Kirchhoff.

Let us consider thin isotropic symmetrical plate with at least two symmetry axes which has
thickness h and surface S. Plate is referred to right-handed Cartesian coordinate system Ox1x2 origin
at its geometrical center and constrained by contour C (Figure 1a). We assume that it is balanced with
outer load q(x1, x2) applied to surface S and complied with the boundary conditions. Symmetry of the
plate geometry, mechanical properties, boundary conditions and outer load are taken into account in
this paper. Plate is defined by coordinates of its vertices Vi(ξi, ηi), i = 1, . . . , n.

x1

x2

O

2a1

2a
2 V1

V2 V3

V4

V5V6

C

(a) Plate constrained by contour C

x1

x2

O

2a1

2a
2

L

x1m

x2n L3n

K3m

(b) Plate inscribed in rectangular contour L

Figure 1. Scheme of the symmetrical plate.

We choose the solution of Equation (1) in the form of sum of general solution w0 of uniform
Equation (2) and particular solution w∗ of Equation (1).

w = w0 + w∗. (6)

General solution of Equation (2) we take in the following form [73].

w0 = fkps(xs) · Tkp(3−s)(x3−s). (7)
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Einstein summation rule is used here. According to this convention indices repeated twice in
a single term imply the summation is to be done. Summation indices in formula (7) are k, p and
s. As particular cases, we obtain Lévy (p = 1, s = 2) and Timoshenko (p = 1, s = 1, 2) forms of
representation. In the above p = 1, 2; s = 1, 2; k = 1, . . . , K, where K is several approximations of the
solution and determines its accuracy. The K is greater the accuracy of the solution is better.

Tkps(xs) are given trigonometric functions

Tk1s(xs) = cos (γksxs) ; Tk2s(xs) = cos (δksxs) . (8)

Here

γks =
kπ

as
; δks =

(2k− 1)π
2as

. (9)

Parameters as (s = 1, 2) are model constants. They must be given a priori. In suggested model
they are taken as sizes 2as (s = 1, 2) of rectangular contour L described on plate contour C (Figure 1b).

Unknown functions fkps(xs) we take in the form

fkps(xs) = RkpsEkps(xs). (10)

Because indices k, p, s appear at the both sides of this formula, summation according to these
indices does not perform.

In the above Rkps are unknown coefficients which are determined from boundary conditions at
the plate contour, Ekps(xs) are unknown functions. Substituting expressions (7)–(10) into Equation (2)
we come to system of two unbounded forth order homogeneous differential equations with respect to
these functions [70].

E(IV)
kp1 (x1)− 2κ2

kp2E′′kp1(x1) + κ4
kp2Ekp1(x1) = 0;

E(IV)
kp2 (x2)− 2κ2

kp1E′′kp2(x2) + κ4
kp1Ekp2(x2) = 0;

(11)

where

κkps =

{
γks, p = 1,

δks, p = 2.
(12)

Functions Ekps(xs) are taken as the following

Ekps(xs) = exp
(

λkpsxs

)
. (13)

Substituting expression (13) into Equation (11) we come to system of characteristic equations

λ4
kp1 − 2κ2

kp2λ2
kp1 + κ4

kp2 = 0,

λ4
kp2 − 2κ2

kp1λ2
kp1 + κ4

kp1 = 0.
(14)

Let λkpsν, where ν = 1, 2 be their roots. Then functions fkps(xs) take the form [69]

fkps(xs) = RkpsνBkpsν(xs), (15)

In the above

Bkps1(xs) =
cosh

(
κkp(3−s)xs

)
exp

(
κkp(3−s)as

) , Bkps2(xs) =
xs sinh

(
κkp(3−s)xs

)
as exp

(
κkp(3−s)as

) , (16)

Functions Bkpsν(xs) are called the basic functions of the solution.
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According to (10) general solution of Equation (2) takes the form

w0(x1, x2) = Rkpsν ·Wkpsν(x1, x2). (17)

Functions

Wkpsν(x1, x2) = Bkpsν(xs) · Tkp(3−s)(x3−s) (18)

are dependent on the solution of the problem and are called shape functions of the plate deflection.
General solution of Equation (1) we obtain substituting (17) into expression (6)

w(x1, x2) = RkpsνWkpsν(x1, x2) + W∗(x1, x2). (19)

Here W∗(x1, x2) = w∗(x1, x2) is particular solution of equation (1). Functions W∗(x1, x2) can be
present in the form:

W∗(x1, x2) = Cmnpq ·Wmnpq(x1, x2). (20)

Functions Wmnpq(x1, x2) are dependent on outer load and called force functions of the plate
deflection. For each specific problem they can be obtain using special procedures.

With the deflection of the plate w and using relations known from theory of thin isotropic plates,
we obtain the expressions for tangent displacements [71,72]

u1(x1, x2) = RkpsνUkpsν(x1, x2) + U∗(x1, x2),

u2(x1, x2) = RkpsνVkpsν(x1, x2) + V∗(x1, x2),
(21)

moments

M11(x1, x2) = RkpsνXkpsν(x1, x2) + X∗(x1, x2),

M22(x1, x2) = RkpsνYkpsν(x1, x2) + Y∗(x1, x2),

M12(x1, x2) = RkpsνZkpsν(x1, x2) + Z∗(x1, x2),

(22)

shearing forces

Q1(x1, x2) = Rkpsν Hkpsν(x1, x2) + H∗(x1, x2),

Q2(x1, x2) = RkpsνGkpsν(x1, x2) + G∗(x1, x2),
(23)

and generalized shearing forces

V1(x1, x2) = RkpsνKkpsν(x1, x2) + K∗(x1, x2),

V2(x1, x2) = RkpsνLkpsν(x1, x2) + L∗(x1, x2).
(24)

In the above functions Ukpsν, Vkpsν, and so on are partial derivatives of shape functions Wkpsν.
Similarly functions U∗, V∗, etc. are partial derivatives of force functions W∗. They have been calculated
using automatic differentiation [19,74].

Expressions (19)–(24) constitute mathematical model of considered plate. According to this model
plate is in internal equilibrium with outer load q(x1, x2), but boundary conditions are not satisfied
here. Unknown coefficients Rkpsν are degrees of freedom of the plate. They are determined satisfying
boundary conditions at the separate points of the contour. Let us consider technique of their generation.

Due to the symmetry of the plate, we can consider only its quarter. At first, we introduce two sets
X1 and X2 of points (x1m, x2n) with numbers (m, n) placed at the positive semi axes of the plate and
called them initial points.

Projections of these points onto the contour C are called current nodes and designated Krm and Lrn

correspondingly, where r is number of the edge (Figure 1b). It is seen that edges parallel to coordinate
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axes contain current nodes generated by either set X1 or set X2 but nodes placed at the inclined edge
are generated as set X1 so X2. If two initial points of set X1 and X2 fall into one node at the inclined
edge we have double current node. Projections of these points into the vertex Vi, with number i we
call corner nodes and designated Kir, Lir [69]. Union of current and corner nodes we called edge nodes.

Let us consider for simplicity rectangular plate (Figure 2). Its contour has no double nodes. In this
case, we can say that each edge node is generated by single initial point. From this reason each function
f1ps(xs) corresponds to single initial point. At each edge node two boundary conditions are written.

x1

x2

O

2a1

2a
2

x2n

x1mS1 S3

S2

S4

L3n

K2m

1

2

3

4

f2(x1m)

n2

n3

N1

N2 N3

N4

Figure 2. Distribution of current nodes at the contour of rectangular plate.

Corner nodes, say K32 and L33, have the same coordinates (a1, a2) but they lie at the different
edges of the normals n2 and n3. Thus, they are different nodes. Each edge node is generated by single
initial point. At the first approximation (K = 1) we have eight unknown coefficients R1psν. Thus, eight
boundary conditions written at four edge nodes can be satisfied. To that four initial points must be
chosen at the semi coordinates axes (x1m = 1, 2; x2n = 1, 2). Following for approximation K there must
be 2K points x1m = 1, . . . , 2K; x2n = 1, . . . , 2K. For illustration of effectiveness of the proposed method
as an example we consider rectangular plate (Figure 2) with thickness h and plane sizes 2as (s = 1, 2).
This example allows easily compares author’s results with results obtained by other available methods.

To obtain the particular solution w∗ of Equation (1) we present outer load q(x1, x2) in the form of
double trigonometric series [70,73]

q(x1, x2) = qmnpq · Tmp1(x1) · Tnq2(x2), m, n = 1, 2, 3, . . . (25)

For rectangular plates parameters qmnpq can be determined as coefficients of expansion of the
outer load in Fourier series on the surface of the plate. New symbols have been introduced here.

Tm1s(xs) = cos (γmsxs) ; Tm2s(xs) = cos (δmsxs) ; (26)

γms =
mπ

as
; δms =

(2m− 1)π
2as

. (27)

For rectangular plates force functions Wmnpq are taken in the form

Wmnpq(x1, x2) = Tmp1(x1) · Tnq2(x2). p, q = 1, 2 (28)
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Substituting expressions (25), (28) into Equation (1) with taking into account (19,20) and equating
coefficients at the same expressions in the both sides of Equation (1) we find coefficients Cmnpq

expressed by outer load.

4. Results

Let us consider three kinds of rectangular plates under various boundary conditions:

1. Rectangular plate with two opposite edges simply supported and the other free,
2. Rectangular plate simply supported at the contour,
3. Plate clamped at the contour.

Plates are loaded by particular load

q = C · cos (δ1x1) · cos (δ2x2) (29)

where

δs =
π

2as
(30)

and

C =
q0

D
(
δ2

1 + δ2
2
)2 . (31)

Here q0 = 10 kPa is intensity of the load.
During the calculations the following geometric and mechanical parameters of model were take

into consideration: plate sizes 2a1 = 8 m, 2a2 = 4 m, thickness h = 0.2 m. Young’s modulus is equal to
E = 30× 109 Pa and Poisson ratio ν = 0.2.

The problem has been solved in third approximation (K = 3) using 12 initial points. Consequently,
we have 12 edge nodes. Distribution of initial points for (K = 3) approximation is given in table:

x1m 0.0 0.8 1.6 2.4 3.2 4.0

x2n 0.0 0.4 0.8 1.2 1.6 2.0

Performed calculations have shown that increasing the K value for rectangular plates no longer
affects the accuracy of the solution. It means that an exact solution is already obtained for small K.
This confirms the high effectiveness of this method.

The results obtained using a Python-based computer program implementing the considered
mathematical model have been compared with the analytical solution presented by Timoshenko
and the numerical solution obtained with the Finite Element Method in the ABAQUS CAE program
(Student Edition 2019 restricted to 1000 nodes), which allows defining the load as a function of two
variables. ABAQUS model used for comparison consists of 512 S4R elements (561 nodes).

Due to symmetry of the problem deflection w(x1, x2) and the moments M11(x1, x2),
M22(x1, x2) are symmetrical functions of variable (x1,x2), while slops ϕ1(x1, x2) and ϕ2(x1, x2) are
antisymmetrical ones.

4.1. Rectangular Plate with Two Opposite Edges Simply Supported and the Other Free

Following boundary conditions must be satisfied (see Figure 3)

w(x1, x2)
∣∣∣
x1=±a1

= 0; M11(x1, x2)
∣∣∣
x1=±a1

= 0;

M22(x1, x2)
∣∣∣
x2=±a2

= 0; V2(x1, x2)
∣∣∣
x2=±a2

= 0.
(32)
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Figure 3. Rectangular plate with two opposite edges simply supported and the other free.

Three-dimensional plots of deflection w and bending moments M11, M22 in rectangular plate
with discontinuous boundary conditions are given in Figures 4–6.

x1
4

3
2

1
0

1
2

3
4

x2 2.01.51.00.50.00.51.01.52.0

x
3

0.00000
0.00149
0.00299
0.00448
0.00598
0.00747
0.00897
0.01046
0.01196
0.01345

0.00000

0.00168

0.00336

0.00504

0.00673

0.00841

0.01009

0.01177

0.01345

Figure 4. Three-dimensional plot of the deflection of a rectangular plate with two opposite edges
simply supported and the other free.
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Figure 5. Three-dimensional plot of the bending moment M11 of a rectangular plate with two opposite
edges simply supported and the other free.
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Figure 6. Three-dimensional plot of the bending moment M22 of a rectangular plate with two opposite
edges simply supported and the other free.

Figures 7–11 show cross-sectional plots of these magnitudes.
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Figure 7. The deflection in section x2 = 0 of a rectangular plate with two opposite edges simply
supported and the other free.
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Figure 8. The deflection in section x2 = 2 of a rectangular plate with two opposite edges simply
supported and the other free.
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Figure 9. The deflection in section x1 = 0 of a rectangular plate with two opposite edges simply
supported and the other free.

At the middle (Figure 7) and edge (Figure 8) sections deflections of the plate are almost the same.
It means that considered plate under given conditions works as a simple beam.
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Figure 10. The bending moments M11 in section x1 = 0 of a rectangular plate with two opposite edges
simply supported and the other free.
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Figure 11. The bending moments M22 in section x1 = 0 of a rectangular plate with two opposite edges
simply supported and the other free.
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Bending moment M11 at the middle cross-section (Figure 10) is essentially greater than moment
M22 at this section (Figure 11). Bending moment M22 and generalized shearing force V2 are almost
zero at the whole simply supported edges (x2 = ±a2). At the simply supported edges (x1 = ±a1)

deflection and slope ϕ2 are also zero (values of the order of 1× 10−18 and 1× 10−17). All boundary
conditions are performed at the current and corner nodes.

Extreme values of these variables are collected in Table 1. The maximum values are close to
the maximum values obtained in the ABAQUS package (Appendix A.1), but the minimum ones for
bending moments do not coincide.

Minimum values for the bending moments in the presented examples are values on the edge.
Similar observations concerning the comparison of the FEM (ABAQUS) results were included in other
works, e.g., in [75,76] where it was indicated that FEM is unable to meet the zero-bending moment at
the edge. The explanation of the reason for discrepancy between present method and FEM is included
in the Discussion.

Table 1. Minimal and maximal values of kinematic and static magnitudes with their relative error (RE).

Present Method Abaqus RE
Magnitude Unit Min Max Min Max Min Max

w m 0 0.013 0 0.013 0% 0%
M11 N m 0 41 490.63 1944 41 310 — 0.44%
M22 N m 0 5516.33 −78.02 5311 — 3.87%
M12 N m −3263.79 3263.79 −2402 2402 35.88% 35.88%
Q1 N −15 343.36 15 343.36 — — — —
Q2 N −3229.42 3229.42 — — — —
V1 N −14 440.95 14 440.95 — — — —
V2 N −2677.45 2677.45 — — — —
ϕ1 rad −0.005 0.005 −0.005 0.005 0% 0%
ϕ2 rad −0.0005 0.0005 −0.0005 0.0005 0% 0%

Compliance with boundary conditions in the midpoints at the edges is presented in Table 2.

Table 2. Compliance with boundary conditions at the midpoints of the edges.

Magnitude Edge Unit Present Method Abaqus

w Simply supported m 0 0
M11 Simply supported N m 0 1966.02
M22 Free N m 0 288.97
V2 Free N 0 —

4.2. Rectangular Plate Simply Supported at the Contour

Following boundary conditions must be satisfied (see Figure 12)

w(x1, x2)
∣∣∣
x1=±a1

= 0; M11(x1, x2)
∣∣∣
x1=±a1

= 0;

w(x1, x2)
∣∣∣
x2=±a2

= 0; M22(x1, x2)
∣∣∣
x2=±a2

= 0.
(33)
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Figure 12. Simply supported rectangular plate.

Three-dimensional plots of deflection of simply supported rectangular plate w and bending
moments M11, M22 are given in Figures 13–15.
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Figure 13. Three-dimensional plot of the deflection of simply supported rectangular plate.
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Figure 14. Three-dimensional plot of the bending moment M11 of simply supported rectangular plate.
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Figure 15. Three-dimensional plot of the bending moment M22 of simply supported rectangular plate.

Figures 16–18 show cross-sectional plots of deflections and moments.
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Figure 16. The deflection in section x2 = 0 of a simply supported rectangular plate.
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Figure 17. The bending moments M11 in section x2 = 0 of a simply supported rectangular plate.
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Figure 18. The bending moments M22 in section x1 = 0 of a simply supported rectangular plate.

Extreme values of these magnitudes are collected in Table 3. They exactly coincide with the
Timoshenko solution [7]. The maximum values are close to the maximum values obtained in the
ABAQUS package (Appendix A.2), but the minimum ones for bending moments do not coincide.

Table 3. Minimal and maximal values of magnitudes with their relational error (RE).

Present Method Timoshenko Abaqus RE
Magnitude Unit Min Max Min Max Min Max Min Max

w m 0.00 0.0008 0.00 0.0008 0.00 0.0008 0% 0%
M11 N m 0.00 4668.88 0.00 4668.88 −252.4 4655 — 0.30%
M22 N m 0.00 10 894.05 0.00 10 894.05 −221.6 10 930 — −0.33%
M12 N m −4150.12 4150.12 −4150.12 4150.12 −4041 4041 — 2.70%
Q1 N −5092.96 5092.96 −5092.96 5092.96 — — — —
Q2 N −10 185.92 10 185.92 −10 185.92 10 185.92 — — — —
V1 N −8352.45 8352.45 −8352.45 8352.45 — — — —
V2 N −11 815.66 11 815.66 −11 815.66 11 815.66 — — — —
ϕ1 rad −0.0003 0.0003 −0.0003 0.0003 −0.0003 0.0003 0% 0%
ϕ2 rad −0.0006 0.0006 −0.0006 0.0006 −0.0006 0.0006 0% 0%

Compliance with boundary conditions at the midpoints of the edges is presented in Table 4.
In this example numerical studies have been shown that boundary conditions are satisfied with high
accuracy − 1× 10−30 for deflection and 1× 10−20 for bending moments.

Table 4. Compliance with boundary conditions at the midpoints of the edges.

Magnitude Edge Unit Present Method Timoshenko Abaqus

w Simply supported 1 m 0 0 0
M11 Simply supported 1 N m 0 0 416.46
w Simply supported 2 m 0 0 0
M22 Simply supported 2 N m 0 0 1170.5

4.3. Rectangular Plate Clamped at the Contour

Following boundary conditions must be satisfied (see Figure 19)

w(x1, x2)
∣∣∣
x1=±a1

= 0; ϕ1(x1, x2)
∣∣∣
x1=±a1

= 0;

w(x1, x2)
∣∣∣
x2=±a2

= 0; ϕ2(x1, x2)
∣∣∣
x2=±a2

= 0.
(34)
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Figure 19. Rectangular plate clamped at the contour.

Three-dimensional plots of deflection w and bending moments M11, M22 in rectangular plate
clamped at the contour are given in Figures 20–22.
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Figure 20. Three-dimensional plot of the deflection of a rectangular plate with clamped edges.
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Figure 21. Three-dimensional plot of the bending moment M11 of a rectangular plate with
clamped edges.
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Figure 22. Three-dimensional plot of the bending moment M22 of a rectangular plate with
clamped edges.

Figures 23–25 show cross-sectional plots of deflections and slopes.
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Figure 23. The deflection in section x2 = 0 of a rectangular plate with clamped edges.

4 3 2 1 0 1 2 3 4

x1

0.000100

0.000075

0.000050

0.000025

0.000000

0.000025

0.000050

0.000075

0.000100

x 3

Figure 24. The slope ϕ1 in section x2 = 0 of a rectangular plate with clamped edges.



Appl. Sci. 2020, 10, 5931 20 of 36

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

x2

0.00015

0.00010

0.00005

0.00000

0.00005

0.00010

0.00015

x 3

Figure 25. The slope ϕ2 in section x1 = 0 of a rectangular plate with clamped edges.

In this example, numerical studies showed that boundary conditions were met with high accuracy
− 1× 10−8 for deflection and 1× 10−7 for slopes. It is seen that symmetry and antisymmetry
conditions are performed. The deflection of the center of considered plate is less than previous
plate. At the middle cross-section, the bending moment in the center of the plate is smaller than at
the edge.

Results of calculations are presented in Table 5. As in previous examples the maximum values
of theoretical results are close to the maximum values of results obtained in the ABAQUS package
(Appendix A.3), but the minimum ones for bending moments do not coincide.

The numerical results of bending problem of clamped rectangular thin plates presented in [77] are
in excellent agreement between the exact numerical-analytical solution obtained by the generalized
integral transform technique (GITT) and FEM obtained by the commercial program ABAQUS,
but during the analysis, the plates were discretized using sufficiently refined S4R elements − 200
elements in the x direction and 200× c elements in the y direction. This means that sufficient accuracy
was obtained for 40,000 elements, while in the examples presented in this article, the model consists of
512 elements.

Table 5. Minimal and maximal values of magnitudes with their relational error (RE).

Present Method Abaqus RE
Magnitude Unit Min Max Min Max Min Max

w m 0.00 0.0002 0.00 0.0002 0% 0%
M11 N m −4174.73 1909.82 −3326 1877 25.52% 1.75%
M22 N m −9305.64 5180.73 −7727 5080 20.43% 1.98%
M12 N m −1190.87 1190.87 −1120 1120 6.33% 6.33%
Q1 N −6806.21 6806.21 — — — —
Q2 N −12, 667.36 12, 667.36 — — — —
V1 N −7268.18 7268.18 — — — —
V2 N −12, 667.93 12, 667.93 — — — —
ϕ1 rad 0.00 0.00 0.00 0.00 0% 0%
ϕ2 rad −0.0002 0.0002 −0.0002 0.0002 0% 0%

Compliance with boundary conditions at the midpoints of the edges is presented in Table 6.
Boundary conditions are satisfied exactly.



Appl. Sci. 2020, 10, 5931 21 of 36

Table 6. Compliance with boundary conditions at the midpoints of the edges.

Magnitude Edge Unit Present Method Abaqus

w Clamped 1 m 0 0
ϕ1 Clamped 1 rad 0 0
w Clamped 2 m 0 0
ϕ2 Clamped 2 rad 0 0

Figures 26–28 illustrate influence of number of approximations on the values of deflection and
bending moments M11, M22 in the clamped plate. The results were obtained in section x2 = 0 of
a plate.
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Figure 26. The deflection in section x2 = 0 of a rectangular plate with clamped edges for different
number of approximations.
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Figure 27. The bending moments M11 in section x2 = 0 of a rectangular plate with clamped edges for
different number of approximations.
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Figure 28. The bending moments M22 in section x2 = 0 of a rectangular plate with clamped edges for
different number of approximations.
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Plots are constructed for all approximations from 1 to 5. It is seen that beginning from second
approximations (K = 2) they are coincided exactly. This confirms the choice of (K = 3) for calculations.

5. Discussion

Solution of equilibrium equation consists of two parts: general and particular solution which
are independent of each other. The general solution identically satisfies differential equation and,
in contrast to FEM, satisfies kinematic, static and mixed boundary conditions. The general solution
obtained for a rectangular plate is correct for any plate inscribed in a rectangular contour. Particular
solution satisfies non-uniform equation of equilibrium using boundary collocation method. It also
allows the consideration of plates with arbitrary configurations. Since symmetrical problems are
considered, deflections and bending moments are symmetrical functions of variables (x1, x2) but slopes
are nonsymmetrical ones.

Advantages of suggested method:

• Simplicity of structure modeling,
• Possibility to define static, kinematic and mixed boundary conditions,
• High accuracy and efficiency of calculation,
• Meshless approach for solving the problem.

Neither a surface mesh as in FEM nor a boundary mesh as in BEM are required. Introduced nodes
are not vertex of finite elements. Surface and edge nodes are generated automatically. Contrary
to FEM [78], the presented method is based on continuum model of material. For this reason,
operations such as structure discretization and finite element aggregation are unnecessary. Singular
plate can be considered to be one global or macro plate element.

Disadvantages of presented method:

• It cannot be used directly to solve fracture mechanics problems,
• It is worked for simply connected structures; for each additional contour, it is necessary to

introduce the new block of basic functions,
• It gives good results for regular plates; plates with irregular geometry are solved with less accuracy,
• Unlike FEM, system matrix is consisted from zero and non-zero blocks.

Tables 1–6 contain the minimal and maximal values of static and kinematic magnitudes of the
plate obtained by author’s program based on proposed method written in Python programming
language, using finite element method in ABAQUS package, and based on the formulae for a simply
supported plate according to Navier’s method, included in Timoshenko’s monograph [7].

It is seen that analytical and numerical results of kinematic magnitudes coincide. Maximal values
of the bending moments are close but they do not coincide. Twisting moments are differ significantly.
Numerical values of bending moments are not zero along the edges of the plate. It follows that static
boundary conditions are not met in ABAQUS package.

The reason for this discrepancy is as follows:

• Presented method is based on Kirchhoff theory of the plates which is deformation theory of
zeroth-order where deformations of a cross-section are omitted. Instead generalized shearing
force as a sum of shearing forces and derivative of twisting moments is introduced.

• ABAQUS package is based on Mindlin plate theory which is deformation theory of first-order
where deformations of a cross-section are taken into account. Twisting moments and shearing
forces are independent ones. It is reason that obtained values of bending and twisting moments
are different.

• Relatively small number of finite elements. The Student Edition of the ABAQUS package is
restricted to 1000 nodes.
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In analytical approach kinematic and static boundary conditions are performed directly at
the separate points at the plate contour. Numerical methods perfectly satisfy kinematic continuity
equations and kinematic boundary conditions only at the separate nodes. Equations of equilibrium and
static boundary conditions are fulfilled approximately in the whole area of the plate using Principle of
Virtual Work. It can be reason that kinematic boundary conditions are satisfied very well but static
ones are performed with less accuracy in Finite Element Method.

6. Conclusions

There are many analytical, numerical and analytical-numerical methods to solve thin plates. Most
of them are based on the theory of thin plates (see Section 2). Method presented in the paper is one of
them. The essence of the method is as follows:

• to obtain with high accuracy particular solution of equilibrium equations at the separate surface
nodes using boundary collocation method,

• to generate set of the initial points at the coordinate axis and then their distribution at the
plate contour,

• to write boundary conditions at each edge nodes; number of these nodes always corresponds to
number of unknown parameter of the model,

• to solve system of boundary equations,
• to calculate the desired magnitudes,
• to prepare the results.

The major findings of this research are summarized in the following:

• The mathematical model of thin isotropic plates is constructed. Basic shape and force functions
are introduced.

• Within the model equilibrium equations are performed exactly.
• Expansion of the deflection within the area of the plate is obtained as sum of shape and force

functions multiplied by unknown parameters.
• Displacements, slopes, moments and shearing forces are obtained using method of automatic

differentiation. Union of presented relations create mathematical model of the plate.
• Within constructed model, a method to solving plate of arbitrary geometry have been suggested.
• All operations are performed automatically with author’s program.
• Effectiveness of method were illustrated at the examples of rectangular plates with various

boundary conditions. Obtained results have been compared with numerical ones computed in
ABAQUS package.

• With help of suggested method three kinds of the rectangular plates, namely: plate with two
opposite edges simply supported and the other free; plate simply supported and clamped at the
contour were solved. It has been shown that suggested method performs all boundary conditions.
Finite element method performs exactly only kinematic ones. Static boundary conditions are
performed with less accuracy.

It is shown that chosen direction is actual and important from a practical point of view.
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Abbreviations

The following notations are used in this manuscript:

x1, x2, x3 Rectangular coordinates
h Thickness of a plate
q0 Intensity of a continuously distributed load
E Modulus of elasticity in tension and compression
ν Poisson’s ratio
D Flexural rigidity of a plate
w Deflection of the plate
ϕ1, ϕ2 Slopes of the deflection
M11, M22 Bending moments per unit length of sections of a plate perpendicular to x1 and x2 axes, respectively
M12 Twisting moment per unit length of sections of a plate perpendicular to x1 axis
Q1, Q2 Shearing forces parallel to x3 axis per unit length of sections of a plate perpendicular to x1 and x2 axes, respectively
V1, V2 Generalized shearing forces parallel to x3 axis per unit length of sections of a plate perpendicular to x1 and x2 axes

Appendix A. Results from ABAQUS

Results from ABAQUS CAE package are presented below. They correspond to the examples
described in this paper.

1. Rectangular plate with two opposite edges simply supported and the other free,
2. Rectangular plate simply supported at the contour,
3. Rectangular plate clamped at the contour.

Appendix A.1. Example 1
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Figure A1. The deflection of a rectangular plate with two opposite edges simply supported and the
other free solved using FEM.
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Figure A2. The bending moment M11 of a rectangular plate with two opposite edges simply supported
and the other free solved using FEM.
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Figure A3. The bending moment M22 of a rectangular plate with two opposite edges simply supported
and the other free solved using FEM.

Appendix A.2. Example 2

U, U3

+0.000e+00
+6.867e−05
+1.373e−04
+2.060e−04
+2.747e−04
+3.433e−04
+4.120e−04
+4.807e−04
+5.494e−04
+6.180e−04
+6.867e−04
+7.554e−04
+8.240e−04

X

Y

Z

X

Y

Z

Figure A4. The deflection of a simply supported rectangular plate solved using FEM.
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(Avg: 75%)

SM, SM1

−2.524e+02
+1.566e+02
+5.655e+02
+9.745e+02
+1.383e+03
+1.792e+03
+2.201e+03
+2.610e+03
+3.019e+03
+3.428e+03
+3.837e+03
+4.246e+03
+4.655e+03

X

Y

Z

X

Y

Z

Figure A5. The bending moment M11 of a simply supported rectangular plate solved using FEM.

(Avg: 75%)

SM, SM2

−2.216e+02
+7.074e+02
+1.637e+03
+2.566e+03
+3.495e+03
+4.424e+03
+5.353e+03
+6.282e+03
+7.211e+03
+8.140e+03
+9.069e+03
+9.998e+03
+1.093e+04

X

Y

Z

X

Y

Z

Figure A6. The bending moment M22 of a simply supported rectangular plate solved using FEM.

Appendix A.3. Example 3

U, U3

+0.000e+00
+1.983e−05
+3.966e−05
+5.948e−05
+7.931e−05
+9.914e−05
+1.190e−04
+1.388e−04
+1.586e−04
+1.785e−04
+1.983e−04
+2.181e−04
+2.379e−04

X

Y

Z

X

Y

Z

Figure A7. The deflection of a rectangular plate with clamped edges solved using FEM.
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(Avg: 75%)

SM, SM1

−3.326e+03
−2.893e+03
−2.459e+03
−2.025e+03
−1.592e+03
−1.158e+03
−7.246e+02
−2.909e+02
+1.427e+02
+5.763e+02
+1.010e+03
+1.444e+03
+1.877e+03

X

Y

Z

X

Y

Z

Figure A8. The bending moment M11 of a rectangular plate with clamped edges solved using FEM.

(Avg: 75%)

SM, SM2

−7.727e+03
−6.660e+03
−5.592e+03
−4.525e+03
−3.458e+03
−2.391e+03
−1.323e+03
−2.561e+02
+8.112e+02
+1.878e+03
+2.946e+03
+4.013e+03
+5.080e+03

X

Y

Z

X

Y

Z

Figure A9. The bending moment M22 of a rectangular plate with clamped edges solved using FEM.

Appendix B. Listing from Author’S Program

import autograd.numpy as np

from autograd import elementwise_grad as grad

import matplotlib.pyplot as plt

from matplotlib import cm

from matplotlib.ticker import LinearLocator

from mpl_toolkits.mplot3d import Axes3D

# ==========

# Parameters

# ==========

# Number of approximations of the solution

_K = 5

# Dimensions

a_1 = 4. # m

a_2 = 2. # m

h = 0.2 # m

# Young’s modulus

E = 3e10 # Pa

# Poisson ratio
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nu = 0.2

# Intensity of the load

q_0 = 10_000.00 # N

# Flexural rigidity of a plate

D = (E * h**3) / (12*(1-nu**2))

# ================

# Helper functions

# ================

def a(s):

if s == 1:

return a_1

elif s == 2:

return a_2

def x(s):

def wrapper(x_1, x_2):

if s == 1:

return x_1

elif s == 2:

return x_2

return wrapper

def gamma(k, s):

return (k*np.pi) / a(s)

def delta(k, s):

return ((2*k-1)*np.pi) / (2*a(s))

def kappa(k, p, s):

if p == 1:

return gamma(k, s)

elif p == 2:

return delta(k, s)

def T(k, p, s):

def wrapper(x_1, x_2):

return np.cos(kappa(k, p, s) * x(s)(x_1, x_2))

return wrapper

def calculate(fs, solution, x_1, x_2):

coeffs = np.array([f(x_1, x_2) for f in fs])

return np.einsum(’ijk,i->jk’, coeffs, solution)

def particular_solution(C, f):

def wrapper(x_1, x_2):

return C * f(x_1, x_2)

return wrapper

def final(general_solution, particular_solution):

result = []

for f in general_solution:
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result.append(f)

result.append(particular_solution)

return result

# ====================================================

# Relations known from theory of thin isotropic plates

# ====================================================

def phi_1(w):

def wrapper(x_1, x_2):

return grad(w, 0)(x_1, x_2)

return wrapper

def phi_2(w):

def wrapper(x_1, x_2):

return grad(w, 1)(x_1, x_2)

return wrapper

def M_11(w):

def wrapper(x_1, x_2):

return -D * (grad(grad(w, 0), 0)(x_1, x_2) +

nu*grad(grad(w, 1), 1)(x_1, x_2))

return wrapper

def M_22(w):

def wrapper(x_1, x_2):

return -D * (grad(grad(w, 1), 1)(x_1, x_2) +

nu*grad(grad(w, 0), 0)(x_1, x_2))

return wrapper

def M_12(w):

def wrapper(x_1, x_2):

return -D * (1-nu) * grad(grad(w, 0), 1)(x_1, x_2)

return wrapper

def Q_1(w):

def wrapper(x_1, x_2):

return -D * (grad(grad(grad(w, 0), 0), 0)(x_1, x_2) +

grad(grad(grad(w, 0), 1), 1)(x_1, x_2))

return wrapper

def Q_2(w):

def wrapper(x_1, x_2):

return -D * (grad(grad(grad(w, 0), 0), 1)(x_1, x_2) +

grad(grad(grad(w, 1), 1), 1)(x_1, x_2))

return wrapper

def V_1(w):

def wrapper(x_1, x_2):

return -D * (grad(grad(grad(w, 0), 0), 0)(x_1, x_2) +

(2-nu)*grad(grad(grad(w, 0), 1), 1)(x_1, x_2))

return wrapper

def V_2(w):

def wrapper(x_1, x_2):
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return -D * (grad(grad(grad(w, 1), 1), 1)(x_1, x_2) +

(2-nu)*grad(grad(grad(w, 0), 0), 1)(x_1, x_2))

return wrapper

# ===============

# Force functions

# ===============

def force_functions(m, n, p, q):

def wrapper(x_1, x_2):

return T(m, p, 1)(x_1, x_2) * T(n, q, 2)(x_1, x_2)

return wrapper

# ===============

# Shape functions

# ===============

# Base functions of the solution

def B(k, p, s, ni):

def wrapper(x_1, x_2):

if ni == 1:

return (np.cosh(kappa(k, p, 3-s) * x(s)(x_1, x_2)))

elif ni == 2:

return ((x(s)(x_1, x_2) / a(s)) *
(np.sinh(kappa(k, p, 3-s) * x(s)(x_1, x_2))))

return wrapper

# Shape functions

def W(k, p, s, ni):

def wrapper(x_1, x_2):

return B(k, p, s, ni)(x_1, x_2) * T(k, p, 3-s)(x_1, x_2)

return wrapper

def shape_functions(K):

result = []

for k in range(1, K+1):

for p in range(1, 3):

for s in range(1, 3):

for ni in range(1, 3):

result.append(W(k, p, s, ni))

return result

# ===========

# Build model

# ===========

W_g = shape_functions(_K)

W_p = force_functions(1, 1, 2, 2)

# ================

# General solution

# ================

# Calculate derivatives of shape function

U_g = [phi_1(f) for f in W_g]

V_g = [phi_2(f) for f in W_g]

X_g = [M_11(f) for f in W_g]

Y_g = [M_22(f) for f in W_g]

Z_g = [M_12(f) for f in W_g]

H_g = [Q_1(f) for f in W_g]
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G_g = [Q_2(f) for f in W_g]

K_g = [V_1(f) for f in W_g]

L_g = [V_2(f) for f in W_g]

# ===================

# Particular solution

# ===================

# Calculate derivatives of force function

U_p = phi_1(W_p)

V_p = phi_2(W_p)

X_p = M_11(W_p)

Y_p = M_22(W_p)

Z_p = M_12(W_p)

H_p = Q_1(W_p)

G_p = Q_2(W_p)

K_p = V_1(W_p)

L_p = V_2(W_p)

C = q_0 / (D*(delta(1, 1)**2 + delta(1, 2)**2)**2)

W_s = particular_solution(C, W_p)

U_s = particular_solution(C, U_p)

V_s = particular_solution(C, V_p)

X_s = particular_solution(C, X_p)

Y_s = particular_solution(C, Y_p)

Z_s = particular_solution(C, Z_p)

H_s = particular_solution(C, H_p)

G_s = particular_solution(C, G_p)

K_s = particular_solution(C, K_p)

L_s = particular_solution(C, L_p)

# ==============

# Final solution

# ==============

W = final(W_g, W_s)

U = final(U_g, U_s)

V = final(V_g, V_s)

X = final(X_g, X_s)

Y = final(Y_g, Y_s)

Z = final(Z_g, Z_s)

H = final(H_g, H_s)

G = final(G_g, G_s)

K = final(K_g, K_s)

L = final(L_g, L_s)

# ===================

# Boundary conditions

# ===================

# Initial points

p_1 = np.linspace(0, a_1, 2*_K)

p_2 = np.linspace(0, a_2, 2*_K)

# Boundary points

b_11 = np.full_like(p_2, a_1)

b_12 = p_2

b_21 = p_1

b_22 = np.full_like(p_1, a_2)

# Shape of blocks

m = len(W)
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n = 2*_K

# Initialize matrix blocks

B_1 = np.zeros((m, n))

B_2 = np.zeros((m, n))

B_3 = np.zeros((m, n))

B_4 = np.zeros((m, n))

# Fill matrix blocks with values for boundary conditions

for i in range(m):
B_1[i] = W[i](b_11, b_12)

B_2[i] = U[i](b_11, b_12)

B_3[i] = W[i](b_21, b_22)

B_4[i] = V[i](b_21, b_22)

# ============

# Solve system

# ============

# Augmented matrix

M = np.hstack((B_1, B_2, B_3, B_4))

M = M.T

# Coefficient matrix

A = M[:, :-1]

# Column vector of constant terms

b = M[:, -1]

# Solve a linear matrix equation

R = np.linalg.solve(A, -b)

R = np.append(R, 1)

# ==========================

# Calculate and plot results

# ==========================

# Prepare points for calculating the values in them

x_1 = np.linspace(-a_1, a_1, num=51)

x_2 = np.linspace(-a_2, a_2, num=51)

X_1, X_2 = np.meshgrid(x_1, x_2)

for f in [W, U, V, X, Y, Z, H, G, K, L]:

X_3 = calculate(f, R, X_1, X_2)

fig = plt.figure()

ax = fig.gca(projection=’3d’)

ax.set_xlabel(’$x_1$’)

ax.set_ylabel(’$x_2$’)

ax.set_zlabel(’$x_3$’)

surf = ax.plot_surface(X_1, X_2, X_3,

cmap=cm.coolwarm,

linewidth=0,

antialiased=True)

ax.zaxis.set_major_locator(LinearLocator(10))

ax.set_zlim(ax.get_zlim()[::-1])

boundaries = np.linspace(np.min(X_3), np.max(X_3), 25)

fig.colorbar(surf,

shrink=0.75,

aspect=5,

boundaries=boundaries)

plt.show()
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