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Abstract

:

Phonocardiography (PCG) signals that can be recorded using the electronic stethoscopes play an essential role in detecting the heart valve abnormalities and assisting in the diagnosis of heart disease. However, it consumes more bandwidth when transmitting these PCG signals to remote sites for telecare applications. This paper presents a deep convolutional autoencoder to compress the PCG signals. At the encoder side, seven convolutional layers were used to compress the PCG signals, which are collected on the patients in the rural areas, into the feature maps. At the decoder side, the doctors at the remote hospital use the other seven convolutional layers to decompress the feature maps and reconstruct the original PCG signals. To confirm the effectiveness of our method, we used an open accessed dataset on PHYSIONET. The achievable compress ratio (CR) is 32 when the percent root-mean-square difference (PRD) is less than 5%.
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1. Introduction


According to the American heart association report, cardiovascular disease (CVD) is the leading global cause of death and it is expected to have more than 22.2 million deaths by 2030 [1]. Auscultation is one of the significant methods for CVD’s monitoring [2]. Besides, heart sound can be used to diagnose heart diseases or to evaluate a human’s physiological condition [3,4]. The electronic stethoscopes exploit the vibrations that are caused by the heartbeats to graphically record the heart sounds called phonocardiography (PCG) signals [5]. The PCG signals provide a non-invasive method for detecting heart valve abnormalities and assisting in diagnosing heart disease. An efficient signal compression method is necessary due to the vast amounts of data that are generated by long-term PCG monitoring. Moreover, telecare, which uses telematics to transmit medical information, has attracted much attention recently, especially for telemedical problems in rural areas [6]. For example, people can put on singlets, which are embedded wearable electrocardiography (ECG) sensors, in order to collect ECG data for telecare purposes [7]. However, for peoples who live in rural areas and have insufficient medical resources, we may use medical electronic stethoscopes to collect the PCG signals and transmit these signals to the doctors at the remote hospital. For the smart healthcare ecosystem, healthcare data privacy and security and data storage issues are some of the most challenging issues and opportunities [8,9]. Most of the current medical tests are done in medical institutions. To check the patients’ health conditions, many of them need to go back and forth between their residences and hospitals. This wastes the patient’s time for medical consultation. Therefore, the development of telecare is a critical issue today. It has created a new way of medical communication, which enables synchronized or asynchronous interaction between physicians and patients, overcoming spatiotemporal barriers, improving medical quality, and increasing convenience. In this work, we focus on the compression of PCG signals by using the deep convolutional autoencoder. Furthermore, we consider the impact of communication link quality [10] and float-point to fixed-point conversion issues. Our proposed method achieves a compression ratio of 32 with the percent root-mean-square difference less than 4.8% under the word-length of 10. Our deep autoencoder can be implemented on the existing lightweight deep learning framework on a smartphone by inspecting the model complexity. The remainder of this paper is organized, as follows. Section 2 briefly describes related work regarding PCG compression problems and background about the deep CNN network. Section 3 details our proposed deep convolutional autoencoder. Section 4 reports the experiments to validate the effectiveness of our work on the PCG compression problems. Section 5 discusses the model complexity issues. Conclusions are drawn in Section 6.




2. Related Work


2.1. Sound Compression


For heart sound compression problems, the conventional performance metrics are compress ratio (CR) and percent root-mean-square difference (PRD) [11]. CR is defined, as follows:


     C R =   B 0   B 1       



(1)




where   B 0   and   B 1   are the data size before and after compression, respectively. PRD can be calculated, as follows:


     P R D =     ∑ i N     x i  −   x ^  i   2     ∑ i N     x i  −  μ x   2     × 100     



(2)




where   x i   is the i-th sample in the original signal, and    x ^  i   denotes the corresponding reconstructed sample.   μ x   is the sample mean of the N data samples of the original signals. Note that the mean value of the original signals must be removed to obtain unbiased PRD [12]. Audio compression can be lossless or lossy. It has been shown that lossless compression algorithms rarely obtain a CR larger than 3, while lossy compression algorithms allow attainable CR up to 12 and higher [13]. For example, the value of CR for free lossless audio codec (FLAC) compression is only about 1.94 [14]; and, the value of CR for lossless ECG compression is 2.56 [15]. Additionally, it has been reported that a medical professional felt the necessity of a high CR and can tolerate a PRD as high as 5% [16]. Thus, our design aims to attain a high CR at the values of PRD are less than 5%.



The pioneering work on PCG signals compression has been reported in [17]. The authors proposed using wavelet transform or wavelet packet transform methods in order to compress the original heart sound signals by coefficient thresholding. Their method can further be combined with some lossless compression methods, such as Huffman coding, to increase the compression ratio. The thresholding method based on wavelet energy was reported to reduce the loss caused by compression. At the PRD values of 5.82, the average values of CR are about 40 using the wavelet transform [18]. In [19], the authors proposed using a better wavelet transform method with tunable Q-factor [20]. The optimal value of Q can be found by using the genetic algorithm. In [16], the authors exploited the repetition patterns that were embedded in the PCG signals in order to eliminate their redundancy. After decomposing the PCG signals into the time-frequency domain, the authors proposed clustering the decomposed data to build a dictionary during the training phase. This dictionary is then used to obtain the optimal codebook. They achieved the averaged CR of 17.4 at the averaged PRD 4.87 for PCG signals. For the fetal PCG signals, the authors had reported that the achievable CR was less than 7.5 when the required PRD was less than two by using the compression techniques based on Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) [21].




2.2. Convolutional Neural Networks


Because audio signals can be stored as one-dimensional (1D) signals, 1D convolutional neural networks (1D CNNs) have been applied to solve many practical problems that traditional signal processing approaches hardly tackle, such as ventricular heartbeats detection [22], speaker recognition [23], speech emotion [24], and environmental sound classification [25]. Other than the audio signals, 1D CNN has been applied to various scenarios, such as human respiration pattern recognition [26], abnormal detection for industrial control systems [27], and contact-less paraparesis detection [28]. In [29], the authors proposed combining the conventional 2D CNN with an autoencoder for the electroencephalogram (EEG) signal compression problems. The autoencoder aims to reconstruct its input based on the neural network in an unsupervised learning manner [30].



Let  x  be the input to convolution layer of length N and  h  be the kernel of size K. Let  y  be the output of the non-causal 1D convolution between  x  and  h . We can express the n-th element of  y  as follows [31]:


     y  ( n )  =  ∑  k = 0  K  x  n + k + ( s − 1 )  h  ( k )      



(3)




where   x ( n )   and   h ( n )   represent the n-th element of  x  and  h , respectively; s denotes the stride for shifting the kernel window. Note that the length of output vector  y  is not equal to the length of output vector  x , and this can be avoided by zero-padding operation for the input vector. In each CNN layer, 1D forward propagation can be expressed, as follows:


      x k ℓ  =  ∑  i = 1   N  ℓ − 1    c o n v 1 D   w  i k   ℓ − 1   ,  s  i   ℓ − 1    +  b k ℓ      



(4)




where   x  k  ℓ   denotes the input of the k-th neuron at the ℓ-th layer of the CNN;   b k ℓ   represents the corresponding bias;   s  i   ℓ − 1    is the output of the i-th neuron at the   ( ℓ − 1 )  -th layer;   w  i k   ℓ − 1    is the kernel from the i-th neuron at the   ( ℓ − 1 )  -th layer to the k-th neuron at the ℓ-th layer;   c o n v 1 D  · , ·    is used to perform 1D convolution operation, as described in (3). The output of the k-th neuron at the ℓ-th layer   y  k  ℓ   can be expressed, as follows:


      y k ℓ  = f   x k ℓ       



(5)




where   f  ·    is the non-linear activation function. Possible activation functions could be sigmoid function, hyperbolic tangent, and rectified linear unit (ReLU). Note that   y  k  ℓ   may be further processed by pooling operation to create downsampled or pooled feature maps, a summarized version of the features detected in the input. Two standard functions used in the pooling operation are average pooling and maximum pooling (MaxPool). The average and MaxPool operations calculate the average and maximum values for each patch on the feature map. For example, the MaxPool with a factor of P can be expressed, as follows:


      s k ℓ   ( n )  = M a x   y k ℓ   ( n )  ,  y k ℓ   ( n − 1 )  , … ,  y k ℓ   ( n − P + 1 )   .     



(6)








2.3. Autoencoder


Autoencoders have been widely used in data denoising [32,33,34] and data compression [35] applications. An autoencoder comprises encoder and decoder parts. The encoder translates an input vector  x  with length N to a hidden representation  y  with length M. The transform can be expressed, as follows:


     y = f  W · x + b  ,     



(7)




where  W  denotes the weight matrix of size   M × N  ,  b  represents the bias vector of size   M × 1  , and   f  ·    denotes the transformation function, which is non-linear in general. Note that for data compression purposes,   N ≫ M   holds. On the other hand, the decoder translates the hidden representation  y  to a reconstructed representation   x ^   with the same length of  x . The demapping process can be expressed, as follows:


      x ^  = g   W ′  · y +  b ′   ,     



(8)




where   W ′   denotes the weight matrix of size   N × M  ,   b ′   represents the bias vector of size   N × 1  , and   g  ·    denotes the demapping function, which is non-linear in general. The parameters associated with the autoencoder are adjusted by minimizing the following cost function J:


     J  W , b ,  W ′  ,  b ′   =  1 L   ∑  ℓ = 1  L   | |   x ℓ  −   x ^  ℓ    | |  2  ,     



(9)




where L denotes the length of the training dataset.





3. Method


3.1. Data Pre-Processing


Before applying the measured data into the proposed deep convolutional autoencoder model, the data is pre-processed as follows:




	
Normalization: the data are normalized, such that the values of all data sets are mapped into the ranges of [0, 1].



	
Segmentation: we edit the heart sound into several fixed-length segments. The time duration of each segment is 3 s, which corresponds to 6000 samples at the sampling rate of 2 kHz. Note that each segment contains roughly four or five cardiac cycles.



	
Overlapping: we apply a sliding window on the data segmentation to implement the data augmentation. Except for the first segment, each segment is overlapped with its previous segment by 93.33%, i.e., each segment has 400 new samples and keeps 5600 existing samples in the previous segment. It has been reported that such a time-shift-based data augmentation method is useful to prevent overfitting [36] when training the CNN networks [37].









3.2. Feature Selection


It has been reported that the hidden semi-Markov model (HSMM) heart sound segmentation method could correctly decompose a cardiac cycle into four parts: S1, systole, S2, and diastole periods [38]. We propose using S1 and S2 signals as the features to train the deep convolutional autoencoder. Thus, for each segment, we null all samples that correspond to the systole and diastole periods and keep other samples in a segment.




3.3. Proposed Network Model for the Deep Convolutional Autoencoder


Figure 1 depicts the system model in this work. With the aid of medical professionals, such as nurses, the patients who live in rural areas can regularly collect their PCG signals using electronic stethoscopes; then, an encoder continuously compresses the PCG signals before transmitting these compressed data to the remote site via a noisy communication link. Doctors use a decoder to continuously decompress the received compressed PCG signals at the remote site, so that doctors can virtually auscultate the patients’ heart sounds without meeting with patients. Inspired by the pioneering works about the design of the deep neural network [39,40], we combine one to two convolutional networks with one max-pooling layer as a basic unit to build our proposed network architecture at the encoder side; on the decoder side, we combine one to two convolutional networks with one upsampling layer as a basic unit. Empirically, we keep stacking the basic units until overfitting happened in order to determine the depth of our network model. The details about the encoder and decoder are listed Table 1 and Table 2, respectively.



For the encoder, we fed one segment, which contains 6000 samples, into the first layer. After this convolutional operation with 12 1D filters, each with a kernel size of three and zero paddings, its output size is 6000 × 12. We can treat that 12 features are extracted from one segment by the first convolutional network. Subsequently, the one-dimensional max-pooling operation reduces the signal length by four, i.e., the output of the MaxPool 1D layer is 1500 × 12. After the consecutive convolution and max pooling operations, the final layer outputs a vector with length 187. This means the encoder compresses each segment with 6000 samples into each feature map with 187 samples. Note that one batch normalization (Batch Norm) was used in the encoder, such that a stable distribution of activation values throughout training to alleviate the internal covariate shift problems [41].



Table 2 lists the decoder’s detailed architecture, which decompresses each feature map with 187 samples to reconstruct the corresponding PCG segments, each with 6000 samples. Note that, except for the convolutional network and up-sampling operations, the last layer is a fully connected network (Dense) reconstruct the original segment. The total number of trainable parameters for the encoder and decoder are 180,945 and 18,124,705, respectively. This implies the computational cost at the encoder is much less than that at the decoder. Note that the PCG signals can continuously partition into segments and then be compressed with the proposed encoders. The remote side then continuously receives each compressed feature maps. After decoding, the decompressed segments can be used to combine into the original PCG signals. Thus, even though each segment contains roughly only four or five cardiac cycles, which may be insufficient for diagnostic or monitoring purposes, our segment-by-segment signal processing approach could achieve a good CR and a low PRD without compromising continuity for the long-term monitoring.





4. Experiments


4.1. Dataset


We used an open accessed dataset, which comprises nine heart sound databases that were collected by various organizations, provided by PHYSIONET [42]. Due to a large number of tested subjects and long recording time, we choose the database that was collected by the Dalian University of Technology heart sounds database (DLUTHSDB) from these nine sound databases as our experimental dataset. In this dataset, subjects included 174 healthy volunteers and 335 patients with coronary artery disease. PHYSIONET resamples the original waveform at 2 kHz. Figure 2 illustrates three recorded heart sound in the DLUTHSDB database.




4.2. Results


The experiments were conducted on the Tensorflow framework. First, we evaluate the impact of segment length on the resulting PRD and the computational complexity and determine the suitable segment length to our proposed model. Next, we try to increase the CR with a tolerable PRD. Third, we consider fixed-point and communication link quality issues for practical implementation.



4.2.1. Segment Length Evaluation


During the training phase, the batch size is chosen as 60, and the number of the epoch is set to 200. Meanwhile, we use conventional adaptive moments (Adam) optimizer [43] in order to obtain better results. The main parameters associated with the Adam optimizer are learning rate = 0.01, hyper-parameters    β 1  = 0.9   and    β 2  = 0.999  , weight decay factor  λ  =   10  − 5   . Because each audio file’s length in the data set is not the same, we first divided them into segments and then randomly split into approximately 80% for training, 10% for validation, and 10% for testing, respectively.



We fix the CR as 27 and evaluate the resulting PRD under various segment lengths (see Figure 3). Note that the segment length of 2000 or 3000 samples contains roughly two or three cardiac cycles; the segment length of 6000 samples contains roughly four or five cardiac cycles, and the segment length of 8000 samples contains roughly six or seven cardiac cycles. The evaluation results are listed in Table 3, in which we can observe that the longer segment length leads to higher computational cost, and the segment length of 6000 achieves the lowest PRD. Thus, we choose the samples in a segment as 6000.



As shown in Figure 4, we observe that for the time duration of 3 s (segment length of 6000), the details contained in the compressed signals are less than that for the time duration of 4 s (segment length of 8000) (see Figure 4a,c). However, the comparisons between original data with the reconstructed signal reveal that the time duration of 3 s (segment length of 6000) has a less PRD (see Figure 4b,d–f). Thus, we inferred that too many details in a compressed signal might not lead to a better PRD performance. This could explain why a network model with a more significant number of trainable parameters fails to result in better training results.




4.2.2. Compression Ratio Evaluation


It has been shown that higher values of CR result in larger values of PRD. Given that PRD’s desired values are less than 5%, we would like to evaluate the attainable best CR in this Section.



During the training phase, the batch size is chosen as 60, and the number of the epoch is set to 400. We fix the length of the segment of 6000, and the total number of segments is about   7.2 ×  10 3   . The dataset was randomly split into approximately 80% for training, 10% for validation, and 10% for testing. Meanwhile, we use the conventional Adam optimizer, as we have described in Section 4.2.1. The evaluation results are shown in Table 4. Although the PRD corresponding to CR = 36 is less than the target PRD (5%), if we further considered the fixed-point computation issue, the resulting PRD may not meet the target PRD. Thus, we choose the value of CR as 32 in the rest of this paper.




4.2.3. Fixed-Point Issues


We consider the fixed-point operation issues for the proposed network architecture to reduce the computational cost of the floating-point operation. Table 5 lists the maximum and minimum values of both weights and biases for each layer at the encoder and the decoder sides. Note that layers 2, 6, and 9 are max-pooling layers at the encoder side; the layers 4, 7, and 9 are up-sampling layers at the decoder side. Table 6 shows the evaluation results in fixed-point cases. Thus, we choose the word length as 10 in the rest of this paper. Note that we assign one bit for the sign bit, two bits for integer parts, and the remaining seven bits for fractional parts.





4.3. Communication Link Quality Issues


Besides the segment length, CR, and the fixed-point factors, we further consider the impact of communication link quality on the resulting PRD. We simply model the link quality using the artificially induced bit error rate (BER) from the communication link and compare our proposed method with the conventional DCT method. The evaluation results can be found in Table 7. To have a fair comparison, we set the CR as 15 for the DCT method, so that the resulting PRD is close to 5% in the simulation. As shown in the last row in Table 7, when there is no transmission error, i.e., BER = 0, the DCT method could achieve PRD of 5.48% at CR of 15 while our method could attain PRD of 4.792% at CR of 32. We can observe that the resulting PRD with the DCT compression method exhibits a significant drop when the value of BER is higher than   10  − 3   ; however, our proposed method shows the smooth performance when the communication link quality becomes noisier. Similar results could also be observed from the QS index. This could imply that we method has a better immunity against transmission errors. Note that the CR for the DCT and our methods are different in Table 7. Thus, we further consider a performance metric “quality score” (QS), which is the ratio between the CR and the PRD, i.e., QS = CR/PRD. The QS index is useful when the values of CR for different compression methods are different [44]. When ignoring communication errors, our method could reach a little lower PRD and a significantly higher CR than the DCT-based compression method. That is, our proposed method exhibits a higher QS than the conventional DCT method could achieve. However, the computational cost of the DCT method is less than our method.





5. Discussion


For the telecare application, it is desired that the hardware cost or computational complexity of the proposed method is affordable to people in rural areas. We use the number of multiply-accumulate (MAC) operations as the performance metric to evaluate the model complexity. In our proposed model, the computation-intensive operation is mainly on the convolutional layer and the fully-connected layer. For a convolutional layer with the kernel size of K, the number of the filter of   C  o u t   , input length of   W  o u t   , and the number of input layer   C  i n   , the resulting number of MAC at the encoder and decoder side are listed in Table 8 and Table 9, respectively. Moreover, the full connection layer at the decoder side has 2992 inputs and 6000 outputs, i.e., the number of MACs is 17,952,000. In summary, the number of GMAC is around 0.08 and 0.06 at the encoder and decoder sides, respectively. Besides, we use a tool called “SCALE-Sim” in order to evaluate the required cycles performed on the “Eyeriss” chips [45]. For the encoder, the seven “Conv 1D” layers listed in Table 8 require 6016, 22,960, 145,386, 118,491, 279,700, 21,088, and 3906 cycles on the Eyeriss chips, respectively. The total number of cycles is about   5.98 ×  10 5    cycles. The ratio of the required number of cycles at the encoder of our method to the MobileUNet, which runs MobileNet [46,47] on U-Net [48], is about one third (see Table 10). It has been shown that MobileUNet implements real-time deep learning in mobile applications [49]. Thus, the model complexity of our proposed model is affordable for a consumer-grade smartphone.




6. Conclusions


In this paper, we have proposed a convolutional autoencoder’s architecture for the compression of 1D PCG signals. When the input segment length of 6000 samples, the achievable CR is 32 under the constraint that the corresponding PRD is less than 5%. The proposed method is more robust than the DCT compression method when considered the impact of the link quality. As the BER rose from   10  − 4    to   10  − 3   , the DCT method increased the PRD by about 7.6%, whereas our proposed method increased the PRD by only about 0.3%. We also considered the fix-point issue. When comparing the case of floating-point representation, we observed that the evaluation results have shown that the resulting PRD was slightly increased by 0.2% as the word-length of 10 bits with Q3.7 format. Our future work is jointly considered the denoising and data compression tasks for the PCG signals while using the deep convolutional autoencoder.
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Figure 1. Proposed system model for the deep convolutional autoencoder. 
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Figure 2. Three collected trace files of heart sound in the Dalian University of Technology heart sounds database (DLUTHSDB). (a) Number W00005, (b) number W00006, and (c) number W00007. 
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Figure 3. Time domain traces for various time durations: (a) 1 s, (b) 1.5 s, (c) 3 s, and (d) 4 s. The corresponding lengths of segment are (a) 2000, (b) 3000, (c) 6000, and (d) 8000 samples. 
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Figure 4. Compressed signals ((a) for the time duration of 3 s (segment length of 6000) and (c) for the time duration of 4 s (segment length of 8000)) and comparisons between original data with the reconstructed signal ((b) for the time duration of 3 s (segment length of 6000) and (d) for the time duration of 4 s (segment length of 8000)). Zoom-in plots during 0.2 to 0.6 s for (b,d) are illustrated in (e,f), respectively. 
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Table 1. Detail parameters for each layer in the proposed encoder.
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	No.
	Layer Function
	No. of Filter × Kernel Size
	Activation Function
	No. of Trainable Param.
	Output Size





	1
	Conv 1D
	12 × 3
	ReLU
	48
	6000 × 12



	2
	MaxPool 1D
	-
	-
	0
	1500 × 12



	3
	Conv 1D
	32 × 5
	ReLU
	1952
	1500 × 32



	4
	Conv 1D
	64 × 7
	ReLU
	14,400
	1500 × 64



	5
	Batch Norm
	-
	-
	256
	1500 × 64



	6
	MaxPool 1D
	-
	-
	0
	375 × 64



	7
	Conv 1D
	64 × 11
	ReLU
	45,120
	375 × 64



	8
	Conv 1D
	128 × 13
	ReLU
	106,624
	375 × 128



	9
	MaxPool 1D
	-
	-
	0
	187 × 128



	10
	Conv 1D
	32 × 3
	ReLU
	12,320
	187 × 32



	11
	Conv 1D
	1 × 7
	ReLU
	225
	187 × 1
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Table 2. Detail parameters for each layer in the proposed decoder.
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	No.
	Layer Function
	No. of Filter × Kernel Size
	Activation Function
	No. of Trainable Param.
	Output Size





	1
	Conv 1D
	32 × 3
	ReLU
	128
	187 × 32



	2
	Conv 1D
	64 × 11
	ReLU
	22,592
	187 × 64



	3
	Conv 1D
	128 × 13
	ReLU
	106,624
	187 × 128



	4
	Upsampling
	-
	-
	0
	374 × 128



	5
	Conv 1D
	32 × 5
	ReLU
	20,512
	374 × 32



	6
	Conv 1D
	64 × 7
	ReLU
	14,400
	374 × 64



	7
	Upsampling
	-
	-
	0
	748 × 64



	8
	Conv 1D
	12 × 3
	ReLU
	2316
	748 × 12



	9
	Upsampling
	-
	-
	0
	2992 × 12



	10
	Conv 1D
	1 × 11
	ReLU
	133
	2992 × 1



	11
	Dense
	6000
	Sigmoid
	17,958,000
	6000
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Table 3. Segment Length Evaluation at CR = 27.
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	Segment Length
	2000
	3000
	6000
	8000



	Total Segments
	220,470
	146,980
	73,490
	55,117



	PRD
	4.696%
	4.668%
	4.495%
	4.571%



	Parameters
	≈4.3 × 10   6  
	≈9.3 × 10   6  
	≈3.6 × 10   7  
	≈6.4 × 10   7  
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Table 4. CR Evaluation at a segment length of 6000.
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	CR
	27
	30
	32
	36



	Length for each Compressed Segment
	222
	200
	187
	166



	Epoch
	389
	368
	362
	345



	PRD
	4.416%
	4.540%
	4.601%
	4.972%
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Table 5. The range of weight and bias for the proposed network model.
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	Max. Weight
	Min. Weight
	Max. Bias
	Min. Bias





	Encoder
	
	
	
	



	Layer 1
	0.39540452
	−0.9235797
	0.01453111
	−0.023743011



	Layer 2
	-
	-
	-
	-



	Layer 3
	0.6052952
	−0.8330374
	0.033396643
	−0.054285403



	Layer 4
	0.48703766
	−0.7313971
	0.1558624
	−0.09510201



	Layer 5
	0.3240463
	0.9359407
	0.054475907
	−0.06052749



	Layer 6
	-
	-
	-
	-



	Layer 7
	0.24897571
	−0.49508682
	0.052439176
	−0.082461566



	Layer 8
	0.24272417
	−0.68896836
	0.10369389
	−0.098621696



	Layer 9
	-
	-
	-
	-



	Layer 10
	0.39203942
	−0.47291782
	0.10768643
	−0.08815236



	Layer 11
	0.52950436
	−0.3272031
	0.13014604
	0.13014604



	Decoder
	
	
	
	



	Layer 1
	0.31976736
	−0.33887985
	0.17345946
	−0.12427106



	Layer 2
	0.33624372
	−0.7039436
	0.11306709
	−0.10122227



	Layer 3
	0.38897622
	−0.6367118
	0.04357844
	−0.16350096



	Layer 4
	-
	-
	-
	-



	Layer 5
	0.7269572
	−0.2668362
	0.02763602
	−0.04904448



	Layer 6
	0.5182032
	−0.63450485
	0.039916832
	−0.038330693



	Layer 7
	-
	-
	-
	-



	Layer 8
	0.5744175
	−0.563132
	0.024111861
	−0.024702776



	Layer 9
	-
	-
	-
	-



	Layer 10
	0.25195208
	−0.30334103
	0.01607588
	0.01607588



	Layer 11
	0.44964585
	−0.87970144
	0.071185686
	0.071185686
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Table 6. Word-length evaluation.
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	Word-Length
	Fractional Length
	PRD(%)





	Floating-32
	-
	4.6015



	Fixed-20
	17
	4.6031



	Fixed-16
	13
	4.6127



	Fixed-12
	9
	4.6437



	Fixed-11
	8
	4.6639



	Fixed-10
	7
	4.7923



	Fixed-9
	6
	5.2162



	Fixed-8
	5
	6.1334
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Table 7. Evaluation of the impact of communication link quality on the root-mean-square difference (PRD) and the quality score (QS).
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BER

	
DCT Method @ CR of 15

	
Proposed Method @ CR of 32






	

	
PRD

	
QS

	
PRD

	
QS




	
   10  − 2    

	
43.700%

	
0.343

	
7.435%

	
4.304




	
   10  − 3    

	
14.048%

	
1.068

	
5.094%

	
6.282




	
   10  − 4    

	
6.436%

	
2.331

	
4.815%

	
6.646




	
   10  − 5    

	
5.536%

	
2.710

	
4.793%

	
6.676




	
   10  − 6    

	
5.491%

	
2.732

	
4.793%

	
6.676




	
0

	
5.480%

	
2.737

	
4.792%

	
6.678
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Table 8. The number of multiply-accumulate (MAC) of the convolutional layers at the encoder side.
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	Layer ID
	    (  W out  ,  C in  ,  C out  , K )    
	Required Number of MAC





	Conv 1D (12, 3)
	(6000, 1, 12, 3)
	216,000



	Conv 1D (32, 5)
	(1500, 12, 32, 5)
	2,880,000



	Conv 1D (64, 7)
	(1500, 32, 64, 7)
	21,504,000



	Conv 1D (64, 11)
	(375, 64, 64, 11)
	16,896,000



	Conv 1D (128, 13)
	(375, 64, 128, 13)
	39,936,000



	Conv 1D (32, 3)
	(187, 128, 32, 3)
	22,978,576



	Conv 1D (1, 7)
	(187, 32, 1, 7)
	41,888
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Table 9. The number of MAC of the deep convolutional layers at the decoder side.
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	Layer ID
	    (  W out  ,  C in  ,  C out  , K )    
	Required Number of MAC





	Conv 1D (32, 3)
	(187, 1, 32, 3)
	17,952



	Conv 1D (64, 11)
	(187, 32, 64, 11)
	4,212,736



	Conv 1D (128, 13)
	(187, 64, 128, 13)
	19,914,752



	Conv 1D (32, 5)
	(374, 128, 32, 5)
	7,659,520



	Conv 1D (64, 7)
	(374, 32, 64, 7)
	5,361,664



	Conv 1D (12, 3)
	(748, 64, 12, 3)
	1,723,392



	Conv 1D (1, 11)
	(2,992, 12, 1, 11)
	394,944
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Table 10. Expected cycles on Eyeriss chips. (a) MobileUNet and (b) proposed architecture.
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(a) MobileUNet

	
(b) Proposed Architecture






	
Layer

	
Eyeriss (Cycle)

	
Layer

	
Eyeriss (Cycle)




	
Layer1

	
111,969

	
Layer1

	
6016




	
Layer2

	
291,000

	
Layer2

	
22,960




	
Layer3

	
188,672

	
Layer3

	
145,386




	
Layer4

	
148,416

	
Layer4

	
118,491




	
Layer5

	
190,208

	
Layer5

	
279,700




	
Layer6

	
282,336

	
Layer6

	
21,088




	
Layer7

	
348,928

	
Layer7

	
3906




	
Layer8

	
73,728

	

	




	
Layer9

	
171,536

	

	




	
Layer10

	
134,592

	

	




	
Total

	
1,941,385

	
Total

	
597,547
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