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Abstract: Energy-saving and emission reduction has become the theme of the world. The wheel loader
has a harsh working environment, complicated working conditions, and drastic changes in load,
and the performance of the engine cannot be fully utilized. Therefore, the variable speed transmission
of vehicles plays a vital role in improving the efficiency and performance of the vehicle. This paper
establishes the general characteristic equations for the input coupling type of hydro-mechanical
continuously variable transmission (HMCVT) based on the wheel loader and determines reasonable
structural forms for connection of working conditions. It establishes the general efficiency equation
for the reasonable structural form for efficiency analysis and presents a method of co-validation of
the simulation and test for making the results of efficiency more accurate. Through this method,
the transmission performance is more accurately analyzed, which provides an important guiding role
and validation for the early design of HMCVT. Eventually, it gets reasonably optimized products and
reduces the design cost and cycle.

Keywords: hydro-mechanical continuously variable transmission (HMCVT); wheel loader; efficiency
analysis; simulation and test; co-validation

1. Introduction

The wheel loader, as a kind of off-highway vehicle, has complicated working conditions and
drastic changes in load. Hence, the vehicle’s transmission plays a vital role in improving its efficiency
and performance. The conventional transmission applied to the wheel loader is the mechanical
transmission with torque converter. Therefore, many scholars have studied the traditional transmission
with torque converter [1–3]. However, the efficiency of the torque converter has a greater impact on the
efficiency of the transmission system, which results in no significant increase in efficiency, whatever
structure is adopted. Therefore, the hydro-mechanical continuously variable transmission (HMCVT)
has received widespread attention. Hydro-mechanical continuously variable transmission (HMCVT) is
a kind of power split transmission. Composition of the HMCVT is as displayed in Figure 1. The input
power is divided into two paths (mechanical transmission and hydrostatic CVT) through the power
split device, and the power of the two paths will be combined through the power junction device (PJD).
It can achieve high-efficiency power transmission through mechanical transmission and CVT through
hydrostatic transmission.
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The efficiency of the hydrostatic transmission is higher than the hydrodynamic transmission.
The hydrostatic transmission not only has high efficiency compared to the hydrodynamic transmission,
but also can achieve CVT and has the adaptability to the load. Many companies like Dana Rexroth,
ZF, and Liebherr, have developed and produced HMCVT, and the efficiency has generally improved
by about 25% [4–7]. Many scholars have studied hydrostatic mechanical power split transmission.
Ince et al. developed a novel power-split-input-coupled infinitely variable transmission (IVT) system
and carried out kinematic analysis of the new system [8]. Xiong et al. designed and analyzed
comparatively the directly coupled HST and the output-coupled power split transmission (PST) for
a 10 ton wheel loader for improving the fuel economy of a wheel loader [9]. Liu et al. introduced
and analyzed a kind of multi-range hydro-mechanical transmission (HMT) based on dual stage
input-coupled layout, which had a mean efficiency of about 83% in a wide speed range through
the simulation [10]. Macor et al., through a “direct search” algorithm based on the swarm method,
defined the design of a hydro-mechanical transmission as an optimization problem in which the
objective function is the average efficiency of transmission [11]. Cheng et al. investigated the efficiency
characteristic of the hydro-mechanical continuous variable transmission (HMCVT) in tractors and
proposed a method for building the HMCVT efficiency model based on an improved simulated
annealing (SA) algorithm according to a small amount of test data [12]. Rossetti et al. set the design of
a hydro-mechanical transmission as a multi-objective optimization problem, where the goal is not only
the best efficiency but also the smallest size of the transmission [13]. Cammalleri et al. provided a new
model for the preliminary design of compound power-split CVTs, which allowed the engineers to
prioritize functionality and efficiency of the transmission, while delaying the choice of the involved
gear sets’ layout as long as possible [14]. Rotella et al. provided a fast kinematic analysis method for
compound power-split CVTs, which consented to identify their functional parameters [15,16]. Rossetti
et al. presented an analytical formulation of the layouts of three-shaft hydro-mechanical transmissions
and obtained the formulation starting from the Willis equation for the planetary gears [17]. Carl et
al. presented a comparison between the different architectures of power-split transmissions utilizing
hydraulic units as the variators, with a focus on efficiency, control effort, and system complexity [18].
Zhu et al. obtained the design parameter of HMCVT through the analysis of kinematics and dynamics
for the big horsepower tractor and focused on the shift strategy of HMCVT based on the physical
parameters and shift time [19,20]. Zhang et al. established an optimization process of optimal
productivity and calculated the matching engine speed and HMCVT speed ratio based on the wheeled
tractor [21]. Zhou et al. conducted modeling and simulation of a hydro-mechanical continuously
variable transmission system based on Simscape [22]. Myung et al. analyzed the critical speed of
HMCVT based on an 8 ton class forklift [23]. These are all specialized analyses of a certain program
and used the theoretical calculation and simulation methods for preliminary design, and then tested
and verified the prototype. However, there are few works of literature on performing component
verification analysis in the early stage of design.

2. Analysis of the Wheel Loader Characteristics

2.1. Force Characteristics

The wheel loader is driven by the power of the engine, which is transmitted to the wheels through
the transmission and driven by the driving force on the ground, as shown in Figure 2.
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Figure 2. Force sketch of loader.

The driving force, FK, is used to overcome the driving resistance and driving traction of the loader.
Driving resistance mainly refers to rolling resistance, F f , and air resistance, Fω. If the loader is driven
uphill, it is necessary to overcome the ramp resistance, Fi, caused by its own gravity; if the loader
speeds up, it is also necessary to overcome the inertia force, Fa. The driving force applied to the wheel
loader, FK, can be calculated by the following equation:

FK = FT + F f + Fω + Fi + Fa (1)

Under the working conditions, the loader is frequently accelerated and decelerated during the
whole working cycle. Therefore, in view of the working conditions of the loader, the force characteristics
under the accelerated state are mainly discussed. As shown in Figure 2, the loader is accelerating on
the horizontal road. Because of the loading under the working conditions, the speed of the machine is
relatively low, so the air resistance is neglected, then:

FK = F f + Fa; FK = FK1 + FK2; F f = F f 1 + F f 2 = f mtg; Fa = mta (2)

Resultant torque of the wheels is shown in the following equation:

TK = (FK1 + FK2)rK = ( f mtg + mta)rK (3)

where TK is the driving torque of the wheel loader.

2.2. Velocity Characteristics

2.2.1. Types of HMCVT

HMCVT divides the power into two paths, one with a fixed transmission ratio (the mechanical
path) and another which includes the hydrostatic CVT. Both rejoin in the output shaft [24]. The HMCVT



Appl. Sci. 2020, 10, 5900 4 of 22

relies on the Planetary Gear train (PG) to realize the function of power split or junction. There are two
different types of the HMCVT, as shown in Figure 3. It is the input coupling type, as can be seen in
Figure 3a, that has the PG as the power junction device (PJD), and the output coupling type, as can be
seen in Figure 3b, that has the PG as the power-split device (PSD) [8,9].
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When HMCVT speed range is required to be wide, in order to improve the efficiency, it is necessary
to limit the speed range of hydrostatic CVT to reduce the proportion of hydrostatic CVT power
flow. The mechanical transmission often shifts gears through the clutch or brake. Thus, when the
transmission ratio of the hydrostatic CVT changes in different directions, the range of the transmission
ratio of HMCVT will be enlarged, so that the proportion of hydrostatic CVT power flow in each
speed range can be maintained as low as possible, realizing the efficient multi-range HMCVT with
continuously varying transmission. Multi-range HMCVT mostly adopts this type of input coupling,
because it can realize the high-efficiency operating point of all mechanical power flow. The Dana
Rexroth (HVT) R2 and R3 adopt the three-range concept: The HVT has one hydrostatic drive range
and two input coupling power-split ranges [4,5].

There are three working conditions in the basic components of the multi-range HMCVT:

1. H range, where the transmission has only hydrostatic power.
2. HM range, with forward transmission of the PG.
3. HM’ range, with reverse transmission of the PG.

There may be three working conditions in the whole process of the multi-range HMCVT, but the
two-range transmission may also be composed of two of them. The H condition is only used in
the starting working condition. In order to expand the range of the transmission ratio, HM and
HM’ operation conditions may require one or several consecutive switching to achieve the required
speed range.

In the input coupling type, the rotational speed direction of the variable displacement pump
remains unchanged and it has small range of velocity variation. In the input coupling type, the variable
displacement pump needs bidirectional rotation. Therefore, special variable displacement hydraulic
pumps with reversible performance are required. Universal variable displacement pumps and motors
can only be used for the input coupling type, so the input coupling type of the HMCVT is widely
adopted, like Dana Rexroth (HVT) R2 and R3. Therefore, this paper focuses on in-depth study of the
input coupling type.

2.2.2. Velocity Characteristics

The following equations can be derived from Figure 4:

ip =
ne

nP
, i1 =

nM

n1
, i2 =

ne

n2
,iCVT =

nM

nP
=

VP

VM
(4)
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iPG =
no − n2

n1 − n2
= −

T1

To
(5)
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where 𝑖𝑝  is the transmission ratio between shaft e and the pump, 𝑖1  is the transmission ratio 
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Then, the transmission ratio of the HMCVT becomes, by Equations (4) and (5),

ioe =
no

ne
=

iCVTiPGi2 − i1ipiPG + i1iP
ipi1i2

(6)

and:

iCVT =
ioeipi1i2 + ipi1iPG − i1ip

iPGi2
(7)

it =
i f ie
ioe

=
nE

nK
(8)

where ip is the transmission ratio between shaft e and the pump, i1 is the transmission ratio between
the motor and shaft 1 of PG, i2 is the transmission ratio between shaft e and shaft 2 of PG, iPG is the
transmission ratio between output shaft and shaft 1, iCVT is the transmission ratio of hydrostatic CVT,
it is the transmission ratio of the whole transmission system, ie is the transmission ratio between engine
and shaft e, ioe is the transmission ratio of HMCVT, i f is the transmission ratio between PG output
shaft and the wheel, nE is engine speed, ne is shaft e speed, nP is pump shaft speed, nM is motor shaft
speed, n1 is shaft 1 speed of PG, n2 is shaft 2 speed of PG, no is output shaft speed of PG, nK is wheel
speed, VP is pump displacement, and VM is motor displacement.

The range of transmission ratio, ioe, is:

α =
ioeM

iiom
=

iCVTMipGi2 − i1ipiPG + i1ip
iCVTmipGi2 − i1ipiPG + i1ip

=
βiCVTmiPGi2 − i1ipiPG + i1ip
iCVTmiPGi2 − i1ipiPG + i1ip

(9)

and the range of iCVT is:

β =
iCVTM
iCVTm

=
ioeMipi1i2 + ipi1iPG − i1ip
ioemipi1i2 + ipi1iPG − i1ip

=
ioeMi2 + iPG − 1
ioemi2 + iPG − 1

(10)

where iCVTM is the maximum value of iCVT, iCVTm is the minimum value of iCVT, ioeM is the value of ioe

when iCVT = iCVTM, and ioem is the value of ioe when iCVT = iCVTm.
The loader velocity is:

v = 2πnKrK =
2πnErK

it
(11)

2.3. Power Characteristics

Assuming that the effect of efficiency is not taken into account, the following equations can be derived:
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T1

To
= −iPG,

T1

TM
= −i1,

T1

T2
= −

n1 − no

n2 − no
=

iPG
1− iPG

(12)

The proportion of hydrostatic power in total power, ρ, can be obtained by Equations (6) and (12):

ρ =
PCVT

PK
=

P1

Po
=

T1 · 2πn1

To · 2πno
= −

iPGiCVT
ioeipi1

(13)

PK = FKv = FK · 2πnKrK = FK ·
2πnErK

it
= FK ·

2πnEioerK

i f ie
(14)

By substituting Equation (6) into Equation (13), it becomes:

ρ =
PCVT

PK
= −

iPGi2iCVT
iCVTiPGi2 − i1ipiPG + i1ip

(15)

By substituting Equation (7) into Equation (13), it becomes:

ρ =
PCVT

PK
= −1−

(iPG − 1)
ioei2

(16)

The following equation can be deduced by using the Equations (10), (14), and (16).

PCVT = −

[
1 +

βieom − ieoM

ioe(1− β)

]
FK

2πneioerK

i f
= −

[
1 +

βvm − vM

v(1− β)

]
FKv (17)

The following conclusions can be obtained through Equation (17):
When v = −

βvm−vM
1−β , ρ = 0. The power of hydrostatic CVT is zero, HMCVT has only mechanical

transmission to transmit power.
When v < − βvm−vM

1−β , ρ > 0. Hydrostatic CVT occurs in backward power recirculation, as shown in
the Figure 5.
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When βvm−vM
v(1−β) > 0, ρ < −1. Mechanical transmission occurs in backward power recirculation,

as shown in Figure 6.
When v > − βvm−vM

1−β , βvm−vM
v(1−β) > 0, −1 < ρ < 0. The power-split transmission has no recirculation,

as shown in Figure 7.
Because of the low efficiency of hydraulic transmission, the optimum transmission mode is that the

power-split transmission has no recirculation, as shown in Figure 7. The most undesirable transmission
mode is that mechanical transmission occurs in backward power recirculation, as shown in Figure 6.
When

∣∣∣ρ∣∣∣ > 1, the efficiency of HMCVT is significantly reduced.
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3. The Factors Influencing the Proportion of Hydrostatic Power

HMCVT adopts the fixed gear pair to achieve the power split. Input shaft of power is connected
with the pump shaft through the fixed gear pair, then ip = 1, as shown in Table 1.

When PG is used as PJD, the three components of sun gear, ring gear, and planetary gear connect
hydrostatic CVT, mechanical transmission, and output shaft separately. There are 6 patterns, as shown
in Table 1. k is the characteristic coefficient, and its range is 1.5–4.

The structure of the PSD and PJD is shown in Table 1, ip = 1. Then:

ioe =
no

ne
=

iCVTiPGi2 − i1iPG + i1
i1i2

(18)

and
To =

i1
iPG

TM (19)

Derivation of Equation (18):
∂ioe

∂iCVT
=

iPG
i1

(20)

Considering the compactness of gear transmission structure, the range of the value i1 is −1 to −3.
In Schemes 1, 2, 4, and 6, iPG > 0, then, iPG

i1
< 0. Therefore, the transmission ratio, ioe, is a monotonic

decreasing function of iCVT. In Schemes 3 and 5, iPG < 0, then, iPG
i1
> 0. The transmission ratio, ioe, is a

monotonic increasing function of iCVT.
The variable speed range of the single-range HMCVT cannot meet that of the wheel loader.

Multi-range HMCVT is adopted and requires two planetary gear trains to achieve shifting, as shown
in Figure 8.

According to iPG > 0 or iPG < 0, the transmission ratio, ioe, is a monotonic decreasing or increasing
function of iCVT. When iPG > 0, it is HM range with forward transmission of the PG (iPG); when iPG < 0,
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it is HM’ range with reverse transmission of the PG (iPG′). Therefore, there are four PG matching
patterns to realize the range shifting between hydro-mechanical ranges, as shown in Table 2.

Table 1. The PG transmission sketches of HMCVT.

Scheme Transmission Sketch iPG Range of Values

1
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Table 2. The PG matching patterns of HMCVT.

Pattern Scheme Sketch Property iPG kk, k′

a

1
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When the vehicle starts, the transmission system is in H condition and ρ = 1. Then:

ioe =
no

ne
=

iCVT
i1

(21)

The transmission ratio, ioe, is a monotonic decreasing function of iCVT. To realize the same speed
shift connection between H range and hydro-mechanical range, the Scheme 3 or Scheme 5 of HM’
range can connect with H range. Hence, it needs to make i1 = i2iCVTM, and for the Schemes 1, 2, 4,
and 6 of the HM range to connect with the HM’ range, it needs to make iPG

′ = −iPG to achieve equal
difference between hydro-mechanical ranges.

Next, the rules of the transmission ratio, ioe, and hydrostatic CVT power proportion, ρ, under these
conditions, as shown in Table 1, are studied. Let i1 = i2iCVTM = i, Equation (18) becomes:

ioe =
no

ne
=

iCVTiPG − iCVTMiPG + iCVTM
i

(22)

and
ioeM =

iCVTM
i

(23)

The following equations can be concluded by using Equations (9), (10) and (22):

α =
β

iPG − βiPG + β
(24)

ρ = −
iPGiCVT

iPGiCVT − iCVTMiPG + iCVTM
(25)

when iCVT = iCVTM, iCVT = iCVTm, it can be concluded:

ρM = −iPG; ρm = −
iPG

iPG − βiPG + β
= −

α
β

iPG (26)

Suppose that iCVT changes symmetrically in two directions, i.e., β = −1, iCVTM = 1, then:

ρ = −
iPGiCVT

iPGiCVT − iPG + 1
(27)

α = −
1

2iPG − 1
(28)

ρm = −
iPG

2iPG − 1
= αiPG (29)

From the Equations (26)–(29), ρM, ρm, and α are independent of iCVTM, and only related to iPG.
When iCVT changes symmetrically in two directions, i.e., β = −1, the following conclusions can

be drawn:

1. To realize the same speed shift connection between the H range and hydro-mechanical range,
as you can see from Equation (23) and Figure 9, when ip = 1, |ioeM| increases with the increase of
|iCVTM| and decreases with the increase of |i1|.

2. As can be seen from Equation (19), under certain conditions of TM, |To| increases with the increase
of |i1| and decreases with the increase of |iPG|. So, matching patterns a and b have better torque
characteristics than matching patterns c and d in Table 2.

3. From Equation (28) and Figure 10, the range of transmission ratio, α, increases with the increase
of iPG, and Schemes 2, 4, and 6 exist as ioe = 0 because of α < 0.

4. From the Equations (26), (27), (29), and Figure 11, ρM and ρm are independent of iCVTM, and only
related to iPG. Schemes 2, 4, and 6 exist as the work condition with the lowest transmission efficiency
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because mechanical transmission occurs in backward power recirculation, i.e., ρ < −1, as shown
in Figure 6. The transmission efficiency of matching patterns b, c, and d are lower than matching
pattern a because

∣∣∣ρM
∣∣∣ > 0.6 and mechanical transmission occurs even in backward power

recirculation, as shown in Figure 6. Therefore, the efficiency of HMCVT is significantly reduced.
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Figure 11. The hydrostatic power proportion, ρ, in four matching patterns. (a) The hydrostatic power
proportion pattern a; (b) The hydrostatic power proportion pattern b; (c) The hydrostatic power
proportion pattern c; (d) The hydrostatic power proportion pattern d.

Therefore, the best matching pattern is Pattern a. Assume that β ranges from −1 to −2, then the
variation of α, ρM, and ρm are shown in Figures 12 and 13.
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Figure 12. The range of transmission ratio, ioe, in the matching pattern a. (a) The transmission range α
of scheme 1; (b) The transmission range α of scheme 3.

From Figure 11 and Equation (24), α is related to iPG and β. In Scheme 1, α increases with the increase
of iPG and β, In Scheme 3, α increases with the increase of iPG, and decreases with the increase of β.
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From Equations (25), (26), and Figure 13, the factor influencing on ρM is iPG, and factors influencing
on ρm are iPG and β. ρM decreases with the increase of iPG, as shown at the bottom of Scheme 1 and the
top of Scheme 3, and

∣∣∣ρm
∣∣∣ increases with the increase of β and |iPG|, as shown at the top of Scheme 1

and the bottom of Scheme 3.
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4. The Efficiency Analysis of the Matching Pattern A

Theoretical Calculation

Through the above analysis, the best matching pattern is established. In this section, the efficiency
of pattern a is analyzed concretely. Two schemes of pattern a have two power transmitting modes,
as shown in the Figure 14. The nodal power method can be used to establish their efficiency formulas.
Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 23 

 

(a)  

 

(b)  

Figure 14. Power transmitting Mode: (a) Mode Ⅰ; (b) Mode Ⅱ. 

In the Mode I in Figure 14a, the power transmitting has no recirculation. Both the hydrostatic 

CVT power, 𝑃𝐶𝑉𝑇 ,  and the mechanical transmission power, 𝑃𝑀𝑇,  are forward transferring, i.e., 

−1 < 𝜌 < 0. The efficiency formula of Mode I is: 

𝜂Ⅰ = |
𝑃𝐶𝑉𝑇 ⋅ 𝜂𝐶𝑉𝑇𝜂𝑝𝜂1𝜂1𝑜

2 + 𝑃𝑀𝑇 ⋅ 𝜂2𝜂2𝑜
1

𝑃𝑒
| (30) 

The following formula can be concluded by using Equations (15) and (30): 

𝜂Ⅰ = |
𝑖𝐶𝑉𝑇𝑖𝑃𝐺𝑖2 ⋅ 𝜂𝐶𝑉𝑇𝜂𝑝𝜂1𝜂1𝑜

2 + 𝑖1𝑖𝑝(1 − 𝑖𝑃𝐺) ⋅ 𝜂2𝜂2𝑜
1

𝑖𝐶𝑉𝑇𝑖𝑃𝐺𝑖2 − 𝑖1𝑖𝑝𝑖𝑃𝐺 + 𝑖1𝑖𝑝
| (31) 

In the Mode Ⅱ in Figure 14b, the power transmitting has recirculation of hydrostatic CVT power. 

The mechanical transmission power, 𝑃𝑀𝑇, is forward transferring, i.e., 𝜌 > 0. The efficiency formula 

of Mode Ⅱ is: 

𝜂Ⅱ =
|𝑃𝑜|

𝑃𝑒
= |

𝜂2𝜂2𝑜
1

𝑖𝐶𝑉𝑇𝑖𝑃𝐺𝑖2 − 𝑖1𝑖𝑝𝑖𝑃𝐺 + 𝑖1𝑖𝑝
[𝑖1𝑖𝑝(1 − 𝑖𝑃𝐺) +

𝑖𝐶𝑉𝑇𝑖𝑃𝐺𝑖2
𝜂𝐶𝑉𝑇𝜂𝑝𝜂1𝜂21

𝑜 ]| (32) 

where 𝜂Ⅰ  is the efficiency of Mode Ⅰ, 𝜂Ⅱ  is the efficiency of Mode Ⅱ, 𝜂𝐶𝑉𝑇  is hydrostatic CVT 

efficiency, 𝜂1 is the efficiency of gear set 1, 𝜂2 is the efficiency of gear set 2, 𝜂𝑝 is the efficiency of 

gear set p, 𝜂21
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𝑡 ⋅ 𝜂𝑀

𝑡 = 𝜂𝑃
𝑣𝜂𝑃

𝑚 ⋅ 𝜂𝑀
𝑚𝜂𝑀
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In the Mode I in Figure 14a, the power transmitting has no recirculation. Both the hydrostatic CVT
power, PCVT, and the mechanical transmission power, PMT, are forward transferring, i.e., −1 < ρ < 0.
The efficiency formula of Mode I is:
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ηI =

∣∣∣∣∣∣∣PCVT · ηCVTηpη1η2
1o + PMT · η2η1

2o
Pe

∣∣∣∣∣∣∣ (30)

The following formula can be concluded by using Equations (15) and (30):

ηI =

∣∣∣∣∣∣∣ iCVTiPGi2 · ηCVTηpη1η2
1o + i1ip(1− iPG) · η2η1

2o
iCVTiPGi2 − i1ipiPG + i1ip

∣∣∣∣∣∣∣ (31)

In the Mode II in Figure 14b, the power transmitting has recirculation of hydrostatic CVT power.
The mechanical transmission power, PMT, is forward transferring, i.e., ρ > 0. The efficiency formula of
Mode II is:

ηII =
|Po|

Pe
=

∣∣∣∣∣∣∣ η2η1
2o

iCVTiPGi2 − i1ipiPG + i1ip

[
i1ip(1− iPG) +

iCVTiPGi2
ηCVTηpη1ηo

21

]∣∣∣∣∣∣∣ (32)

where ηI is the efficiency of Mode I, ηII is the efficiency of Mode II, ηCVT is hydrostatic CVT efficiency,
η1 is the efficiency of gear set 1, η2 is the efficiency of gear set 2, ηp is the efficiency of gear set p, ηo

21 is
the efficiency between shaft 2 and shaft 1 of PG, η2

1o is the efficiency between shaft 1 and output shaft
of PG, and η1

2o is the efficiency between shaft 2 and output shaft of PG.
As shown in Figure 14, there are efficiency problems in Variable Displacement Hydraulic Pump

(VP), Fixed Displacement Hydraulic Motor (FM), the control valve group, and the connecting pipes,
which affect the efficiency of hydrostatic CVT. Therefore, the volumetric efficiency of hydrostatic CVT
is a dynamic changing process. Without regard to the efficiency loss of connecting pipes and the
control valve group, the efficiency calculation is simplified as follows:

ηv
CVT = ηv

P · η
v
M; ηm

CVT = ηm
P · η

m
M; ηCVT = ηt

P · η
t
M = ηv

Pη
m
P · η

m
Mη

v
M (33)

where ηv
CVT is volumetric efficiency of hydrostatic CVT, ηm

CVT is mechanical efficiency of hydrostatic
CVT, ηv

P is volumetric efficiency of VP, ηm
P is mechanical efficiency of VP, ηt

P is total efficiency of VP,
ηv

M is volumetric efficiency of FM, ηm
M is mechanical efficiency of FM, and ηt

M is total efficiency of FM.
The HMCVT efficiency of Schemes 1 and 3 is as follows:
As seen Schemes 1 and 3 in Table 1, ip = 1. Let iCVTM = 1, iCVTm = −1, then i1 = i2 = i, ηp = 1,

η1 = η2 = 0.97. In Scheme 1, when 0 ≤ iCVT ≤ 1, −1 < ρ < 0, power transmitting mode is Mode I.
When −1 ≤ iCVT ≤ 0, ρ > 0, power transmitting mode is Mode II. The change rule of Scheme 3 is
contrary to Scheme 1. The efficiency of the mechanical gear transmission is usually calculated by
meshing power method. The efficiency of outer gearing is 0.97, and the efficiency of inner gearing is
0.98. Then, the HMCVT efficiency of Scheme 1, ηs1, and Scheme 3, ηs3, in Table 1 are:

ηs1 =


∣∣∣∣ 0.97−0.0485iPG
iCVT iPG−iPG+1

[
(1− iPG) +

iCVT iPG
0.9215ηCVT

]∣∣∣∣ −1 ≤ iCVT < 0∣∣∣∣ iCVT iPGηCVT(0.0485iPG+0.9215)+(1−iPG)(0.97−0.0485iPG)
iCVT iPG−iPG+1

∣∣∣∣ 0 ≤ iCVT ≤ 1
(34)

and

ηs3 =


∣∣∣∣∣ 0.9215iCVT iPGηCVT(0.95−iPG)+0.9215(1−iPG)

2

(iCVT iPG−iPG+1)(0.95−iPG)

∣∣∣∣∣ −1 ≤ iCVT < 0∣∣∣∣∣ 0.9215(1−iPG)
2ηCVT+iCVT iPG(1−0.95iPG)

(iCVT iPG−iPG+1)(0.95−iPG)ηCVT

∣∣∣∣∣ 0 ≤ iCVT ≤ 1
(35)

Assuming that the efficiency of hydrostatic CVT is 0.8, then the efficiency curves of Schemes 1
and 3 in Table 1 are shown in Figure 15.

From (a) in Figures 11 and 15, it can be concluded that ηs1 and ηs3 are related to iPG and iCVT. ηs1 and
ηs3 increase with the decrease of |iCVT | and |iPG|, i.e., increases with the decrease of

∣∣∣ρ∣∣∣. The efficiency of
Mode I is higher than Mode II. The efficiency value of HMCVT is between that of hydrostatic CVT and
mechanical transmission.
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5. Co-Validation of Simulation and Test

5.1. The Method of Co-Validation

Compared with the mechanical transmission, the efficiency of the hydraulic transmission is
relatively low, and the efficiency constantly changes during variable speed. To more accurately analyze the
efficiency of the transmission system, this paper adopts the method of co-validation of the simulation
and test, as shown in Figure 16.
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verify the validity of the method. Take a wheel loader as an example, the parameters are shown in 
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Figure 16. The diagram of co-validation of simulation and test.

It is the method that combines the test of the hydrostatic transmission with the simulation of the
HMCVT by the data acquisition and control unit. It mainly realizes the exchange of simulation and
test data through the data acquisition unit and controls the hydrostatic transmission test bed through
the control unit. Torque and speed of VP and FM are obtained through simulation analysis, and the
loading system is controlled by the control unit according to the simulation date. Torque and speed of
VP and FM are measured through sensors and their dates are obtained through the acquisition unit;
eventually, the actual efficiency of the hydrostatic transmission can be calculated. Then, the efficiency
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data are input to the simulation model to achieve more accurate simulation. Therefore, it can realize
validation in the early stage of HMCVT design to avoid the irrationality of the structure after the
developed prototype.

The rotational speed and pressure of VP and FM are constantly changing, therefore hydrostatic
CVT efficiency, ηCVT, is also constantly changing. Its efficiency characteristic is obtained by testing on
the test bed. The physical diagram of the hydrostatic transmission test bed is shown in Figure 17.
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Figure 17. Hydrostatic CVT efficiency test bed.

The power source of the test bed is driven by a motor, and the hydraulic loading system is used to
load the output shaft of the hydrostatic transmission. Its input and output shafts are equipped with
speed and torque sensors.

5.2. The Application of Test and Validation

In order to validate the correctness of the above analysis, in this paper, an example is given to
verify the validity of the method. Take a wheel loader as an example, the parameters are shown in
Table 3.

Table 3. The parameters of a wheel loader.

Parameters Value

Rated power, PE/Rated speed, nE 162 kW/2000 rpm
Maximum torque, TETMax/Engine speed 853 N·m /1500 rpm

Vehicle mass 16,500 kg
Rated load 50 kN

VP Maximum displacement 80 mL/r
FM displacement 80 mL/r

Maximum pressure 42 MPa

According to the parameters of a wheel loader, the structural scheme of the multi-range HMCVT
is designed and the transmission ratio, ioe, is analyzed, as shown in Figure 18.

Where i0, i1, i2, i3, i4, and i5 are the transmission ratio of gear sets, S1, S2, and S3 are synchronizers,
C is clutch, PG1 is the Scheme 1 of PG, and PG3 is the Scheme 3 of PG. The table is the engagement
state of synchronizers or clutch, in which positive is coupled and negative is uncoupled.

It can be seen from Figure 18 that the forward direction of a multi-range HMCVT consists of a
pure hydrostatic range (H range) and three hydrostatic and mechanical transmission ranges (HM1,
HM2, and HM3 range). The backward direction consists of a pure hydrostatic range (H range) and
two hydrostatic and mechanical transmission ranges (HM1 and HM2 range). The performance of each
range can be tested and analyzed in the same method of co-validation; therefore, this paper takes one
range to carry out co-validation.
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The HM1 range is a commonly used range in the working process of the loader and takes Scheme 3
in Table 1 as PJD. During the HM1 range, the load of the wheel loader has a large range of changes,
and the largest traction force also occurs in this range. Therefore, this paper takes the HM1 range as
the research object to analyze under five typical working conditions, as shown in Table 4.

Table 4. Working conditions of the wheel loader.

Working Condition Power (kW)/Torque (N·m) Speed (rpm)

Engine rated power, PE 162/- 2000
Engine maximum torque -/853 1500
Engine medium torque -/400 2000

Vehicle full load, TK -/16,480 2000
Vehicle no-load, TK -/11,880 2000

Under the working condition of engine maximum torque, the engine speed is 1500 rpm and the
vehicle speed is 1.125~1.857 m/s during the HM1 range; under the others, the engine speed is 2000 rpm
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and the vehicle speed is 1.5~2.5 m/s. The HM1 range transmission system simulation model is built by
using AMESim software, and the simulation model is shown in Figure 19.
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Through the co-validation method of simulation and test, the analysis results are shown in
Figure 18.

As can be seen from Figure 20a–e, the efficiency of the hydrostatic CVT is significantly reduced with
the reduction of iCVT, and reaches the lowest value when approaching zero. At this time, the inclination
of the VP swash plate is near zero, which results in the FM output speed approaching zero. Therefore,
the mechanical efficiency is greatly reduced, and causes the efficiency of hydrostatic CVT to reach the
lowest. However, the proportion of hydrostatic power in total power, ρ, is also close to zero, hence it
has little effect on the efficiency of HMCVT, and the highest efficiency of HMCVT is at iCVT = 0.
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Figure 20. HMCVT efficiency under different working conditions: (a) Vehicle full load; (b) Vehicle
no-load; (c) Engine rated power (162 kW); (d) Engine maximum torque (853 N·m); (e) Engine medium
torque (400 N·m); (f) Comprehensive comparison of efficiency.

It can be seen from Figure 20a,b that the pressure in the CVT system is constant, because the
vehicle is running at constant torque under the working conditions of no-load and full load. Therefore,
the efficiency of hydrostatic CVT basically changes symmetrically on both sides of iCVT = 0. However,
as shown in Figure 20c–e, the vehicle is running at constant power, and the output torque is constantly
changing, hence the pressure decreases with the decrease of iCVT. Therefore, the efficiency of hydrostatic
CVT changes differently on both sides of iCVT = 0. When the pressure is 200~240 bar in Figure 20c,
and 220~255 bar in Figure 20d, the efficiency of hydrostatic CVT on the right of iCVT = 0 is higher than
the left at the same value of |iCVT |. When the pressure is 150~180 bar in Figure 20e, its efficiency on the
right of iCVT = 0 is lower than the left. As shown in Figure 20c, when the pressure is 200 bar and the
VP displacement reaches the maximum displacement, the efficiency of hydrostatic CVT is the highest,
which is 0.849.

As shown in Figure 20f, when 0 > iCVT > −1, −0.2 < ρ < 0, and the power transmitting has
no recirculation, when 0 < iCVT < 1, 0 < ρ < 0.33, and the power transmitting has recirculation of
hydrostatic CVT power. Therefore, the efficiency of HMCVT on the right of iCVT = 0 is lower than on
the left. Under the working conditions of engine medium torque and engine rated power, the efficiency
of HMCVT is higher than others, in which the minimum efficiency is above 0.86. Under the working
condition of vehicle no-load, the efficiency of HMCVT is the lowest, but the minimum efficiency is still
close to 0.80.

6. Conclusions

To better study the characteristics of HMCVT applied to the wheel loader, this paper established
the characteristic equations of input coupling type of HMCVT based on the wheel loader characteristics
and analyzed power flow transmission modes of HMCVT. Then, this paper studied and analyzed
factors influencing the proportion of hydrostatic power, which was mainly from the connection of
working conditions and the structure of the planetary arrangement. The results show that factors
influencing the proportion of hydrostatic power in total power (ρ) are transmission ratio between
the output shaft and shaft 1 (iPG), the range of hydrostatic CVT transmission ratio (β), not related to
transmission ratio between motor and shaft 1 of PG (i1), transmission ratio between shaft e and shaft 2
of PG (i2), and transmission ratio between shaft e and the pump (ip).

The best matching pattern was established through comparison analysis. This paper established
the efficiency equations of Schemes 1 and 3, and the efficiency of pattern (a) was analyzed concretely.
The analysis results showed that HMCVT efficiency of Schemes 1 and 3 was related to the transmission
ratio between the output shaft and shaft 1 (iPG), and the hydrostatic CVT transmission ratio (iCVT).

In the early design process, this paper presented a method of co-validation of the simulation and
test to make the results of efficiency more accurate. Taking a specific wheel loader as an example,
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this method can be applied to analyze the efficiency under different working conditions. The results
show that: When the pressure is 50% of the maximum pressure, and the pump displacement reaches
the maximum displacement, the efficiency of hydrostatic CVT reaches the highest, and the efficiency of
HMCVT is also the highest, which is more accurate than the theoretical calculation results. It provides
an important guiding role and validation in the early design of HMCVT to avoid the irrationality of
the structure after the prototype manufacturing. Eventually, the design cost and cycle are saved.
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Abbreviations

The following abbreviations are used in this manuscript:

HMCVT Hydro-Mechanical Continuously Variable Transmission
CVT Continuously Variable Transmission
PSD Power-Split Device
PJD Power Junction Device
FT Final Transmission
PG Planetary Gear train
VP Variable Displacement Hydraulic Pump
FM Fixed Displacement Hydraulic Motor
FK Driving force of the wheel loader
F f Rolling resistance of the wheel loader
Fω Air resistance of the wheel loader
Fi Ramp resistance of the wheel loader
Fa Inertia force of the wheel loader
mt Total weight of the wheel loader
it Transmission ratio of the whole transmission system.
ie The transmission ratio between engine and shaft e
ip The transmission ratio between shaft e and pump
i1 Transmission ratio between motor and shaft 1 of PG
i2 Transmission ratio between shaft e and shaft 2 of PG
iPG Transmission ratio between output shaft and shaft 1
iCVT Transmission ratio of Hydrostatic CVT
ioe Transmission ratio of HMCVT
i f Transmission ratio between PG output shaft and the wheel
nE Engine speed
ne Shaft e speed
nP Pump shaft speed
nM Motor shaft speed
n1 Shaft 1 speed of PG
n2 Shaft 2 speed of PG
no Output shaft speed of PG
nK Wheel speed
VP Pump displacement
VM Motor displacement
T1 Shaft 1 torque of PG
T2 Shaft 2 torque of PG
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To Output shaft torque of PG
TM Motor shaft torque
TK Driving torque of wheel loader
TE Engine torque
α The range of transmission ratio, ioe

β The range of iCVT
v Wheel loader velocity
rK Radius of wheel
ρ Proportion of hydrostatic power in total power
Po Output power of HMCVT
PK Driving power
PCVT Hydrostatic CVT power
PMT Mechanical Transmission power
k PG characteristic coefficient
ηI Efficiency of mode I
ηII Efficiency of mode II
ηv

CVT Volumetric efficiency of Hydrostatic CVT
ηm

CVT Mechanical efficiency of Hydrostatic CVT
ηv

P Volumetric efficiency of VP
ηm

P Mechanical efficiency of VP
ηt

P Total efficiency of VP
ηv

M Volumetric efficiency of FM
ηm

M Mechanical efficiency of FM
ηt

M Total efficiency of FM
ηCVT Hydrostatic CVT efficiency
η1 Efficiency of gear set 1
η2 Efficiency of gear set 2
ηp Efficiency of gear set p
ηo

21 Efficiency between shaft 2 and shaft 1 of PG
η2

1o Efficiency between shaft 1 and output shaft of PG
η1

2o Efficiency between shaft 2 and output shaft of PG
ηs1 HMCVT efficiency of scheme 1
ηs3 HMCVT efficiency of scheme 3
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