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Abstract: The inspection of Personal Protective Equipment (PPE) is one of the most necessary
measures when treating patients affected by infectious diseases, such as Ebola or COVID-19.
Assuring the integrity of health personnel in contact with infected patients has become an important
concern in developed countries. This work focuses on the study of Reinforcement Learning (RL)
techniques for controlling a scanner prototype in the presence of blood traces on the PPE that
could arise after contact with pathological patients. A preliminary study on the design of an
agent-environment system able to simulate the required task is presented. The task has been adapted
to an environment for the OpenAI Gym toolkit. The evaluation of the agent’s performance has
considered the effects of different topological designs and tuning hyperparameters of the Q-Learning
model-free algorithm. Results have been evaluated on the basis of average reward and timesteps
per episode. The sample-average method applied to the learning rate parameter, as well as a specific
epsilon decaying method worked best for the trained agents. The obtained results report promising
outcomes of an inspection system able to center and magnify contaminants in the real scanner system.

Keywords: reinforcement learning; personal protective equipment; Q-Learning; reward shaping;
grid search; healthcare; infectious diseases; Filoviridae viruses; coronavirus

1. Introduction

The family of Filoviridae viruses are highly pathogenic agents which cause severe diseases in
humans. Examples include Ebola hemorrhagic fever (EHF) and Marburg hemorrhagic fever (MHF),
two fatal illnesses associated with devastating outbreaks and a case fatality ranging between 25%
and 90% [1]. The novel pathogen SARS-CoV-2, the cause of COVID-19 infectious disease, has led
to widely estimates of a case fatality ratio by country, from less than 0.1 to over 25% [2]. All these
are examples of highly infectious diseases (HID) which refers to a wider group of viral and bacterial
infections that pose a threat for health workers because of their close and prolonged contact with ill
patients. Thus, public health planning and specific and strict procedures are required [3]. High-level
isolation units (HLIU) are the facilities where patients with suspected or proven HIDs should be
cared for. They include prevention and control procedures such as decontamination of environments
and equipment, post-mortem management, effective patient care adaptation, liquid waste disposal,
and personal protective equipment (PPE) in order to provide high-quality care [4–6].

The largest epidemic of EHF to date broke out between December 2013 and April 2016 in West
Africa. The arrival of the first confirmed case to Spain in October 2014 awakened the review of
healthcare environments to safely identify, care and treat patients suffering from highly infectious
diseases [7]. The HORUS Project carried out by the University Carlos III of Madrid was submitted in
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2015 to “Explora ciencia” and “Explora tecnología” projects call within the framework of the Spanish
State Plan for Scientific and Technical Research and Innovation [8,9]. The proposal for the pilot project
was motivated by the need for completely efficient systems able to ensure the integrity of the protective
clothing used by health providers in these challenging scenarios. In the face of the COVID-19 pandemic,
healthcare systems worldwide have made every effort to ensure health care delivery and to scale up
their systems and resources to prevent disease spreading [10].

The HORUS project seeks the development of robotic technologies to assess the integrity of PPE
exposed to hazard infectious diseases. PPE is an important component of Infection Prevention and
Control (IPC) measures. At the beginning of the aforementioned EHF outbreak, a lack of clear standards
for PPE led to develop a rigorous advice guideline by the World Health Organization (WHO) [11].
Because safety concerns are especially important when donning, doffing and decontaminating the
PPE, an actuation protocol on how to put on and how to remove it was provided [12]. These measures
were primarily driven by the high potential for the protective suit to become contaminated with
infected blood traces and body fluids after patient contact. Special care in the removal of the protective
equipment as well as a visual inspection by the own health worker or by the instructor-observer
(outside the changing room) are performed after an exposure [13]. Nevertheless, this human inspection
results to be subjective and may be inaccurate. For these reasons, the HORUS project was focused
towards developing a robotic system with an active vision system able to assess the PPE of health
workers after contact with infected patients in an objective and effective way.

A full-body scanner prototype which resembles the systems used in airports and offices was
developed between 2016 and 2019 in the University Carlos III of Madrid. These scanners are designed
to detect objects under clothing and not for its surface, so the underlying technology is expensive
and generally makes use of X-rays or electromagnetic radiation with complex mechanisms [14].
The HORUS full-body scanner structure was implemented in a cost-efficient way using two motors
over a linear plane guidance and a camera with motorized zoom and an illumination system (Figure 1).
The choice of this kind of system requires the study and use of image processing algorithms able to
provide reliable data for the detection of blood traces. The study of a set of computer vision algorithms
was already tested in 2019 and is one of the research areas of the project [15]. Another promising
research line brings together the use of an active vision system able to detect and classify defects in
PPE and the latest trends in Artificial Intelligence (AI). The current software infrastructure allows
to control the robotic system manually or set an automatic scan mode that stores a set of images in
predefined positions into disk. A graphical user interface was developed by the members of the project
team to provide specific options to set this manual or automatic mode, as well as the possibility to
adjust certain image and camera properties.

Figure 1. HORUS full-body scanner structure: (left) Overall mechanism view and (right) illumination
system composed of a motorized camera DFK Z12G445 and 4 Neewer CN-Lux260 lamps.
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The main goal of this work is to explore and apply Reinforcement Learning (RL) to allow the
current HORUS scanner platform to learn from interaction with its environment. This brings us closer
to the possibility of training an AI agent for the specific blood detection task and turning it into a
smarter operating system with increased reliability. The design of an agent-environment system has
been simulated and evaluated considering many definitions and alternative forms of the elements of
an RL problem. The effects of representational choices and the topology of the environment on the
Q-Learning model-free RL algorithm are studied.

2. Materials and Methods

2.1. Learning from Interaction: Q-Learning

Learning from interaction is the fundamental basis of the human nature of learning, and has been
computationally explored in the Reinforcement Learning (RL) field. This practice involves a learner and
decision-maker agent which takes actions (A) in specific states (S) within an environment and evaluates
its behavior based on some reward (R). Additional elements in RL are the policy (π), a mapping that
defines how the agent acts from a specific state, and a value function that determines the total amount
of reward which can be accumulated over the future [16]. The mathematical formulation of this
problem may be address by a Markov Decision Process (MDP) framing with finite state, action and
reward sets {S, A, R} for different discrete time steps (t, t+1...) (Figure 2). Finite MDPs formalize a
sequential decision making process by defining these finite number of elements and well defined
probability distributions (Equation (1)). In this equation, the definition of probability p represents the
dynamics of an MDP and specifies the probability of state s′ ∈ S and reward r ∈ R occurring at time t,
given some preceding state s ∈ S and action a ∈ A(s) values.

p
(
s′, r | s, a

) .
= Pr

{
St = s′, Rt = r | St−1 = s, At−1 = a

}
(1)

These probabilities characterize the environment’s dynamics of an MPD framework able to
abstract a goal-directed problem. Specifically targeting the HORUS problem, the selected algorithm was
Q-Learning, a model-free RL method that finds an optimal policy by maximizing the expected value
of discounted reward over a sequence of steps [17]. The value function is referred to as Q-function and
allows to store subsequent Q-values, estimates of cumulative reward in the long run, in a Q-Table [16].
Q-Learning is a time-difference learning approach. This means it updates the value of a state based
on the observed reward and the estimated value of the next state. It is a method based on the
Bellman equation:

Q(St, At)← (1− α)Q(St, At) + α[Rt+1 + γmaxQ
a

(St+1, a)] (2)

where Q refers to the updated Q-value for a specific state St and action At in a given time step t, α is
the step-size or learning rate, Rt+1 is the reward associated to the action performed, γ is the discount
factor and maxQ

a
(St+1, a) is the maximum expected future reward given the new state St+1 and all the

possible actions a at that new state.

Figure 2. Block diagram of the Agent-Environment interaction in a Markov Decision Process [16].
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2.2. OpenAI Virtual Environment

The Q-Learning algorithm will be used for the task of assisting decision making of the HORUS
system. In order to simulate the environment, an open-source library and extended toolkit has been
chosen. OpenAI Gym is an open source interface for developing and comparing RL algorithms,
offering a way to standardize the definition of environments in AI research. In our system,
Gym provided all the functionalities to test, train and simulate the blood detection task in Python code
(Getting Started with Gym, available online: https://gym.openai.com/).

2.3. Problem Definition

The application of an RL algorithm to a specific problem requires to identify each element of
an MDP. The MDP framework is flexible and can be referred to different problems in a wide variety
of forms. Actions and states can adopt different shapes and, in general, the first ones correspond
to the decisions we are interested in learning, and the second ones can be anything useful to learn
these actions [16]. This may lead to the definition of the same problem in many different ways.
In the HORUS definition problem, different alternative problem definitions have been considered
and explored. For all of them, the robotic moving system has been treated as the agent, the actions
are considered as the horizontal and vertical Cartesian movements in addition to the camera zoom,
and the environment is the plane of movement inside the square-shaped security airlock covered
in black flap material shown in Figure 1, as well as system parts that cannot be changed arbitrarily
(such as the motors or the mechanical linkages). Besides that, two options for the definition of the state
(S) have been considered:

• The first definition assumes the state (S) is the current camera position. This allows to train the
system to reach some desired static position in the environment.

• The second definition encodes the state (S) depending on the content of the current camera image.
This allows to avoid the static position-dependent problem derived from the first approach.

Furthermore, the design of the reward signal (R) is a crucial step of any application of RL.
Modelling a reward implies deciding the scalar reward at each time step by eventually translating
a goal into this signal. During training, the agent updates its policy based on this signal after some
state-action combination. Therefore, the design of this value allows to drive the actions of the agent to
an ideal behaviour. In practice, the design of this signal is generally performed by an informal trial
and error method that evaluates if the final results are acceptable [16,18]. How shaping the reward
signal affects the resulting policy will be tested.

The notion of final time step appears naturally in some problem definitions after agent-environment
interactions [16]. This is the case of the HORUS problem, in which the task is done when the blood
pixels are found and centered. These finite sequences of steps are referred to as episodes or epochs,
and once they end the initial conditions and state are reset. The episodic task will be evaluated using
100,000 epochs.

2.4. Training Images Set

For the training of the RL active vision system, custom synthetic images have been used. This has
allowed to perform all computations more efficiently and has simplified the problem to the least
complex scenario. Custom images of 30 × 14 pixels (Figure 3a) were used for the first problem
definition. This set of images shows the whole visual framework of the environment, and they
represent: black for the background, yellow for the medical suit and single red and blue pixels for a
blood trace and the camera position, respectively. In addition, a visual framework of 140× 140 pixels
that represent the environment (Figure 3b), where the camera is able to move and capture a window size
of 30× 20 pixels (Figure 3c,d), has been designed. This is required because the real visual system does
not allow the visualization of the entire mechanical cubicle. Every synthetic image is represented by

https://gym.openai.com/docs/
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three different pixel values identifiable with the three main elements to detect: blood (red), suit (yellow)
and background (black).

Figure 3. Example of synthetic images of four different RGB colors (Black, Yellow, Red and Blue)
that simulate the background, medical suit, blood traces and camera position of the HORUS
problem, respectively. Emulates: (a) least zoom, (b,c) intermediate zoom, (d) maximum zoom.

2.5. Hyperparameter Tuning

Grid Search

Before presenting any results, hyperparameter optimization is applied as a final step in machine
learning. Some parameters in Equation (2) are used for controlling the learning process and must
be set appropriately to maximize the learning method [19]. This is the case of the learning rate α

and discount factor or discount rate γ, two parameters between 0 and 1 that evaluate how much
information overwrites past information and how important are the obtained rewards compared to
those obtained in further steps [20], respectively .

The learning rate or step-size parameter (α) affects how much the difference between a previous
and a new Q-value is considered. Generally, constant small learning rates are effective in nonstationary
problems in which the reward probabilities change over time. In those cases, more weight is given
to recent rewards than long-past rewards. In contrast, when true values of the actions are assumed
to be stationary, then the sample-average method (Equation (3)) may be used in order to average the
rewards incrementally and guaranteed convergence to the true action values.

αt(a) =
1
ka

(3)

where ka indicates the amount of preceding selections of action a. On the whole, the step-size parameter
is essential to maximize the speed of learning. Large step-sizes cause oscillations in the value function
in comparison with small ones that lead to longer learning rates [21,22].

Regarding the discount rate (γ), it must be selected considering the time horizon of the relevant
rewards for a particular action. The agent’s discounted reward Gt as a function of the discount rate
can be expressed as:

Gt
.
= Rt+1 + γRt+2 + γ2Rt+3 + ... =

∞

∑
k=0

γkRt+k+1 (4)

where 0 ≤ γ ≤ 1 determines the present value of future rewards. γ = 0 only maximizes immediate
rewards and γ = 1 takes future rewards into account strongly. In many application it is nearly always
arbitrarily chosen by researchers to be near the 0.9 point [23].
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The trade-off between exploration and exploitation, one of the key challenges that arise in RL [24],
is also considered at this stage. The dilemma comprises choosing between what has been learned
(exploitation) or some other action to possibly increase knowledge (exploration). In general, the greedy
method (that selects the action with highest learned Q-value) gets stuck performing suboptimal actions
compared to the ε-greedy method (Equation (5)) that uses ε as a probability to randomly select an
action, independently of action-value estimates [16]. The ε-greedy method follows a policy π:

π(s) =

{
random action f rom A(s) i f ε < ε

argmaxa∈A(s) Q(s, a) otherwise
(5)

where 0 ≤ ε ≤ 1 is a uniform random number computed at each time step. Slightly more sophisticated
strategies are Boltzmann exploration (softmax) or some derivatives of ε-greedy method method that
reduce ε over time to try to get best of both high and low values [16,21].

The final step in our work will be to apply grid search to exhaustively find an optimal subset of
these hyperparameters. Grid-search is used to find these optimal values of the policy which lead to the
most accurate predictions [19]. For this reason, the behaviour of different agents has been evaluated
according to the following metrics:

1. Average number of timesteps per episode: minimum number of steps or the shortest path, is
sought per episode.

2. Average reward per episode: a higher number of positive rewards per episode is an indicator of
an effective learning.

3. Reward/Timesteps ratio: a higher value of this ratio enables to get the maximum reward as fast
as possible.

3. Results

3.1. State Space: Absolute Camera Coordinates (Path Learner)

Each approach in this study implied the implementation of a Gym environment to test it. The first
idea to explore was a system able to guide the agent to specific locations. Similar to computer programs
capable of imitating or exceeding human-level performance on many games through RL and variants
of this learning method [25] such as Pacman [26], actions performed by the agent in the proposed
system were rewarded according to the following criteria.

3.1.1. State and Action Space

• The discrete world to explore is a N ×M grid where the state is defined by the position of the
camera in one of these N ×M locations.

• The number of possible states is therefore N ×M .
• The set of possible actions A is the same for all states s ∈ S, A(s) =

{Move Le f t (ML), Move Down (MD), Move Right (MR), Move Up (MU)}.

3.1.2. Reward Shaping

• The main target is met when the camera location (blue pixel) reaches the blood trace (red pixel).
• Reaching the goal yields +100 positive reward and stops the episode.
• Illegal background location yields −100 penalty points and stops the episode.
• A −1 negative reward results after each performed action except for MU and MD movements

that was a −2 reward. This strategy allows to encourage the agent to perform the fewest number
of possible moves to reach the goal and to promote some actions over others (x-axis over
y-axis movements).
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• The system takes into account some nonstationary considerations such as real patients movements.
For this purpose the blood sample (red pixel) moves randomly given some small probability.

3.1.3. Performance

An example of 10,000 episodes (starting from the same initial camera state) is shown in Figure 4.
Exploration, learning rate and discount factor were fixed values (0.1, 0.1 and 0.6, respectively).
The agent behaviour reached the goal in 24 steps (represented in the images as different states)
with an overall average reward of −6.1 units. Average reward through time is shown in Figure 5 (left)
for the different training episodes. Increasing the number of episodes 10 times, gives a whole average
reward of −2.9 units. The average reward progress in this case is represented in Figure 5 (right).

Figure 4. Example of behaviour after 10,000 epochs for training a camera agent (blue pixel) to reach
a specific location (blood pixel) through Q-Learning. First state corresponds to upper left image and
increases to the right.

Figure 5. Average reward after (left) 10,000 epochs and (right) 100,000 epochs training of a camera
agent to reach a specific location through Q-Learning.
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Nevertheless, testing any of these trained Q-Tables by using a different framework (moving
several pixels the blood sample) leads to inefficient results. The agent only knows how to move
greedily to a specific location area and it fails to reach the goal in any other cases. This approach is a
goal-dependent learning method.

3.2. Space State: Blood Spot Coordinates in the Camera View

The second definition was framed with the intention of overcoming this goal-dependent limitation.
The chief change in this respect was identifying a new decision making task by updating the meaning
of state. For this purpose, a new criteria was established.

3.2.1. State and Action Space

• The discrete world to explore is an N ×M grid where the state is defined by the position of the
blood sample in one of these N ×M locations that corresponds to the pixels of the camera view.
These positions are encoded in the OpenAI environment into a sequence of consecutive states.

• Blood samples can be represented by more than 1 pixel as shown in the different camera views in
Figure 3. The final state is given after computing the center of mass of the blood sample.

• Two level zooms with the same pixel resolution (30× 20 pixels) were considered to simulate
the real 3D problem. Zoom Out images with 60× 30 pixels are down-sampled to reduce the
dimensionality using nearest-neighbor interpolation.

• The number of possible states raises up to 2× N ×M + 1. This number takes into account both
levels of zooms and the null case (no blood appears in the image).

• Big [b] and small [s] steps of 4 and 1 pixel, respectively, in Move Left (ML), Move Right
(MR), Move Up (MU) and Move Down (MD) actions are considered, as well as Zoom Out
(ZO) and Zoom In (ZI)) movements. The set of possible actions A varies for each state s ∈ S,
A(s) = {ML[b], ML[s], MD[b], MD[s], MR[b], MR[s], MU[b], MU[s], ZO, ZI}.

• Invalid joints space actions such as trying ZI action when the current state in already in this
framework, are not included as possible movements in the action space

3.2.2. Reward Shaping I

• If some blood pixels appear in the camera view, the reward is proportional to the area of red pixels
(favouring ZI states) and inversely proportional to the squared distance to the central position.

• The main target is met when the centroid of blood pixels is centered in the ZI camera view.
• Reaching the goal yields +1000 positive reward and stops the episode.
• Each step is penalized by a −50 negative reward to avoid unnecessary movements from the agent.

3.2.3. Reward Shaping II

• If some blood pixels appear in the camera view, the reward is proportional to the area of red pixels
(favouring ZI states).

• Getting closer to the centroid position respect to previous state yields a +10 positive reward.
• Moving away from the centroid position respect to previous state yields a −20 negative reward.
• The main target is met when the centroid of blood pixels is centered in the ZI camera view.
• Reaching the goal yields +1000 positive reward and stops the episode.

3.2.4. Grid Search

Learning rate (α), discount factor (γ) and exploration (ε) hyperparameters are external values to
the model and cannot be estimated from data. These values have to be set before the learning
process begins. These analysis have been conducted using the two already described reward
shaping definitions.
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The overall performance of eight different agents with a combination of these hyperparameters is
shown in Table 1. Results represent the average of five different trainings for each hyperparameters
combination using a reward shaping inversely proportional to the centroid distance that penalizes
each performed step (Reward Shaping I).

Table 1. Performance of 8 agents with different hyperparameter values, after 100,000 epochs training
using Reward Shaping I.

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Agent 6 Agent 7 Agent 8

Learning Rate (α) 0.1 1/N 0.1 1/N 0.1 1/N 0.1 1/N
Discount Factor (γ) 0.9 0.9 0.6 0.6 0.9 0.9 0.6 0.6

Exploration (ε) 0.1 0.1 0.1 0.1 ε-decay ε-decay ε-decay ε-decay
Average Reward per episode 170 177 181 187 154 151 154 154

Average Timesteps per episode 7 6 6 6 11 10 10 10
Rewards/Timesteps ratio 25 29 30 32 15 15 15 15

In addition, performance over time is analyzed to compare how each combination of
hyperparameters behaves. Total average reward of each episode is compared for each agent in
Figure 6 together with the average number of steps performed. Average results corresponds to five
different trainings for each combination of hyperparameters.

Figure 6. Total reward on episode averaged over 5 different runs for eight different agents (left) and
the total number of steps averaged over these runs (right) using Reward Shaping I. The training of
each agent comprised 100,000 episodes and curves are smoothed with a window of 1000 epochs.

The same experiment was performed using a different distribution of rewards (Reward Shaping II).
The overall performance of the same eight agents is summarized in Table 2. Performance over time is
also plot for each combination of hyperparameters. The same amount of runs and conditions are used
for showing the average reward and the number of steps along time in Figure 7.

Table 2. Performance of 8 agents with different hyperparameter values after 100,000 epochs training
using Reward shaping II.

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Agent 6 Agent 7 Agent 8

Learning Rate (α) 0.1 1/N 0.1 1/N 0.1 1/N 0.1 1/N
Discount Factor (γ) 0.9 0.9 0.6 0.6 0.9 0.9 0.6 0.6

Exploration (ε) 0.1 0.1 0.1 0.1 ε-decay ε-decay ε-decay ε-decay
Average Reward per episode 166 197 203 223 202 201 203 204

Average Timesteps per episode 14 8 9 7 11 10 11 11
Rewards/Timesteps ratio 12 24 23 32 19 19 19 19
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Figure 7. Total reward on episode averaged over 5 different runs for eight different agents (left) and
the total number of steps averaged over these runs (right) using Reward Shaping II. The training of
each agent comprised 100,000 episodes and curves are smoothed with a window of 1000 epochs.

3.2.5. Performance

Training the agent under these principles was carried out by selecting random initial camera view
frames. First results suggested the system would get stuck if the random initial camera view frames
were far away from any blood sample. Chaotic movements were observed under the null case state,
but the system learned to reach the target if the initial frame captured any blood spot. This is likely
an exploration issue where the agent is unable to find the exit the first time. The reformulation of the
problem by a possible combination of this AI approach with the automatic scan mode of the HORUS
scanner was considered at this stage.

An example of training of 100,000 episodes (starting from random initial frames capturing any
blood pixel) is shown in Figure 8. Exploration, learning rate and discount factor were the values
for Agent 8 in previous experiments. A and B images represent the result for the first definition of
rewards for ZI and ZO states, respectively, in contrast to C (ZI) and D (ZO) that correspond to the
second reward shaping. The action with highest Q-Value is represented by a different color and those
actions are the Cartesian movements of the camera image views respect to the whole image framework.
No invalid joint space actions are observed in the images.

Figure 8. Example of greedy behaviour after 100,000 epochs for training a camera agent to center a
blood spot through Q-Learning. The state is a different camera view of the blood trace and the ten
possible actions (represented by colors) are movements of the camera respect to the whole image
framework. (A) (ZI) and (B) (ZO) images corresponds to Agent 8 (Reward Shaping I) and (C) (ZI) and
(D) (ZO) images are for Agent 8 (Reward Shaping II).
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In order to quantify how reliable the indicated greedy actions are, Figures 9 and 10 represent the
Q-Values of greedy actions, a measure of goodness for a iteratively updated state-action pair [27], and a
counter of how many times the agent has come through each state during the whole training, respectively.

Figure 9. Q-Values of greedy actions for each state in the two possible Zoom configurations after
100,000 training epochs. (A) (ZI) and (B) (ZO) images corresponds to Agent 8 (Reward Shaping I) and
(C) (ZI) and (D) (ZO) images are for Agent 8 (Reward Shaping II).

Figure 10. Iteration values representing how many times each state has been visited during 100,000
training epochs. (A) (ZI) and (B) (ZO) images corresponds to Agent 8 (Reward Shaping I) and (C) (ZI)
and (D) (ZO) images are for Agent 8 (Reward Shaping II).

High Q-values (Figure 7) in highly visited states (Figure 8) represent best and more reliable
actions to reach our goal. Otherwise, seldom frequented states and small Q-Values result into unsafe
or suboptimal actions.

4. Discussion

Reinforcement learning is considered to be the third machine learning paradigm, along with
supervised and unsupervised learning [28]. The modern field of RL was preceded by two independent
focus of interest: learning by trial and error in the psychology field and the design of controllers to
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adjust some dynamical system’s measure over time [16]. The early history of RL justifies the selection
of this technique for developing an adaptive control system able to learn from its own experience and
behaviour. Added values such as the possibility of using offline computation [29] or the possibility of
applying this method to changing environments [30], support the choice. In particular, Q-Learning is
the most popular and it is thought to be the most effective model-free algorithm. This architecture
converges to the optimal values as long as state-action pairs are tried enough and learning proceeds
similarly to other temporal difference methods [17,28].

The design of a representation of the HORUS problem led the process of evaluation of different
alternatives. Based on the fact that actions and states vary from task to task and their shape affects the
system performance, the choice of a specific model greatly impacts final results. The first considered
option has been a system able to navigate to a specific location in the proposed environment. In practice,
the system worked correctly and found the predefined goal when testing. Nevertheless, moving the
goal caused the system to fail, because the previously learned information interferes with the task of
finding the new goal. Although the Q-learning algorithm is independent of the policy being followed,
it was shown that is not independent of the current goal. Concurrent RL has been studied in many
applications to learn the relative proximity of all the states simultaneously and apply RL for dynamic
goals and environments [31]. This method address the problem through specific algorithms that use
a temporal difference approach able to learn a mapping and to allow coordinate learning in a goal
independent way.

In this work, another strand of research assessed this problem by changing the identification of
state. Defining the RL element of state by the pixel position of a blood sample (or its center of mass)
instead of the position coordinates of the camera, eliminate the goal dependant problem. However,
the behaviour of the system under no presence of blood samples is difficult to adjust and generally the
experiments showed that the system would get lost. The considered approach for the real problem
involves the use of a semi-automatic inspection able to move and visualize all the cubicles in the search
of blood traces and to center and magnify the image at the presence of any sample.

The selection of rewards is in first instance an arbitrary process and the choice must be decided
given that the agent always learns to maximize them. Thus, it is crucial that the rewards we set up
truly indicate what we want to accomplish. Reward measures could be specified either continuous
or discrete signals and are designed to avoid sparse or under-specified rewards [16]. Two different
discrete reward structures were investigated. In either case, reward signals provided rich information
when the action and observation signals change. In the first consideration, the signal penalized each
step to avoid unnecessary movements and the reward was proportional to the distance to the center.
In the second design, getting close to the center compared to last state gave positive reward and getting
away yielded a negative reward.

Efficiency was analysed for each of the reward designs and for a group of 8 agents. Figures 6 and 7
show the performance in terms of average reward of these agents. Although, Reward/TimeStep ratio
(Tables 1 and 2) is in general better for Agents 1–4, plotting the results over time show that final
reward improves in Agents 5–8 due to the use of an epsilon decaying method to regulate exploration.
Exploration is needed because there is always uncertainty about the accuracy of the action-value
estimates. From the several simple ways to balancing exploration and exploitation that have been used
in this work, it seems that ε-decay approach achieves better results than the rest. This method reduces
the exploration hyperparamer ε in each iteration, allowing to explore more state-action pairs at the
beginning of training and eventually reducing the number of non-greedy movements.

Among the rest of hyperparameters, best average reward and reduced timesteps are found using
the averaging method (1/N) for stationary problems in comparison with a constant step-size parameter
generally applied for nonstationary cases. In addition, the discount factor of 0.6 units reported the best
results in all the experiments performed (Tables 1 and 2).

In Figure 8 the circular pattern around the center of the images indicate that Agent 8 learns to
center the centroid of the blood trace in both zoom states. Comparing both greedy behaviours,
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Reward Shaping I appears to be the most effective to center the blood sample because regions
are defined more sharply and less random movements are noticed. Looking at Figures 9 and 10,
higher Q-Values and steps are observed in the regions with high rates of visits. Edge locations are less
frequent and consequently the greedy behaviour in these zones is greatly randomized.

A future research direction implies extracting the reward signal by using Inverse Reinforcement
Learning (IRL). This mechanism allows to extract the rewards and use them to learn a policy, assuming
knowledge of the environment’s dynamics [16]. Because the boundary of the Reinforcement Learning
field is based on the implicit assumption that the reward function is the most robust definition of the
task, learning that function is a reasonable approach to consider [32].

The implementation of a simple simulated environment leaves aside the real behaviour of the
system. Complex considerations derived from the real world experience such as the appearance of
two blood samples, other kind of detectable fluids that may appear in the camera view or sudden
movements of the health-provider have not be taken into account. In addition, the resolution of real
images is larger than the one used for this analysis, as well as the complexity in RGB colors. In another
line of action, Deep Reinforcement Learning, may help to the task of adapting the simulation to the
real system. Training deep neural networks just like recent improvements in computer vision [25] and
connect the idea to RL to operate on RGB images and process training data may be a promising task.

The recent outbreak of 2019 novel coronavirus diseases (COVID-19) in Wuhan, China has
awakened the need to increase infection control capacity to prevent transmission in health care
settings [33]. The advantages at social level that may arise from this project include increasing the
safety of the facilities and workers in medical environments, the replication of this technology in
other areas of the hospital (intensive care units, operating theatres...), special aid in the detection
of contaminants and germs related to new and highly contagious diseases, and the discovery of
additional lines of research. For instance, other possible application types include active vision control
for surveillance purposes, such as mobile exploring robots that perform visual inspection of historical
places and objects [34], navigation tasks in different environments or guiding motions of robotic
manipulators [35].

5. Conclusions

An AI agent able to center blood samples has been designed through Reinforcement Learning.
Representational choices such as reward shaping or the general adjustment of a custom problem to
an MDP framework is a crucial issue to address, although resolutions are at present more art than
science [16]. Trial and error formulas worked for the specific problem. Hyperparameter optimization
helped determine the best combination of these values and should be tested for each application.
The learning rate set up for stationary cases using the sample-average method, as well as a specific
epsilon decaying method worked best for the trained agents. A prototype of an active vision system
has been designed through Q-Learning in a simulation environment.
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Abbreviations

The following abbreviations are used in this manuscript:

EHF Ebola Hemorrhagic Fever
MHF Marburg Hemorrhagic Fever
HID Highly Infectious Diseases
HLIU High-Level Isolation Units
PPE Personal Protective Equipment
IPC Infection Prevention and Control
WHO World Health Organization
AI Artificial Intelligence
RL Reinforcement Learning
MDP Markov Decision Process
ML Move Left
MR Move Right
MU Move Up
MD Move Down
ZO Zoom Out
ZI Zoom In
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